
COMMON TRANSVERSALS AND COMPLEMENTS
IN ABELIAN GROUPS

S. AIVAZIDIS, M. LOUKAKI, AND B. SAMBALE

Abstract. Given a finite abelian group G and cyclic subgroups A, B, C of G of the
same order, we find necessary and sufficient conditions for A, B, C to admit a common
transversal for the cosets they afford. For an arbitrary number of cyclic subgroups we
give a sufficient criterion when there exists a common complement. Moreover, in several
cases where a common transversal exists, we provide concrete constructions.
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1. Introduction

Suppose that G is a group with subgroups A, B of the same finite index. Then Hall’s
celebrated Marriage Theorem guarantees that we can find a common transversal for
both A, B. That is, there exists a set T whose elements comprise a complete and non-
redundant set of coset representatives for both A and B. Furthermore, the total number
of such common transversals has been computed in [ALM]. If three or more subgroups
are involved, common transversals may not exist. For instance, the three subgroups of
order 2 in the Klein group do not possess such a common transversal.

The recent interest in seeking a common transversal for several subgroups of an abelian
group stems from a question of Steinhaus [Sie58] in the 1950s. Steinhaus asked if there
exists a subset of the plane which can tile the plane when translated by any one of the
lattices that arise by rotating the integer lattice around the origin. In the language used
in this paper, Steinhaus asked if there exists a common transversal of all lattices RθZ2,
where θ ∈ [0, 2π) and Rθ denotes rotation by θ around the origin.
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It was only proved in this century [JM02] that the answer is indeed affirmative. The
variant of the problem where the subset of the plane is asked to be Lebesgue measurable
(but tiling is only demanded almost everywhere) has sparked much more interest and is
still open. The best results to date for the measurable problem can be found in [KW99].

Variations of the Steinhaus problem have taken many forms, but the one most relevant
to this paper was first studied in [Kol97]; where the question was posed if we can find
a subset of the plane which is a common transversal for a finite number of lattices in
the plane. Surprisingly this problem has an affirmative solution in the measurable sense
when the duals of the finite set of lattices has a direct product (the dual of the lattice
AZd is the lattice A−⊤Zd). In [Kol97] the problem was first posed of when a finite set of
subgroups of an abelian group of the same finite index admit a common transversal and
it was proved [Kol97, Thm. 1] that if the subgroups A1, . . . , An of G are direct factors in
G, then they always admit a common transversal in G.

In this paper we are interested in tackling specific instances of the general problem out-
lined above. Recall that if K ⩽ G, with G being arbitrary, then K is said to have a
complement in G (or to be complemented in G) in case there exists a subgroup H such
that G = KH and K ∩ H = 1. Observe that such a complement H, if it exists, is a
transversal of K in G that moreover inherits the group structure of the parent group.

The first of our two main theorems reads as follows.

Theorem A. Let A1, . . . , At be complemented isomorphic subgroups of a finite abelian
group G. If the smallest prime divisor of |A1| is at least t, then A1, . . . , At have a common
complement in G.

Theorem A implies that two isomorphic complemented subgroups in abelian groups al-
ways have a common complement. This is false for non-abelian groups as can be seen in
the dihedral group of order 8. The proof of Theorem A accompanied with more detailed
statements will be given in Section 3.

Our second main theorem provides a complete description of the situation as regards
transversals when three cyclic subgroups are involved.

Theorem B. Let G be a finite abelian group with cyclic subgroups A, B, C of the same
order. Then A, B, C do not share a common transversal in G if and only if A (and thus
B and C) has even order and the product A2B2C2 of their Sylow 2-subgroups satisfies

A2B2C2/I = A2/I ×B2/I = A2/I × C2/I = B2/I × C2/I ,

where I := A2 ∩B2 ∩ C2.

When it comes to more than three subgroups, larger primes play a role. For instance the
elementary abelian group of order p2 is the union of p+1 subgroups of order p, but there
cannot be a common transversal.

2. Reductions

We outline below some notational conventions that we will use throughout the paper.

• [n] := {1, 2, . . . , n}.
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• A cyclic group of order n is denoted by Cn, while Sn is the symmetric group of
degree n.

• G will always denote a finite abelian group.

• A group is called homoyclic if it is the direct product of isomorphic cyclic groups.

• For a prime p, Gp denotes the unique Sylow p-subgroup of G.

• If H ⩽ G and a, b ∈ G we write a ≡ b (mod H) if aH = bH.

• For an integer n let Γn(G) := ⟨g ∈ G : gn = 1⟩. If G is a p-group, we use the
standard notation Ω(G) := Γp(G).

• For A1, . . . , An ⩽ G let T G(A1, . . . , An) be the set of common transversals of
A1, . . . , An in G. Similarly, let XG(A1, . . . , An) be the set of common complements
of A1, . . . , An in G.

We first observe that some (easy) reductions can be made.

Lemma 2.1. Let A ⩽ H ⩽ G be finite abelian groups. If X ∈ T G(A), then X ∩ H ∈
T H(A).

Proof. For any coset hA of A in H there exists x ∈ X so that xA = hA, since X is
a transversal of A in G and hA is a coset of A in G as well. Therefore, x ∈ H and the
lemma follows. ■

Lemma 2.2. For subgroups A1, . . . , An ⩽ G we have T G(A1, . . . , An) ̸= ∅ if and only if
T A1...An(A1, . . . , An) ̸= ∅.

Proof. If T G(A1, . . . , An) ̸= ∅, then T A1...An(A1, . . . , An) ̸= ∅ by Lemma 2.1.

Conversely, assume that S ∈ T A1...An(A1, . . . , An) with S = {s1, s2, . . . , sm} and let
T = {t1, t2, . . . , tk} be a transversal for A1 . . . An in G. Clearly the set ST = {sitj |
i ∈ [m], j ∈ [k]} is a transversal for A1, . . . , An in G and thus T G(A1, . . . , An) ̸= ∅. ■

Lemma 2.3. Let A1, . . . , An ⩽ G and N ⩽ A1 ∩ . . . ∩ An. Then {g1, . . . , gm} ∈
T G(A1, . . . , An) if and only if {g1N, . . . , gmN} ∈ T G/N(A1/N, . . . , An/N). In particu-
lar, T G(A1, . . . , An) ̸= ∅ if and only if T G/N(A1/N, . . . , An/N) ̸= ∅.

Proof. This follows easily from |G : Ai| = |G/N : Ai/N | and the equivalence between
gi ≡ gj (mod A) and giN ≡ gjN (mod A/N). ■

The next result shows that to decide whether or not a number of subgroups of an abelian
group possess a common complement in the parent group, it suffices to decide whether
their Sylow p-subgroups are complemented, or equivalently to assume that G has prime
power order.
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Lemma 2.4. Let G be an abelian group of order |G| = pa11 · · · parr and let A be a sub-
group of G that has a complement in G. Then there is a canonical bijection XG(A) →
×r

i=1
XGpi

(Api).

Proof. To begin with, observe that each subgroup of G (thus also G itself) is the
direct product of its Sylow p-subgroups. Since Gp is unique for each prime p, we have
Ap = A ∩Gp ⩽ Gp. Now let f : XG(A) →×r

i=1
XGpi

(Api) be given by the rule

XG(A) ∋ H 7→ (H ∩Gp1 , . . . , H ∩Gpr) .

We will argue that f is 1-1 and onto. To see that it is onto, let (H1, . . . , Hr) ∈
×r

i=1
XGpi

(Api) and put H =
∏r

i=1 Hi. Then H ∈ XG(A) by order considerations
and f(H) = (H1, . . . , Hr). On the other hand, let H,K ⩽ XG(A) and suppose that
f(H) = f(K). Then

(H ∩Gp1 , . . . , H ∩Gpr) = (K ∩Gp1 , . . . , K ∩Gpr) .

By our previous remark each Sylow subgroup of H coincides with the corresponding Sy-
low subgroup of K. Since both H and K are the internal direct products of their Sylow
subgroups, it follows that H = K establishing the desired injectivity of f . ■

The preceding lemma clearly implies:

Corollary 2.5. Let G be abelian group and A1, . . . , An ⩽ G. Then A1, . . . , An share a
common complement in G if and only if their Sylow p-subgroups A1p , . . . , Anp share a
common complement in Gp for all prime divisors p of |G|.

3. Common complements

Recall that the fundamental theorem of finite abelian groups asserts that G has a pri-
mary decomposition G = G1 × . . .× Gn where each Gi is a cyclic group of prime-power
order. The usual proof is based on the fact that cyclic subgroups of maximal order have
complements. The following consequence of the Krull–Remak–Schmidt theorem gives an
exact criterion.

Lemma 3.1. Let G = G1 × . . . × Gn be the primary decomposition of an abelian group
G. Then A ⩽ G has a complement in G if and only if there exists a subset I ⊆ [n] such
that the projection πI : A →×i∈I Gi is an isomorphism.

Proof. Suppose first that πI is an isomorphism. Let B :=×i∈[n]\I Gi. For a ∈ A ∩ B

we have πI(a) = 1 and therefore a = 1. Since |AB| =
∏

i∈I |Gi|
∏

i∈[n]\I |Gi| = |G|, B is a
complement of A in G.

Now assume conversely that G = A×B. Let

G = A1 × . . .× Ar ×B1 × . . .×Bs

be the primary decomposition. By the Krull–Remak–Schmidt theorem (see [Hu67, Satz I.12.3]),
there exists J ⊆ [n] such that G = A1 × . . .×Ar ××j∈J Gj. Clearly, πI with I := [n] \ J
is an isomorphism. ■
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This is already sufficient to prove Theorem A.

Proof of Theorem A. By Corollary 2.5 we may assume that G is a p-group where
p ⩾ t. We argue by induction on the rank of A1

∼= . . . ∼= At. Suppose first that Ai is
not cyclic. Let Ai = Ai1 × Ai2 be a non-trivial decomposition such that A1j

∼= . . . ∼= Atj

for j = 1, 2. By hypothesis, Ai has a complement Ki in G. It is easy to see that
Ai2 × Ki is a complement of Ai1 in G. Hence, by induction there exists a common
complement H of A11, . . . , At1 in G. Let Bi := Ai ∩ H. Since Ai1Bi = Ai1H ∩ Ai = Ai

and Ai1 ∩ Bi ≤ Ai1 ∩ H = 1, Ai1 is a complement of Bi in Ai. Consequently, Ai1Ki

is a complement of Bi in G. Finally, Ai1Ki ∩ H is a complement of Bi in H. Hence,
by induction there exists a common complement K of B1, . . . , Bt in H. Now we have
AiK = AiBiK = AiH = G and Ai ∩ K = Ai ∩ H ∩ K = Bi ∩ K = 1. So K is also a
complement of A1, . . . , At in G.

For the remainder of the proof, we may assume that A1, . . . , At are cyclic. Let G =
G1 × . . .×Gn be the primary decomposition. By Lemma 3.1, there exist i1, . . . , it ∈ [n]
such that the projection πij : Aj → Gij is an isomorphism for j = 1, . . . , t. In particular,
|Gi1| = . . . = |Git|. Let H := Gi1 . . . Git

∼= As
1 for some s ⩽ t (note that the Gij are not

necessarily distinct). Let G = H ×K and let πH : G → H be the projection to H. By
construction, the restriction of πH to each Ai is injective. Let Bi := πH(Ai) ∩ Ω(H) for
i ∈ [t]. Since |Ω(H)| = ps, Ω(H) has exactly ps−1

p−1
maximal subgroups. Each Bi can only

be contained in the preimages of the ps−1−1
p−1

maximal subgroups of Ω(H)/Bi. Since

ps − 1

ps−1 − 1
> p ⩾ t,

there must be one maximal subgroup of Ω(H) not containing any Bi. Consequently, we
find a subgroup L ⩽ H such that L ∼= As−1

1 and L∩ πH(Ai) = 1 for i = 1, . . . , t (the case
s = 1 with L = 1 is allowed). Suppose that a ∈ Ai∩(L×K). Then πH(a) ∈ L∩πH(Ai) = 1
and a = 1 since πH is injective on Ai. Moreover,

|Ai||L×K| = |Ai|s|K| = |HK| = |G|.

Hence, L×K is a common complement of A1, . . . , At in G. ■

The proof above shows that the following stronger statement holds for cyclic subgroups
of p-groups.

Corollary 3.2. Let A1, . . . , At be complemented cyclic subgroups of the same order of a
finite abelian p-group G. If there are at most p distinct subgroups Ω(A1), . . . ,Ω(At), then
A1, . . . , At have a common complement in G.

Note that the bound t ⩽ p in the preceding corollary is sharp owing to the existence of
the elementary abelian group of order p2 and its p+ 1 distinct subgroups of order p.

Our next result addresses the existence of a common transversal.

Corollary 3.3. Let A1, . . . , At be homocyclic subgroups of the same order of a finite
abelian group G. If the smallest prime divisor of |A1| is at least t, then A1, . . . , At have
a common transversal in G.
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Proof. Suppose that K is the subgroup generated by A1, . . . , At. We will show that
A1, . . . , At admit a common complement in K. First, we argue that each subgroup Ai is
complemented inK and we observe that it will suffice to prove the claim for A1. Note that
since K = A1 . . . At and the Ai’s are homocyclic, it follows that exp(K) = exp(A1). Now
we argue by induction on the rank of A1, where the base case is true since then A1 is cyclic
of maximal order. Let C be cyclic of maximal order in A1. Then C has a complement,
say H, in K and so K = C×H. By Dedekind’s lemma we have A1 = C×(A1∩H), where
A1 ∩H is homocyclic of rank one less than the rank of A1. Also, the exponent of A1 ∩H
is equal to the exponent of H and so the induction hypothesis applies to A1∩H in H and
ensures the existence of a complement for A1∩H in H, say D. Then it is easy to see that
D is a complement for A1 in K, as claimed. Now Theorem A applies to the collection
A1, . . . , At in K proving that there is a common complement. Thus A1, . . . , At have a
common transversal in K and so by Lemma 2.2 they admit a common transversal in G. ■

A direct consequence of the preceding corollary is that three homocyclic subgroups of the
same odd order always admit a common transversal in any parent group.

To obtain more refined results, we now start to count common complements. For this
purpose the following basic fact is useful.

Lemma 3.4. Suppose that the abelian group G has a complemented subgroup A. Then
the number of complements is

|XG(A)| = |Hom(G/A,A)| = |Hom(A,G/A)| .

Proof. Let T ∈ XG(A) be fixed. For every U ∈ XG(A) and every t ∈ T there ex-
ists a unique element τU(t) ∈ A such that τU(t) ≡ t (mod U). It is easy to see that
τU : T → A is a homomorphism and U is uniquely determined by τU . Conversely, every
homomorphism τ : T → A defines a complement of A as U := {τ(t)t−1 : t ∈ T}. In
particular, |XG(A)| = |Hom(T,A)| = |Hom(G/A,A)|. The last equality is a general fact
from duality. ■

Note that there is a natural isomorphism Hom(A × B,C) ∼= Hom(A,C) × Hom(B,C).
In some situations this cardinality simplifies considerably.

Corollary 3.5. Suppose that A ∼= Cn1 × . . .× Cnk
has a complement in G. Then

|XG(A)| = |Γn1(G/A)| . . . |Γnk
(G/A)|.

Proof. Let A = ⟨a1⟩ × . . . × ⟨ak⟩ with |⟨ai⟩| = ni for i = 1, . . . , k. Then every homo-
morphism f : A → G/A is uniquely determined by f(ai) ∈ Γni

(G/A) for i = 1, . . . , k and
conversely, each such choice leads in fact to a homomorphism. ■

Lemma 3.6. Let G = A1 × · · · × At ×B be an abelian group. Then there are exactly

t∏
i=2

|Iso(A1, Ai)| |Hom(A1, B)|
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common complements for A1, . . . , At in G, where Iso(A1, Ai) is the set of isomorphisms
A1 → Ai.

Proof. If X ∈ XG(A1, . . . , At), then A1
∼= G/X ∼= Ai for each i ⩾ 1. Hence, we may

assume that A1
∼= . . . ∼= At. Obviously,

T :=
t×

i=2

Ai ×B

is a complement of A1 in G. To every complement U of A1 in G there exists the corre-
sponding homomorphism τU : T → A1 such that U = {τU(t)t−1 : t ∈ T}, as in Lemma 3.4.
Now fix 2 ⩽ i ⩽ t and note that U can only be complement of Ai too, if the restriction
of τU to Ai is injective, the reason being that τU(t)t

−1 ∈ Ai for some t ∈ T if and only if
τU(t) = 1 and t ∈ Ai. But then τU(Ai) = A1 since A1

∼= Ai. In this case, τU decomposes
into a product of isomorphisms Ai → A1 and a homomorphism B → A1. Conversely,
it can be checked that each such τ (that is the product of t − 1 isomomorphisms from
Ai to A along with a homomorphism from B to A1) defines a common complement
{τ(t)t−1 : t ∈ T} of A1, . . . , At. ■

For cyclic groups the above clearly implies:

Corollary 3.7. Let G = A1 × · · · × At × B with cyclic subgroups A1, . . . , At of order n.
Then

|XG(A1, . . . , At)| = φ(n)t−1|Γn(B)|,
where φ is the totient function.

Now we restrict our attention to cyclic subgroups of maximal order (which are always
complemented).

Proposition 3.8. Let A, B be cyclic subgroups of maximal order of an abelian p-group
G. Then

|XG(A,B)| =

{
|G : A| if A ∩B > 1,

φ(|G : A|) if A ∩B = 1.

Proof. Assume first that A∩B > 1. Then every complement of A is also a complement
of B and vice versa. To see this, observe that if T is a complement of A but not of B
then T ∩ B ̸= 1 and thus Ω(B) ⩽ T ∩ B ∩ A, which is clearly a contradiction. Hence
XG(A,B) = XG(A) and Corollary 3.5 implies that XG(A) = |G : A|. So the proposition
holds in this case.

Assume now that A ∩ B = 1 and thus AB = A × B = C2
pn where |A| = pn. Since by

hypothesis, pn is the maximal element order in G, it follows easily from Lemma 3.1 that
AB has a complement in G say G = A× B × S. We apply Corollary 3.7 to get exactly
φ(pn)|Γpn(S)| common complements of A and B in G. Observe that Γpn(S) = S and
thus

φ(pn)|Γpn(S)| = φ(pn)
|G|
p2n

= φ(|G|/pn) = φ(|G : A|).

The proof is complete. ■
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Corollary 3.9. Let G be an abelian group and let A, B be cyclic subgroups of G of
maximal order and index s in G. Then the proportion of complements of A in G that are
simultaneously complements for B in G is at least φ(s)/s.

Proof. The desired proportion is

|XG(A,B)|
|XG(A)|

.

If we write np for the number of common complements of the Sylow p-subgroups Ap and
Bp in Gp, then according to Lemma 2.4 we have

|XG(A,B)| =
∏
p | |G|

np.

But np equals |Gp : Ap|, if Ap ∩ Bp > 1 and φ(|Gp : Ap|), if Ap ∩ Bp = 1 by Proposi-
tion 3.8. Hence in all cases we have np ⩾ φ(|Gp : Ap|) and thus the number of common
complements of A, B in G is at least∏

p | |G|

φ(|Gp : Ap|) = φ
(∏
p | |G|

|Gp : Ap|
)
= φ(|G : A|) = φ(s).

Similarly for A we get

|XG(A)| = |Γ|A|(G/A)| = |G/A| = s

complements in G by Corollary 3.7. Therefore, the desired proportion is at least φ(s)/s,
as wanted. ■

Notice that for each prime power index s = pa the proportion of common complements
is at least 1− 1/p ⩾ 1/2, but for general n there is no positive lower bound since

lim inf
n→∞

φ(n)

n
= 0

(see for example Theorem 328 in [HW] for a more general result).

We can now give a quantitative version of Theorem A.

Theorem 3.10. Let G be a finite abelian p-group and let A1, . . . , At be cyclic subgroups
of maximal order and index s in G. Let ω be the number of distinct subgroups Ω(Ai)
where 1 ⩽ i ⩽ t. Then

|XG(A1, . . . , At)| ⩾ s

(
1− ω − 1

p

)
.

Proof. We induce on ω. If ω = 1 then all Ai share the same subgroup of order p.
Hence A1 ∩ . . . ∩ At > 1 which implies that |XG(A1, . . . , At)| = |XG(A1)| = s and thus
our induction begins.

Assume now that ω > 1 and that the claim holds for smaller values of ω. Without loss
of generality let Ω(Au) = Ω(Au+1) = . . . = Ω(At) and Ω(Ai) ̸= Ω(Au) for i < u. The
inductive hypothesis implies

|XG(A1, . . . , Au−1)| ⩾ s

(
1− ω − 2

p

)
.
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From Proposition 3.8 we know

|XG(A1, . . . , Au−1) ∪ XG(Au, . . . , At)| ⩽ |XG(A1) ∪ XG(Au)|
= |XG(A1)|+ |XG(Au)| − |XG(A1, Au)|

= 2s− s
(
1− 1

p

)
= s

(
1 +

1

p

)
.

By inclusion-exclusion, we conclude

|XG(A1, . . . , At)| = |XG(A1, . . . , Au−1) ∩ XG(Au, . . . , At)|
= |XG(A1, . . . , Au−1)|+ |XG(Au)| − |XG(A1, . . . , Au−1) ∪ XG(Au)|

⩾ s

(
1− ω − 2

p

)
+ s− s

(
1 +

1

p

)
= s

(
1− ω − 1

p

)
and the theorem follows. ■

As an immediate corollary we have the following.

Corollary 3.11. Let G be a finite abelian p-group and let A1, . . . , At be cyclic subgroups

of maximal order of G then |XG(A1, . . . At)| ⩾ s
(
1− t−1

p

)
.

4. Proof of Theorem B

We start with the non-existence part of Theorem B.

Lemma 4.1. Let A, B, C be cyclic subgroups of the finite abelian group G such that
G2 = A2 ×B2 = A2 × C2 = B2 × C2 ̸= 1. Then T G(A,B,C) = ∅.

Proof. By hypothesis, Ω(G2) = {1, a, b, c} where a ∈ A, b ∈ B and c ∈ C. Every
complement S of A must contain an involution, which lies either in B or in C. Hence, S
cannot be a common complement of A,B,C.

■

The next theorem addresses the key configuration of Theorem B.

Theorem 4.2. Let A, B, C be cyclic subgroups of order 2n of the abelian 2-group G =
ABC. Assume further that A ∩ B = A ∩ C = 1 and that |A ∩ BC| = 2m, |B ∩ C| = 2k

for some non-negative integers k, m. In case k > 0, there is a common complement for
the three subgroups, while if k = 0 we have the following cases:

(i) if m = 0, then A, B, C share a common complement,

(ii) if m = n, then there is no common transversal, while

(iii) if 0 < m < n, there is no common complement for A, B, C, but there is a common
transversal.
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Proof. If k > 0, then Ω(B) = Ω(C) and the claim follows from Corollary 3.2. Now let
k = 0, that is A ∩B = A ∩ C = B ∩ C = 1.

(i) Here G = A × B × C and it is easy to see that the subgroup H = ⟨ac⟩ × ⟨bc⟩ is a
common complement for A, B, C in G, where A = ⟨a⟩, B = ⟨b⟩, C = ⟨c⟩.

(ii) This part follows from Lemma 4.1.

(iii) Finally, let 0 < m < n. We assume that a common complement H for A,B and
C exists and we will derive a contradiction. In this case, G ∼= C2n × C2n × C2r with
r = n−m > 0 and any common complement is a group isomorphic to C2n × C2r . Thus
we have G = H × A = H ×B = H × C and so

BC = BC ∩G = BC ∩BH = B × (BC ∩H) .

As BC = B × C ∼= C2n × C2n , we conclude that BC ∩ H is a cyclic group of order 2n.
Now note that BC has only three involutions, namely b2

n−1
, c2

n−1
and (bc)2

n−1
. Since

H ∩ B = H ∩ C = 1, we see that the only involution in BC ∩ H is (bc)2
n−1

. Similarly,
since A∩B = A∩C = 1, the unique involution of the non-trivial cyclic subgroup BC∩A
is (bc)2

n−1
. We conclude that

(bc)2
n−1 ∈ A ∩BC ∩H,

contradicting the fact that A ∩H = 1.

To conclude the proof, we must show that T G(A,B,C) is non-empty. Since A ∩ BC =〈
a2

r〉
, we may assume that a2

r
= (bc)2

r
.

We define the map σ : {0, . . . , 2n − 1} → {0, . . . , 2n − 1}, as

σ(i) = t · 2m +
i− t

2r
,

where 0 ⩽ t < 2r with i ≡ t (mod 2r). We note first that 0 ⩽ i−t
2r

< 2m and

0 ⩽ σ(i) ⩽ (2r − 1)2m +
i− t

2r
< 2n.

Suppose next that σ(i) = σ(j) with j ≡ t′ (mod 2r). Computing modulo 2m, we obtain
i− t ≡ j− t′ (mod 2n) and hence i− t = j− t′. But then t2m = t′2m and t = t′ as well as

i = j. We have shown that σ is a permutation. We also have i−σ(i) = −t ·2m+ i(2r−1)+t
2r

.
Furthermore, if i ≡ v (mod 2r) then

(i− σ(i))− (v − σ(v)) =
(i− v)(2r − 1)

2r
(4.1)

Let X =
{
bicσ(i) | i ∈ {0, . . . , 2n − 1}

}
and

Y =
2r−1⋃
j=0

ajcj·2
m

X.

We claim that Y ∈ T G(A,B,C).

It suffices to show that all the elements of Y are distinct (mod A), (mod B) and
(mod C), as then we would also have that |Y | = 2r · 2n.

• Let ajcj2
m
bicσ(i) and aucu2

m
bvcσ(v) ∈ Y for some j, u ∈ {0, 1, . . . , 2r − 1} and

i, v ∈ [2n]. Suppose first that ajcj2
m
bicσ(i) ≡ aucu2

m
bvcσ(v) (mod B). Then

aj−u ≡ c2
m(u−j)+σ(v)−σ(i) (mod B).

10



Hence aj−u ∈ A∩BC and thus 2r | j−u which in turn implies that j = u. Hence
cσ(v)−σ(i) ∈ B and so σ(v) ≡ σ(i) (mod 2n). But σ ∈ S2n , so i is necessarily equal
to v. Thus the elements in Y are distinct (mod B).

• Assume now that ajcj2
m
bicσ(i) ≡ aucu2

m
bvcσ(v) (mod C) which implies that ajbi ≡

aubv (mod C). Hence aj−u ≡ bv−i (mod C), which in turn yields that 2r | j − u
and thus j = u. Therefore bv−i ∈ C and so 2n | v− i. Thus v = i and the elements
of Y are distinct (mod C).

• Lastly, assume that ajcj2
m
bicσ(i) ≡ aucu2

m
bvcσ(v) (mod A). Then cj2

m
bicσ(i) ≡

cu2
m
bvcσ(v) (mod A) and thus c2

m(j−u)+σ(i)−σ(v) ≡ bv−i (mod A). So there exists
t ∈ [2m] such that

i− v ≡ t2r (mod 2n) and 2m(j − u) + σ(i)− σ(v) ≡ t2r (mod 2n).

We conclude that

2m(j − u) ≡ (i− σ(i))− (v − σ(v)) (mod 2n).

In view of Equation (4.1) we get

2m(j − u) ≡ (i− v)(2r − 1)

2r
(mod 2n).

But 2n = 2m+r and thus i − v ≡ 0 (mod 2n). So i = v. Hence 2m(j − u) ≡ 0
(mod 2n) and so 2r | j − u which yields that j = u.

The proof is complete. ■

We can now prove that a similar result to that of Corollary 2.5 holds for common transver-
sals of three cyclic subgroups.

Corollary 4.3. Let A, B, C be cyclic subgroups of G = ABC with A∩B∩C = 1. Then
A, B, C share a common transversal in G if and only if Ap, Bp, Cp share a common
transversal in Gp for all prime divisors p of |G|.

Proof. Assume first that Ap, Bp, Cp share a common transversal Tp in Gp for all prime
divisors p of |G|. Then the product T =

∏
p Tp is a common transversal of A, B, C in G,

as we can easily verify. For the other direction, we first note that according to Theorem A,
common transversals always exist for three cyclic subgroups of odd order in their product
group. Hence we assume that G2 ̸= 1 and it suffices to show that if T G2(A2, B2, C2) = ∅
then T G(A,B,C) = ∅. In view of Theorem 4.2 we have T G2(A2, B2, C2) = ∅ if and only if
A2 ⩽ B2C2 while B2∩C2 = 1 (after some rearrangement of A, B, C). But A2, B2, C2 are
all cyclic groups of the same order with trivial intersection while their product is G2 ̸= 1
and thus G2 = A2×B2 = B2×C2 = A2×C2. We are therefore in the situation described
in Lemma 4.1 and thus we get T G(A,B,C) = ∅. ■

Theorem B is now an easy consequence of the preceding corollary.

Proof of Theorem B. By Lemma 2.2, we may assume that G = ABC. Then A, B
and C are cyclic of maximal order, so they are complemented in A. If |A| is odd, then
the claim follows from Theorem A. We may assume therefore, that |A| is even. In view
of Corollary 4.3, we have that T G(A,B,C) = ∅ if and only if T G2(A2, B2, C2) = ∅. But
T G2(A2, B2, C2) is the empty set if and only if T X/Y (A2/Y,B2/Y, C2/Y ) = ∅, where

11



X = A2B2C2 and Y = A2 ∩B2 ∩ C2. Appealing to Theorem 4.2 completes the proof. ■

5. Some more constructions

In this section we will provide some methods to construct a common transversal for
three subgroups A, B, C of G. We start with the following generalization of Theorem 1
in [Kol97].

Theorem 5.1. Let B1, . . . , Bt be subgroups of G of the same order m. Let X =
∏t

i=1Bi,
and assume that T X(B1, . . . , Bt) ̸= ∅. If A ⩽ G with |A| = m and AX = A × X, then
T G(A,B1, . . . , Bt) ̸= ∅.

Proof. Clearly, in view of Lemma 2.2, we may assume that G = AX = A × X. Let
T ∈ T X(B1, . . . , Bt). Then |T | = |X|/m, while |G| = m · |X| = m2 · |T |. Observe that
for every b ∈ B1, the set bT ∈ T X(B1, . . . , Bt). In addition,

bT ∩ b′T = ∅, for all distinct b, b′ ∈ B1, (5.1)

or else we would get bt1 = b′t2 for distinct t1, t2 ∈ T , contradicting the fact that T is a
transversal for B1. We write B1 = {b1, . . . , bm} and A = {a1, . . . , am} and we claim that
the set

D =
m⋃
i=1

aibiT

is an element of T G(A,B1, . . . , Bt).

We first show that no two elements in D are in the same A or Bi-coset for all i ∈ [t].
Assume first that

aibit1 ≡ ajbjt2 (mod A)

for ai, aj ∈ A, bi, bj ∈ B1 and t1, t2 ∈ T . Then bit1 ≡ bjt2 (mod A) and so bib
−1
j t1t

−1
2 ∈

A ∩X. As the latter group is trivial, we get bit1 = bjt2, i = j and t1 = t2 by (5.1).

Regarding the cosets of Bi for i ∈ [t] we see that if

aibit1 ≡ ajbjt2 (mod Bi),

then aia
−1
j = b−1

i t−1
1 bjt2 ∈ X ∩ A. So ai = aj, that is i = j. Hence the last congruence

implies that t1 ≡ t2 (mod Bi), which means that t1 = t2, since T ∈ T X(B1, . . . , Bt).

Observe that, as no two elements in D are in the same A-coset, they are necessarily
distinct and thus |D| = m|T | = |X| equals the index of A in G, as well as that of Bi in
G, for all i ∈ [t]. We conclude that D is a common transversal for A,B1, . . . , Bt in G,
and the theorem follows. ■

As we know, if B1, B2 are subgroups of G of the same order, then a common transversal
exists. Hence Theorem 5.1 clearly implies the following.

Corollary 5.2. Let G be an abelian group and A,B,C ⩽ G of the same order m. Assume
further that ABC = A×BC and let T ∈ T BC(B,C). Then D =

⋃m
i=1 aibiT is a common

transversal of A, B, C in ABC, where A = {ai}mi=1 and B = {bi}mi=1.
12



The above corollary works for any three subgroups A, B, C of the same order, without
assuming that they are cyclic, but with the extra hypothesis that ABC = A× BC. We
have not managed to relax this last hypothesis without some restrictions on the type of
A, B, C. For A, B, C cyclic subgroups we are able, in some cases, to construct the
desired common transversal as the next theorem shows.

Theorem 5.3. Let G = ABC with cyclic subgroups A, B, C of order pn where p is an
odd prime. Assume further that A ∩ B = A ∩ C = B ∩ C = 1 while A ∩ BC has order
pm. Then for a, b, c generators of A, B, C respectively, with ap

n−m
= (bc)p

n−m
the set

T =
{
aibj−ic−j : i ∈ [pn−m], j ∈ [pn]

}
is in T G(A,B,C).

Proof. Let A = ⟨a⟩ and r = n − m. Since A ∩ BC =
〈
ap

r〉
, we may assume

that ap
r
= (bc)p

r
for appropriate generators b, c of B and C. We argue that the set

T = {aibj−ic−j : i ∈ [pr], j ∈ [pn]} is in T G(A,B,C).

Let aibj−ic−j, aubv−uc−v ∈ T for some i, u ∈ [pr] and j, v ∈ [pn]. Suppose that aibj−ic−j ≡
aubv−uc−v (mod B). Then ai−u ≡ cj−v (mod B) and thus ai−u ∈ A ∩ BC. Thus pr

divides i − u and so i = u as they are in [pr]. So cj−v ∈ B ∩ C = 1, which yields
that pn divides j − v and thus j = v. We see therefore that each element in T defines
a unique coset of B in G. The proof that each element in T defines a unique coset of
C in G is entirely analogous so we omit it and we deal next with the case of A. The
congruence here is bj−ic−j ≡ bv−uc−v (mod A) and it yields b(j−v)−(i−u) ≡ cj−v (mod A).
Thus b(j−v)−(i−u)c−(j−v) ∈ A ∩ BC =

〈
(bc)p

r〉
. Since B ∩ C = 1, it follows that there

exists a t such that

(j − v)− (i− u) ≡ tpr (mod pn) and v − j ≡ tpr (mod pn).

Thus u− i ≡ 2tpr (mod pn) and so u− i ≡ 0 (mod pr). It follows that i = u as i, u ∈ [pr].
Therefore j − v ≡ tpr ≡ v − j (mod pn) and so 2(j − v) ≡ 0 (mod pn). As p is an odd
prime we get pn | j − v forcing j = v, as wanted.

We have therefore shown that all the elements of T are in distinct A,B and C cosets.
Hence the elements of T are pairwise distinct while the cardinality |T | = p2n−m is the
correct one and thus T ∈ T G(A,B,C). ■
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