GENUS AND CROSSCAP OF SOLVABLE CONJUGACY CLASS GRAPHS OF FINITE GROUPS

PARTHAJIT BHOWAL, PETER J. CAMERON, RAJAT KANTI NATH* AND BENJAMIN SAMBALE

Abstract

The solvable conjugacy class graph of a finite group G, denoted by $\Gamma_{s c}(G)$, is a simple undirected graph whose vertices are the non-trivial conjugacy classes of G and two distinct conjugacy classes C, D are adjacent if there exist $x \in C$ and $y \in D$ such that $\langle x, y\rangle$ is solvable. In this paper, we discuss certain properties of genus and crosscap of $\Gamma_{s c}(G)$ for the groups $D_{2 n}$, $Q_{4 n}, S_{n}, A_{n}$, and $\operatorname{PSL}\left(2,2^{d}\right)$. In particular, we determine all positive integers n such that their solvable conjugacy class graphs are planar, toroidal, doubletoroidal or triple-toroidal. We shall also obtain a lower bound for the genus of $\Gamma_{s c}(G)$ in terms of order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between the genus of $\Gamma_{s c}(G)$ and the commuting probability of certain finite non-solvable group.

1. Introduction

The genus of a graph Γ, denoted by $\gamma(\Gamma)$, is the smallest non-negative integer n such that the graph can be embedded on the surface obtained by attaching n handles to a sphere. Graphs having genus zero are called planar, while those having genus one are called toroidal. Graphs having genus two and three are called doubletoroidal triple-toroidal respectively. Let N_{k} be the connected sum of k projective planes. A simple graph which can be embedded in N_{k} but not in N_{k-1}, is called a graph of crosscap k. The crosscap of a graph Γ is denoted by $\bar{\gamma}(\Gamma)$. A graph Γ is called projective if $\bar{\gamma}(\Gamma)=1$. It is well-known that $\gamma(\Gamma) \geq \gamma(\tilde{\Gamma})$ and $\bar{\gamma}(\Gamma) \geq \bar{\gamma}(\tilde{\Gamma})$, if $\tilde{\Gamma}$ is a subgraph of Γ. Also, for $n \geq 3$ and $r, s \geq 2$ we have

$$
\begin{align*}
& \gamma\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil \tag{1}\\
& \gamma\left(K_{r, s}\right)=\left\lceil\frac{(r-2)(s-2)}{4}\right\rceil \tag{2}
\end{align*}
$$

and

$$
\bar{\gamma}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{1}{6}(n-3)(n-4)\right\rceil, & \text { if } n \neq 7 \tag{3}\\ 3, & \text { if } n=7\end{cases}
$$

where K_{n} is the complete graph on n vertices and $K_{r, s}$ is the complete bipartite graph with two parts of sizes r and s.

[^0]The solvable conjugacy class graph (SCC-graph) of a finite group G, denoted by $\Gamma_{s c}(G)$, is a simple undirected graph whose vertices are the non-trivial conjugacy classes of G and two distinct conjugacy classes C, D are adjacent if there exist $x \in C$ and $y \in D$ such that $\langle x, y\rangle$ is solvable. The SCC-graph of G is introduced and studied in [3] extending the notions of commuting conjugacy class graph [13] and nilpotent conjugacy class graph [14].

It was shown in [3, Theorem 3.6] that there are only finitely many finite groups G whose SCC-graph has given genus. Therefore, if some bounds for $|G|$ are known in terms of genus of $\Gamma_{s c}(G)$ then one may have characterizations of finite groups such that their SCC-graphs are planar, toroidal, double-toroidal or triple-toroidal. It is worth mentioning that the genus of the commuting graph and commuting conjugacy class graph of various classes of finite groups have been computed in $[1,9,4]$ and characterized finite non-abelian groups such that their commuting/ commuting conjugacy class graphs are planar, toroidal, double-toroidal or tripletoroidal. In [8], all finite non-nilpotent groups are characterized such that their nilpotent graphs are planar or toroidal. Further, in $[5,6]$, it was shown that solvable and non-solvable graphs of finite non-solvable groups are neither planar, toroidal, double-toroidal or triple-toroidal.

In this paper, we discuss certain properties of genus and crosscap of $\Gamma_{s c}(G)$ for the groups $D_{2 n}, Q_{4 n}, S_{n}, A_{n}$ and PSL $\left(2,2^{d}\right)$. In particular, we determine all cases for which their SCC-graphs are planar, toroidal, double-toroidal or triple-toroidal. We shall also obtain a lower bound for $\gamma\left(\Gamma_{s c}(G)\right)$ in terms of order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between $\gamma\left(\Gamma_{s c}(G)\right)$ and commuting probability of certain finite non-solvable groups.

2. Generalities on SCC-Graphs

As noted earlier, it was shown in the earlier paper [3] that the order of a group G is bounded in terms of the clique number of its SCC-graph. We mentioned in that paper the problem of finding an explicit bound.

We noted in the preceding section that the genus and crosscap of the complete graph K_{n} are known explicitly, and are functions which tend to infinity with n. It follows immediately that
Proposition 2.1. Given k, there are only finitely many finite groups G such that the genus or crosscap of $\Gamma_{s c}(G)$ is equal to k.

We pose the analogous question:
Problem 2.2. Find an explicit bound for the order of a finite group G for which $\gamma\left(\Gamma_{s c}(G)\right)=k$. Same problem for G for which $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=k$.

In particular, if G is a solvable group, then $\Gamma_{s c}(G)$ is a complete graph K_{k}, where k is one less than the number of conjugacy classes of G; so the genus and crosscap of $\Gamma_{s c}(G)$ are determined by the results in the preceding section.

The analysis is complicated by the fact that, if G and H are groups with $G \leq H$, it is not necessarily true that $\Gamma_{s c}(G)$ is a subgraph of $\Gamma_{s c}(H)$. For example, the cyclic group of order 5 has five conjugacy classes but the dihedral group of order 10 only has four.

This example also shows that a natural monotonic graph parameter (the clique number) does not induce a monotonic parameter on groups.

However, for one important class of groups, things are better.
Proposition 2.3. For any n, there is a natural embedding f_{n} from the vertex set of $\Gamma_{s c}\left(S_{n}\right)$ to that of $\Gamma_{s c}\left(S_{n+1}\right)$, which embeds the first graph as a subgraph of the second.

Proof. Under the natural embedding of S_{n} into S_{n+1} as the stabilizer of $n+1$, two elements of S_{n} are conjugate in S_{n+1} if and only if they are conjugate in S_{n}. (This is because elements of the symmetric group are conjugate if they have the same cycle structure; and the natural embedding simply adds one cycle of length 1 to each element of S_{n}.) So the set of conjugacy classes of S_{n} embeds naturally into that for S_{n+1}.

If two conjugacy classes in S_{n} contain elements which generate a solvable group, then this is still true in S_{n+1}. So the embedding above maps edges to edges. (Note that non-edges are not necessarily mapped to non-edges; the classes of a 3-cycle and a 5 -cycle are non-adjacent in S_{n} for $n=5,6,7$ but are adjacent for $n \geq 8$. So the embedding is not as induced subgraph in general.)

It follows that both $\gamma\left(\Gamma_{s c}\left(S_{n}\right)\right)$ and $\bar{\gamma}\left(\Gamma_{s c}\left(S_{n}\right)\right)$ are non-decreasing functions of n. We can observe further that, if we embed S_{n} in S_{n+k} by composing the maps f_{n}, $f_{n+1}, \ldots, f_{n+k-1}$, then for sufficiently large k, the image of the composite map is a complete graph. (It suffices to take $k=n$; for, given any two elements of S_{n}, we can find conjugates of them in $S_{2 n}$ with disjoint support, and hence commuting.) In particular, we get the following fractional exponential lower bounds, using the known results on the genus and crosscap of the complete graph. Here $p(n)$ denotes the number of partitions of the integer n (which is the number of conjugacy classes of the symmetric group $\left.S_{n}\right)$. Thus, if $k=p(\lfloor n / 2\rfloor)-1$ then $\Gamma_{s c}\left(S_{n}\right)$ has a subgraph isomorphic to a complete graph having k vertices. Hence, using (1) and (3) we get the following result.

Theorem 2.4. Given $n \geq 10$, let $k=p(\lfloor n / 2\rfloor)-1$. Then

$$
\gamma\left(\Gamma_{s c}\left(S_{n}\right)\right) \geq\left\lceil\frac{(k-3)(k-4)}{12}\right\rceil \text { and } \bar{\gamma}\left(\Gamma_{s c}\left(S_{n}\right)\right) \geq\left\lceil\frac{(k-3)(k-4)}{6}\right\rceil .
$$

Inspection of the proof shows that the same bound holds for the commuting and nilpotent conjugacy class graphs of the symmetric group [13, 14].

Recall that $k(G)$ denotes the number of conjugacy classes of G. The following lemma is useful in obtaining a lower bound for $\gamma\left(\Gamma_{s c}(G)\right)$ as mentioned above.

Lemma 2.5. Let G be a finite non-solvable group with non-trivial center $Z(G)$. Then $\Gamma_{s c}(G)$ has a subgraph isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$.

Proof. Let $S=\left\{x^{G}: x \in Z(G) \backslash\{1\}\right\}$ and $T=\left\{y^{G}: y \in G \backslash Z(G)\right\}$. We consider the subgraph S_{Γ} of $\Gamma_{s c}(G)$ by removing edges between the vertices of S as well as removing edges between the vertices of T. Then the subgraph thus obtained is isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$.

Theorem 2.6. Let G be a finite non-solvable group with non-trivial center $Z(G)$. Then

$$
4 \gamma\left(\Gamma_{s c}(G)\right) \geq(|Z(G)|-3)(k(G)-|Z(G)|-2)
$$

Proof. By Lemma 2.5, it follows that $\Gamma_{s c}(G)$ has a subgraph isomorphic to $K_{|Z(G)|-1, k(G)-|Z(G)|}$. We have

$$
\gamma\left(\Gamma_{s c}(G)\right) \geq \gamma\left(K_{|Z(G)|-1, k(G)-|Z(G)|}\right)
$$

Therefore, by (2), we have

$$
\begin{aligned}
\gamma\left(\Gamma_{s c}(G)\right) & \geq\left\lceil\frac{(|Z(G)|-3)(k(G)-|Z(G)|-2)}{4}\right\rceil \\
& \geq \frac{(|Z(G)|-3)(k(G)-|Z(G)|-2)}{4}
\end{aligned}
$$

Hence, the result follows on simplification.
We conclude this section with the following relation between commuting probability (which is the probability that a randomly chosen pair of elements of G commute) and genus of SCC-graph of finite non-solvable group with non-trivial center.

Corollary 2.7. Let G be a finite non-solvable group and $|Z(G)|>3$. If $\operatorname{Pr}(G)$ is the commuting probability of G then

$$
\operatorname{Pr}(G) \leq \frac{4 \gamma\left(\Gamma_{s c}(G)\right)+(|Z(G)|-3)(|Z(G)|+2)}{|G|(|Z(G)|-3)}
$$

Proof. The result follows from Theorem 2.6 and the fact that $\operatorname{Pr}(G)=\frac{k(G)}{|G|}$ as noted in [12].

It is worth mentioning that many bounds for $\operatorname{Pr}(G)$ have been obtained using various group theoretic notions over the years (see [11, 15]). However, the bound for $\operatorname{Pr}(G)$ obtained in Corollary 2.7 is the first of its kind involving genus of certain graph defined on groups though it is difficult to compute genus of $\Gamma_{s c}(G)$ in general.

3. Genus and crosscap of SCC-Graphs

We begin with the characterizations of dihedral groups $\left(D_{2 n}=\left\langle a, b: a^{n}=b^{2}=\right.\right.$ $\left.1, b a b^{-1}=a^{-1}\right\rangle$) and quaternion groups ($Q_{4 n}=\left\langle a, b: a^{2 n}=1, b^{2}=x^{n}, b a b^{-1}=\right.$ $\left.a^{-1}\right\rangle$) such that their SCC-graphs are planar, toroidal, double-toroidal or tripletoroidal.

Since the dihedral and quaternion groups are solvable, their SCC graphs are complete graphs K_{k} where k is one less than the number of conjugacy classes.
Theorem 3.1. (a) $\Gamma_{s c}\left(D_{2 n}\right)$ is planar if and only if $n=2,3,4,5$ and 7 .
(b) $\Gamma_{s c}\left(D_{2 n}\right)$ is toroidal if and only if $n=6,8,9,10,11$ and 13 .
(c) $\Gamma_{s c}\left(D_{2 n}\right)$ is double-toroidal if and only if $n=12$ and 15 .
(d) $\Gamma_{s c}\left(D_{2 n}\right)$ is triple-toroidal if and only if $n=14$ and 17 .
(e) $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)= \begin{cases}\left\lceil\frac{(n-5)(n-7)}{48}\right\rceil, & \text { when } n \geq 19 \text { and } n \text { is odd } \\ \left\lceil\frac{(n-2)(n-4)}{48}\right\rceil, & \text { when } n \geq 16 \text { and } n \text { is even. }\end{cases}$
(f) $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=0$ if and only if $n=2,3,4,5$ and 7 .
(g) $\Gamma_{s c}\left(D_{2 n}\right)$ is projective if and only if $n=6,8,9$ and 11 .
(h) $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)= \begin{cases}\left\lceil\frac{(n-5)(n-7)}{24}\right\rceil, & \text { when } n \geq 13 \text { and } n \text { is odd } \\ \left\lceil\frac{(n-2)(n-4)}{24}\right\rceil, & \text { when } n \geq 10 \text { and } n \text { is even. }\end{cases}$

Proof. We consider the following cases.
Case 1. If n is odd.
The non-trivial conjugacy classes in $D_{2 n}$ are $a^{D_{2 n}},\left(a^{2}\right)^{D_{2 n}}, \ldots,\left(a^{\frac{n-1}{2}}\right)^{D_{2 n}}, b^{D_{2 n}}$. There are $\frac{n+1}{2}$ such conjugacy classes which give $\Gamma_{s c}\left(D_{2 n}\right)=K_{\frac{n+1}{2}}$.

For $n=3,5$ and 7 we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{2}, K_{3}$ and K_{4} respectively; and so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=0$ as well as $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=0$. For $n=9,11$ and 13 we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{5}, K_{6}$ and K_{7} respectively; so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=1$ and $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 \times 9}\right)\right)=$ $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 \times 11}\right)\right)=1$. For $n=15$ we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{8}$ and so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=2$. For $n=17$ we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{9}$ and so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=3$. For $n \geq 19$, by (1), we have

$$
\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=\left\lceil\frac{(n-5)(n-7)}{48}\right\rceil \geq 4
$$

For $n \geq 13$, by (3), we have

$$
\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=\left\lceil\frac{(n-5)(n-7)}{24}\right\rceil \geq 2
$$

Case 2. If n is even.
The non-trivial conjugacy classes in $D_{2 n}$ are $a^{D_{2 n}},\left(a^{2}\right)^{D_{2 n}}, \ldots,\left(a^{\frac{n}{2}}\right)^{D_{2 n}}, b^{D_{2 n}}$, $(a b)^{D_{2 n}}$. There are $\frac{n+4}{2}$ such conjugacy classes which give $\Gamma_{s c}\left(D_{2 n}\right)=K_{\frac{n+4}{2}}$.

For $n=2$ and 4 we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{3}$ and K_{4} respectively; and so $\gamma\left(\Gamma_{s c}^{2}\left(D_{2 n}\right)\right)$ $=0$ as well as $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=0$. For $n=6,8$ and 10 we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{5}, K_{6}$ and K_{7} respectively; so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=1$ and $\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 \times 6}\right)\right)=\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 \times 8}\right)\right)=1$. For $n=12$ we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{8}$ and so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=2$. For $n=14$ we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{9}$ and so $\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=3$. For $n \geq 16$, by (1), we have

$$
\gamma\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=\left\lceil\frac{(n-2)(n-4)}{48}\right\rceil \geq 4
$$

For $n \geq 10$, by (3), we have

$$
\bar{\gamma}\left(\Gamma_{s c}\left(D_{2 n}\right)\right)=\left\lceil\frac{(n-2)(n-4)}{24}\right\rceil \geq 2
$$

Hence, the result follows.
Theorem 3.2. (a) $\Gamma_{s c}\left(Q_{4 n}\right)$ is planar if and only if $n=1$ and 2.
(b) $\Gamma_{s c}\left(Q_{4 n}\right)$ is toroidal if and only if $n=3,4$ and 5 .
(c) $\Gamma_{s c}\left(Q_{4 n}\right)$ is double-toroidal if and only if $n=6$.
(d) $\Gamma_{s c}\left(Q_{4 n}\right)$ is triple-toroidal if and only if $n=7$.
(e) $\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=\left\lceil\frac{(n-1)(n-2)}{12}\right\rceil$ for $n \geq 8$.
(f) $\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=0$ if and only if $n=1$ and 2 .
(g) $\Gamma_{s c}\left(Q_{4 n}\right)$ is projective if and only if $n=3$ and 4 .
(h) $\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)= \begin{cases}3, & \text { when } n=5 \\ \left\lceil\frac{(n-1)(n-2)}{6}\right\rceil, & \text { when } n \geq 6 .\end{cases}$

Proof. The non-trivial conjugacy classes in $Q_{4 n}$ are $a^{Q_{4 n}},\left(a^{2}\right)^{Q_{4 n}}, \ldots,\left(a^{n}\right)^{Q_{4 n}}, b^{Q_{4 n}}$ and $(a b)^{Q_{4 n}}$. There are $n+2$ such conjugacy classes which give $\Gamma_{s c}\left(Q_{4 n}\right)=K_{n+2}$.

For $n=1$ and 2 we have $\Gamma_{s c}\left(Q_{4 n}\right)=K_{3}$ and K_{4} respectively; and so $\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)$ $=0$ as well as $\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=0$. For $n=3,4$ and 5 we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{5}, K_{6}$ and K_{7} respectively; so $\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=1$ and $\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 \times 3}\right)\right)=\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 \times 4}\right)\right)=1$.

For $n=6$ we have $\Gamma_{s c}\left(D_{2 n}\right)=K_{8}$ and so $\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=2$. For $n=7$ we have $\Gamma_{s c}\left(Q_{4 n}\right)=K_{9}$ and so $\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=3$. For $n \geq 8$, by (1), we have

$$
\gamma\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=\left\lceil\frac{(n-1)(n-2)}{12}\right\rceil \geq 4
$$

By (3), we have $\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 \times 5}\right)\right)=3$ and for $n \geq 6$,

$$
\bar{\gamma}\left(\Gamma_{s c}\left(Q_{4 n}\right)\right)=\left\lceil\frac{(n-1)(n-2)}{6}\right\rceil \geq 4 .
$$

Hence, the result follows.
In general, we have the following result for the SCC-graph of a finite solvable group.

Theorem 3.3. Let G be a finite solvable group with $k(G)$ conjugacy classes. Then
(a) $\Gamma_{s c}(G)$ is planar if and only if $k(G)=1,2,3,4$ and 5 .
(b) $\Gamma_{s c}(G)$ is toroidal if and only if $k(G)=6,7$ and 8 .
(c) $\Gamma_{s c}(G)$ is double-toroidal if and only if $k(G)=9$.
(d) $\Gamma_{s c}(G)$ is triple-toroidal if and only if $k(G)=10$.
(e) $\gamma\left(\Gamma_{s c}(G)\right)=\left\lceil\frac{(k(G)-4)(k(G)-5)}{12}\right\rceil$ for $k(G) \geq 11$.
(f) $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=0$ if and only if $k(G)=1,2,3,4$ and 5 .
(g) $\Gamma_{s c}(G)$ is projective if and only if $k(G)=6$ and 7 .
(h) $\bar{\gamma}\left(\Gamma_{s c}(G)\right)= \begin{cases}3, & \text { when } k(G)=8 \\ \left\lceil\frac{(k(G)-4)(k(G)-5)}{6}\right\rceil, & \text { when } k(G) \geq 9 .\end{cases}$

Proof. We have $\Gamma_{s c}(G)=K_{k(G)-1}$. If $k(G)=1$ then $\Gamma_{s c}(G)$ is the null graph. For $k(G)=2,3,4$ and 5 we have $\Gamma_{s c}(G)=K_{1}, K_{2}, K_{3}$ and K_{4} respectively; and so $\gamma\left(\Gamma_{s c}(G)\right)=0$ as well as $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=0$. For $k(G)=6,7$ and 8 we have $\Gamma_{s c}(G)=K_{5}, K_{6}$ and K_{7} respectively; and so $\gamma\left(\Gamma_{s c}(G)\right)=1$. If $k(G)=9$ then we have $\Gamma_{s c}(G)=K_{8}$ and so $\gamma\left(\Gamma_{s c}(G)\right)=2$. If $k(G)=10$ then $\Gamma_{s c}(G)=K_{9}$ and so $\gamma\left(\Gamma_{s c}(G)\right)=3$. For $k(G) \geq 11$, by (1), we have

$$
\gamma\left(\Gamma_{s c}(G)\right)=\left\lceil\frac{(k(G)-4)(k(G)-5)}{12}\right\rceil \geq 4
$$

For $k(G)=6,7$, by (3), we have $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=1$. If $k(G)=8$ then $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=3$. For $k(G) \geq 9$, by (3), we have

$$
\bar{\gamma}\left(\Gamma_{s c}(G)\right)=\left\lceil\frac{1}{6}(k(G)-4)(k(G)-5)\right\rceil \geq 4
$$

Hence, the result follows.
The groups S_{3}, S_{4}, A_{3} and A_{4} are solvable, with respectively $3,5,3$ and 4 conjugacy classes; so their SCC-graphs are complete graphs on 2, 4, 2 and 3 vertices respectively. All these graphs are planar. Also, $\bar{\gamma}\left(\Gamma_{s c}(G)\right)=0$, if G is one of the groups S_{3}, S_{4}, A_{3} and A_{4}. The SCC-graphs of other small symmetric and alternating groups are shown in the following figures, where a vertex is labelled with a representative of its conjugacy class.

Figure 1. $\Gamma_{s c}\left(S_{5}\right)$

Figure 2. $\Gamma_{s c}\left(S_{6}\right)$

Figure 3. $\Gamma_{s c}\left(A_{5}\right)$

Figure 4. $\Gamma_{s c}\left(A_{6}\right)$

Figure 5. $\Gamma_{s c}\left(A_{7}\right)$

The symmetric and alternating groups whose SCC-graphs have small genus or are projective are given in the following results. First, the symmetric groups.

Theorem 3.4. (a) $\Gamma_{s c}\left(S_{n}\right)$ is planar if and only if $n \leq 5$.

Figure 6. $\Gamma_{s c}\left(A_{8}\right)$
(b) If $n \geq 7$ then $\Gamma_{s c}\left(S_{n}\right)$ is neither planar, toroidal, double-toroidal nor tripletoroidal.
(c) $\Gamma_{s c}\left(S_{6}\right)$ is not toroidal.
(d) If $n \geq 6$ then $\Gamma_{s c}\left(S_{n}\right)$ is not projective.

Proof. (a) If $n \leq 5$ then, from our earlier remarks and Figure 1, it follows that $\Gamma_{s c}\left(S_{n}\right)$ is planar. If $n \geq 6$ then it is easy to show that the elements $(1,2),(1,2,3)$, $(1,2)(3,4),(1,2,3,4),(1,2,3)(4,5)$ induce a clique in $\Gamma_{s c}\left(S_{n}\right)$. Hence,

$$
\gamma\left(\Gamma_{s c}\left(S_{n}\right)\right) \geq \gamma\left(K_{5}\right)=1
$$

and so $\Gamma_{s c}\left(S_{n}\right)$ is not planar.
(b) One can show that the ten elements

$$
\begin{aligned}
& (1,2),(1,2,3),(1,2)(3,4),(1,2,3,4),(1,2,3)(4,5),(1,2)(3,4)(5,6), \\
& (1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7),(1,2,3,4)(5,6,7)
\end{aligned}
$$

induce a clique in $\Gamma_{s c}\left(S_{n}\right)$. Hence,

$$
\gamma\left(\Gamma_{s c}\left(S_{n}\right)\right) \geq \gamma\left(K_{10}\right)=4
$$

and so $\Gamma_{s c}\left(S_{n}\right)$ is neither planar, toroidal, double-toroidal nor triple-toroidal.
(c) From Figure 2, it follows that $\Gamma_{s c}\left(S_{6}\right)$ contains a subgraph isomorphic to K_{9} (which is induced by $V\left(\Gamma_{s c}\left(S_{6}\right)\right) \backslash\left\{(1,2,3,4,5)^{S_{6}}\right\}$). Therefore,

$$
\gamma\left(\Gamma_{s c}\left(S_{6}\right)\right) \geq \gamma\left(K_{9}\right)=3
$$

Hence, the result follows from (a) and (b).
(d) In addition to the five permutations listed in the proof of (a), also the elements

$$
(1,2),(1,2)(3,4)(5,6),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3,4,5,6)
$$

induce a clique. Consequently, $\Gamma_{s c}\left(S_{n}\right)$ contains two copies of K_{5} which share a single vertex. This subgraph is isomorphic to the graph denoted by A_{1} in [10]. Therefore, $\Gamma_{s c}\left(S_{n}\right)$ is not projective.

Here is the analogous results for alternating groups.
Theorem 3.5. (a) $\Gamma_{s c}\left(A_{n}\right)$ is planar if and only if $n \leq 6$.
(b) If $n \geq 9$ then $\Gamma_{s c}\left(A_{n}\right)$ is neither planar, toroidal, double-toroidal nor tripletoroidal.
(c) $\Gamma_{s c}\left(A_{n}\right)$ is toroidal if and only if $n=7$.
(d) If $n \geq 8$ then $\Gamma_{s c}\left(A_{n}\right)$ is not projective.

Proof. (a) If $n \leq 6$ then, as shown in Figures 3 and 4 , it follows that $\Gamma_{s c}\left(A_{n}\right)$ is planar.

If $n \geq 7$ then the permutations

$$
(1,2,3),(1,2)(3,4),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7)
$$

induce a clique in $\Gamma_{s c}\left(A_{n}\right)$ (note that the elements have pairwise distinct cycle types). Therefore,

$$
\gamma\left(\Gamma_{s c}\left(A_{n}\right)\right) \geq \gamma\left(K_{5}\right)=1
$$

and so $\Gamma_{s c}\left(A_{n}\right)$ is not planar.
(b) The ten elements
$(1,2,3),(1,2)(3,4),(1,2,3,4)(5,6),(1,2,3)(4,5,6),(1,2,3)(4,5)(6,7),(1,2)(3,4)(5,6)(7,8)$,
$(1,2,3,4,5,6)(7,8),(1,2,3,4)(5,6,7)(8,9),(1,2,3)(4,5,6)(7,8,9),(1,2,3,4,5,6,7,8,9)$
induce a clique in $\Gamma_{s c}\left(A_{n}\right)$. Thus, the result follows as in Theorem 3.4(b).
(c) The fact that $\Gamma_{s c}\left(A_{7}\right)$ is toroidal follows from Figure 5 and part (a).

It is easy to see in Figure 6, that the subgraph induced by the permutations
$(1,2,3)(4,5,6),(1,2,3,4,5,6,7),(1,2,3,4,5,6,8),(1,2)(3,4)(5,6)(7,8),(1,2,3,4,5,6)(7,8)$
and
$(1,2,3,4,5),(1,2,3,4)(5,6),(1,2,3)(4,5)(6,7),(1,2,3,4,5)(6,7,8),(1,2,3,4,5)(6,8,7)$
contains a subgraph isomorphic to $K_{5} \sqcup K_{5}$, where \sqcup stands for disjoint union. Therefore,

$$
\gamma\left(\Gamma_{s c}\left(A_{8}\right)\right) \geq \gamma\left(K_{5} \sqcup K_{5}\right)=2
$$

Hence, the result follows from parts (a) and (b).
(d) There are two 5 -cliques induced by

$$
(1,2,3),(1,2)(3,4),(1,2,3,4,5),(1,2,3,4)(5,6),(1,2,3)(4,5)(6,7)
$$

$$
(1,2,3),(1,2,3)(4,5,6),(1,2)(3,4)(5,6)(7,8),(1,2,3,4,5,6)(7,8),(1,2,3,4)(5,6,7,8)
$$ which share a single vertex. Thus, the claim follows as in Theorem 3.4(d).

We conclude with one more family of groups to show that the results can be extended, namely the groups $\operatorname{PSL}(2, q)$, where q is a power of 2 . This group is isomorphic to S_{3} if $q=2$, and to A_{5} if $q=4$; these cases have already been considered. Relevant group-theoretic information can be found in the $\mathbb{A T L} \mathbb{A} \mathbb{S}$ of finite groups [7].

The group $G=\operatorname{PSL}(2, q)$, for $q=2^{d}$, has a unique conjugacy class of involutions. The remaining elements lie in cyclic groups of orders $q \pm 1$, whose normalisers are dihedral of orders $2(q \pm 1)$; any element of odd order is conjugate to one in a fixed dihedral group of order $2(q \pm 1)$, and two such elements are conjugate if and only if they are conjugate in this dihedral group. From our analysis of dihedral groups, we see that $\Gamma_{s c}(\operatorname{PSL}(2, q))$ is the union of complete graphs of orders $(q+2) / 2$ and $q / 2$ with one vertex from each (corresponding to the class of involutions) identified. (The remaining solvable subgroups are the normalizers of Sylow 2-subgroups, of order $q(q-1)$, and give rise to the same edges as the dihedral group of order $2(q-1)$.) For $q=8$, the graph is shown in Figure 7.

Figure 7. $\Gamma_{s c}(\operatorname{PSL}(2,8))$

Theorem 3.6. For $q=2^{d}$, with $d \geq 3$, the genus of $\Gamma_{s c}(\operatorname{PSL}(2, q))$ is either $\gamma\left(K_{q / 2}\right)+\gamma\left(K_{q / 2}+1\right)$ or $\gamma\left(K_{q / 2}\right)+\gamma\left(K_{q / 2}+1\right)-1$.
Proof. The upper bound comes from the observation that we cam embed each of the two complete graphs in a surface of minimal genus, and then identify one vertex (by deleting a small disc containing the vertex on each surface and putting a cylinder connecting the boundaries of the two discs with one new vertex on it).

The value of this sum is $\lceil(m-3)(m-4) / 12\rceil+\lceil(m-2)(m-3) / 12\rceil$, where $m=q / 2$. Now $m \equiv 4$ or $8(\bmod 12)$. So $(m-3)(m-4) \equiv 0$ or 8 , and $(m-2)(m-3) \equiv 2$ or $6(\bmod 12)$. Thus, taking the ceiling means adding 10 to the numerator, giving

$$
g \leq \frac{m^{2}-7 m+12+m^{2}-5 m+6+10}{12}=\frac{m^{2}-6 m+14}{6}
$$

For the lower bound, we note that the numbers of vertices and edges are given by $V=2 m, E=m^{2}$, where $m=q / 2$. Since a face has at least three edges, the number F of faces satisfies $3 F \leq 2 E$, so $F \leq \frac{2}{3} m^{2}$. Now Euler's formula gives

$$
V-E+F=2-2 g
$$

so $g \geq\left(m^{2}-6 m+6\right) / 6$. Since g is integral, we can round up. Now again $m \equiv 2$ or $4(\bmod 6)$, so we add 2 to the numerator to reach a multiple of 6 . Thus

$$
g \geq \frac{m^{2}-6 m+8}{6}
$$

The lower and upper bounds differ by 1 , giving the result.

Problem 3.7. Which of the two values is correct?
In particular, we see that for $q \leq 4$ the graph is planar; for $q=8$ it is toroidal, and for $q \geq 16$ it has genus at least 4 .

We note in passing that these groups have the property that the unique class of involutions is a dominant vertex in the SCC graph.

Problem 3.8. Which non-solvable groups G have the property that the SCC graph contains a dominant vertex?

We note that the Janko group J_{1} also has this property.
A similar analysis (with some differences in detail) could be carried out for the groups $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$, where q is an odd prime power; we leave this as an exercise for readers, after working one case, the group $\operatorname{PSL}(2,7)$. In this case, the two dihedral subgroups of orders 6 and 8 are contained in a subgroup isomorphic to S_{4}. Since all involutions are conjugate, this gives a triangle on the classes of elements of orders 2,3 and 4 . The elements of order 7 are contained in subgroups of order 21 , each meeting both conjugacy classes. So the two classes of order 7 and the class of order 3 form another triangle, with one vertex in common with the first; so $\Gamma_{s c}(\operatorname{PSL}(2,7))$ is the "bowtie graph", and is planar.

Acknowledgment

The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is grateful to the Department of Mathematical Sciences of Tezpur University for its support while this investigation was carried out as a part of his Ph. D. Thesis.

References

[1] A. Afkhami, D. G. M. Farrokhi and K. Khashyarmanesh, Planar, toroidal, and projective commuting and noncommuting graphs, Comm. Algebra 43, 2964-2970, 2015.
[2] G. Arunkumar, P. J. Cameron, R. K. Nath and L. Selvaganesh, Super graphs on groups, I, 38, 100 (14 pages), 2022.
[3] P. Bhowal, P. J. Cameron, R. K. Nath and B. Sambale, Solvable conjugacy class graph of groups, Discrete Math., 346(8), 113467 (8 pages), 2023.
[4] P. Bhowal and R. K. Nath, Genus of commuting conjugacy class graph of finite groups, Alg. Struc. Appl., 9(1), 93-108, 2022.
[5] P. Bhowal, D. Nongsiang and R. K. Nath, Solvable graphs of finite groups, Hacet. J. Math. Stat., 49(6), 1955-1964, 2020.
[6] P. Bhowal, D. Nongsiang and R. K. Nath, Non-solvable graphs of finite groups, Bull. Malays. Math. Sci. Soc., 45(3), 1255-1272, 2022.
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.
[8] A. K. Das and D. Nongsing, On the genus of the nilpotent graphs of finite groups, Comm. Algebra 43(12), 5282-5290, 2015.
[9] A. K. Das and D. Nongsing, On the genus of the commuting graphs of finite non-abelian groups, Int. Electron. J. Algebra 19, 91-109, 2016.
[10] H. H. Glover, J. P. Huneke and C. S. Wang, 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B 27, 332-370, 1978.
[11] R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, J. Algebra 300, 509-528, 2006.
[12] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly 80, 1031-1034, 1973.
[13] M. Herzog, P. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, Comm. Algebra 37, 3369-3387, 2009.
[14] A. Mohammadian and A. Erfanian, On the nilpotent conjugacy class graph of groups, Note Mat. 37(2), 77-89, 2017.
[15] R. K. Nath and A. K. Das, On a lower bound for commutativity degree, Rend. Circ. Mat. Palermo 59(1), 137-142, 2010.
P. Bhowal, Department of Mathematics, Tezpur University, Napaam-784028, Sonitpur, Assam, India. Department of Mathematics, Cachar College, Silchar-788001, Assam, India.

Email address: bhowal.parthajit8@gmail.com
P. J. Cameron, School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.

Email address: pjc20@st-andrews.ac.uk
R. K. Nath, Department of Mathematics, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

Email address: rajatkantinath@yahoo.com
B. Sambale, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, 30167 Hannover, Germany

Email address: sambale@math.uni-hannover.de

[^0]: Date: February 4, 2024.
 2010 Mathematics Subject Classification. 05C25, 20E45, 20 F 16.
 Key words and phrases. Graph, conjugacy class, non-solvable group, genus, commuting probability.
 *Corresponding author.

