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Abstract

Let F be a set of finite groups. A finite group G is called an
F-cover if every group in F is isomorphic to a subgroup of G. An
F-cover is called minimal if no proper subgroup of G is an F-cover,
and minimum if its order is smallest among all F-covers. We prove
several results about minimal and minimum F-covers: for example,
every minimal cover of a set of p-groups (for p prime) is a p-group (and
there may be finitely or infinitely many, for a given set); every minimal
cover of a set of perfect groups is perfect; and a minimum cover of a
set of two nonabelian simple groups is either their direct product or
simple. Our major theorem determines whether {Zq,Zr} has finitely
many minimal covers, where q and r are distinct primes. Motivated by
this, we say that n is a Cauchy number if there are only finitely many
groups which are minimal (under inclusion) with respect to having
order divisible by n, and we determine all such numbers. This extends
Cauchy’s theorem. We also define a dual concept where subgroups are
replaced by quotients, and we pose a number of problems.
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1 Introduction

Cayley’s celebrated theorem asserts that every group of order n is isomorphic
to a subgroup of the symmetric group Sn. This motivates the following
problem: given a finite set F of finite groups, find a group G such that every
group in F is isomorphic to a subgroup of G. We call a group G with this
property an F-cover. When F consists of all the groups of order n up to
isomorphism, which is the case occurring in Cayley’s theorem, we refer to an
F -cover as an n-cover.

It is natural to ask what the smallest F -cover is, and to make this precise
we introduce the following definitions. For a finite set F of finite groups, we
say that an F -cover is

• minimal if no proper subgroup of G is an F -cover;

• co-minimal if no proper quotient of G is an F -cover;

• strongly minimal if it is both minimal and co-minimal;

• minimum if no F -cover has smaller order.

Note that a minimum cover is strongly minimal.
In this paper, we will mainly focus on minimal and minimum covers,

guided by the following two questions.

Question A. For which finite sets F of finite groups are there only finitely
many minimal F -covers up to isomorphism?

Question B. Given a group theoretic property P, is it is true that if every
group in F has property P, then every (or perhaps some) minimum (or
minimal) F -cover has property P?

Our first theorem, which we prove in Section 3, fully answers Question A
in an important special case.

Theorem 1. Let q < r be primes. The set {Zq,Zr} has only finitely many
minimal covers if and only if q = 2 and r is a Fermat prime, in which case
there are exactly three: Z2r, D2r and Z2a

2 : Zr where r = 2a + 1.

Cauchy’s theorem asserts that if a prime p divides the order of G, then G
has an element of order p, or, equivalently, has a subgroup isomorphic to Zp.
More generally, Sylow’s theorem asserts that if a prime power pa divides the
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order of G, then G has a subgroup isomorphic to one of the (finitely many)
groups of order pa. These theorems are sharp, in the sense that if every
group of order divisible by n > 1 necessarily has an element of order n, then
n is prime, and if it necessarily has a subgroup of order n, then n is a prime
power (see [21]). Nevertheless, Theorem 1 shows that for n = 2p where p
is a Fermat prime, there is a set W of three groups of order divisible by n
such that if n divides the order of G, then G has a subgroup isomorphic to a
group in W . More generally, we say that n is a Cauchy number if there is a
finite set W of groups of order divisible by n such that if n divides the order
of G, then G has a subgroup isomorphic to a group in W . Cauchy numbers
form the focus of Section 4, where we completely determine them.

Theorem 2. Let n be prime. Then n is a Cauchy number if and only if one
of the following holds:

(a) n is a prime power;

(b) n = 6;

(c) n = 2pa, where p > 3 is a Fermat prime and a ≥ 1.

Remark 3. Theorem 1 guarantees that every group of order divisible by 6
contains a subgroup isomorphic to Z6, S3 or A4. While our proof of The-
orem 1 uses the Classification of Finite Simple Groups, as we explain in
Remark 3.10, this important special case can be proved without it.

Remark 4. We say that G is an n-witness if n divides the order of G but n
does not divide the order of any proper subgroup of G. Then n is a Cauchy
number if and only if there are finitely many n-witnesses up to isomorphism.
If n = pa, then the n-witnesses are the groups of order n, and if n = 2p, for a
Fermat prime p, then the n-witnesses are Z2p, D2p, Z2a

2 : Zp as in Theorem 1.
Now consider n = 2pa for a Fermat prime p > 3 and a > 1. Proposition 4.4
shows that any n-witness has order dividing 2dpa where d is the maximum
degree of a (not necessarily faithful) irreducible representation of group of
order pa over F2, which is sharp since if P is a group of order pa and V is an
irreducible F2P -module, then V :P is a n-witness.

In the process of proving Theorem 2 we establish the following, which
could be of independent interest (see Proposition 3.5(a)).

Theorem 5. Every finite simple group with order divisible by 60 has a sub-
group isomorphic to A5.
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Turning to Question B, in Section 5, we begin with simple groups.

Theorem 6. Let M and N be nonabelian finite simple groups. If G is a
minimum cover of {M,N} then either G = M × N or G is simple and
|G| ≤ |M | · |N |.

Remark 7. Both possibilities in Theorem 6 arise. In fact, they can arise si-
multaneously. By Corollary 5.7, A12 and A7×M12 are both minimum covers
of {A7,M12}. In particular, {M,N} can have nonisomorphic minimum cov-
ers, but we do not know whether {M,N} can have nonisomorphic minimum
simple covers. Section 5 gives further results and questions in this direction.

Section 6 considers p-groups. Every minimal cover for a set of p-groups
is a p-group, and we focus on pn-covers, i.e. F -covers where F is the set of
all groups of order pn. We prove that there are only finitely many minimal
p2-covers, but infinitely many minimal 23-covers (see Theorem 6.5), and we
determine (rather weak) upper and lower bounds for the order of a minimum
pn-cover: the upper bound is p(p

n−1)/(p−1), and the lower bound p(c+o(1))n2

with c = 2/27 (see Theorem 6.9).
Many other properties are inherited by minimal or minimum covers. For

instance, if every group in F is perfect, then every minimal F -cover is perfect
(see Example 2.8(a)), and if every group in F is nilpotent, then every mini-
mum F -cover is nilpotent (see Theorem 7.3). However, for other properties,
this fails. For instance, if every group in F is soluble, then there need not
exist a soluble F -cover (see Example 7.8).

We leave open the question of whether if F is a finite set of finite abelian
groups, then there necessarily exists an abelian minimum F -cover. However,
Section 7 does present a number of results in this direction. In particular, the
main result of that section is an algorithm to find the smallest abelian group
containing a given set of finite abelian groups. Since abelian groups are direct
products of their Sylow subgroups, it suffices to solve the problem for abelian
p-groups. Our algorithm has the following consequence (see Corollary 7.6).

Theorem 8. The smallest abelian group which embeds all abelian groups of
order pn is unique up to isomorphism and has order pf(n), where

f(n) =
n∑

k=1

⌊n/k⌋.
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This function f was studied by Dirichlet who found its asymptotic be-
haviour. It is sequence A006218 in the On-Line Encyclopedia of Integer
Sequences [24], where several further areas where it arises are given.

We conclude the paper with a dual version of the ideas introduced in the
paper and number of further directions and open problems.

Notation. Our notation is fairly standard, but note that we write Zn for
the cyclic group of order n and D2n for the dihedral group of order 2n. For
sporadic simple groups we follow the ATLAS of Finite Groups [5]. We write
np for the p-part of n, and op(n) for the order of n modulo p.

Acknowledgements. We are grateful to Jon Awbrey and Michael Kinyon
for helpful comments. The fourth author is an EPSRC Postdoctoral Fellow
(EP/X011879/1). In order to meet institutional and research funder open
access requirements, any accepted manuscript arising shall be open access
under a Creative Commons Attribution (CC BY) reuse licence with zero
embargo.

2 General results

We begin with a simple result to illustrate the central concepts of the paper,
showing in particular that any finite set of finite groups has a cover.

Proposition 2.1. Let F be a finite set of finite groups, and let G be an
F-cover. Then the following hold:

(a) We have that lcm{|F | : F ∈ F} divides |G|.

(b) If G is a minimum F-cover, then |G| ≤
∏

F∈F |F |.

(c) If the orders of the groups in F are pairwise coprime, then equality
holds in (b).

Proof. (a) is immediate from Lagrange’s Theorem; (b) follows from the fact
that the direct product of the groups in F is a cover; and (c) is immediate
from (a) and (b).

Note that, if the orders of the groups in F are powers of distinct primes,
then a minimum F -cover is a group which has these as its Sylow subgroups.
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Example 2.2. A minimum cover of {Z3, (Z2)
2,Z5} has order 60; any group

of order 60 having these three groups as its Sylow subgroups is an example.
This holds for seven of the 13 groups of order 60, including S3×D10, A4×Z5,
and A5.

Proposition 2.1 raises the following natural problem.

Question 2.3. Characterise sets F of finite groups for which the order of a
minimum F -cover is the least common multiple of the orders of the groups
in F .

Proposition 2.1 shows that the order of a minimum F -cover is bounded
by a function of F (namely, the product of the orders of the groups in F). In
particular, there are only finitely many minimum F -covers. However, there
may be infinitely many minimal F -covers, which motivates Question A in
the introduction. In this context, the following result will be useful.

Proposition 2.4. Let π be a finite set of primes, and F a finite set of π-
groups. If there exists a minimal F-cover which is not a π-group, then there
exist infinitely many minimal F-covers.

Proof. Let G be a minimal F -cover whose order is divisible by a prime p /∈ π.
By a theorem of Gaschütz (see [8, Chapter B, Theorem 11.8]), there exists
a Frattini extension H of G, i.e. H has an elementary abelian normal p-
subgroup E ≤ Φ(H) such that H/E ∼= G. Let M < H be a maximal
subgroup. Then E ≤ Φ(H) ≤ M . Suppose by way of contradiction that M
is an F -cover. For every F ∈ F , we may assume that F ≤ M . Since F is a
π-group, it follows that F ∩ E = 1 and

F ∼= FE/E ≤ M/E < H/E ∼= G.

But this implies that M/E is an F -cover. This contradiction shows that H
is a minimal F -cover. Now we can repeat this process with H instead of G.
This yields an infinite series of minimal F -covers.

Let us now turn to Question B on whether minimal covers inherit group-
theoretic properties. We begin with some simple observations.

Proposition 2.5. Let p be a prime, and let F be a finite set of finite p-
groups. Then every minimal F-cover is a p-group.
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Proof. Let G be a minimal F -cover, and P a Sylow p-subgroup of G. Then
every group in F is embedded in G, and so conjugate to a subgroup of P .
Hence P is an F -cover. By minimality, P = G.

Proposition 2.6. Let A be a class of groups which is closed under the taking
of subgroups and direct products. If F is a subset of A then there exists an
A-group which is a minimal F-cover.

Proof. Let G = ΠH∈FH. Then G is an A-group which is also an F -cover.
So G contains a minimal F -cover which is an A-group.

It is not clear when we can obtain a minimum F -cover in this way. We
will see in Section 7 that this is the case for nilpotent groups, but we have
been unable to decide the apparently easier case of abelian groups.

The following two theorems give further results in this direction.

Proposition 2.7. Suppose that X is a subgroup-closed class of finite groups.
Let F be a finite set of finite groups, none of which has a non-trivial X -group
as a quotient, and let G be a minimal F-cover. Then G has no non-trivial
X -group as a quotient.

Proof. Suppose that G/N ∈ X . Then for any group H ∈ F with H ≤ G,
we have H/H ∩N ∼= HN/N ≤ G/N ∈ X . So H/H ∩N ∈ X which implies
H ⊆ N . By minimality of G, we have N = G.

Example 2.8. Let us record some applications of Proposition 2.7.

(a) Let X be the class of finite abelian groups. The condition that G has
no non-trivial homomorphism to an X -group means that G is perfect.
So we deduce that, if every group in F is perfect, then any minimal
F -cover is perfect.

(b) Let X be the class of finite soluble groups. The condition that G has
no non-trivial homomorphism to an X -group means that G is equal
to its soluble residual. So, if every group in F is equal to its soluble
residual, then the same is true of any minimal F -cover.

There is a dual result, as follows.

Proposition 2.9. Suppose that X is a subgroup-closed class of finite groups.
Let F be a finite set of finite groups, and suppose that no group in F has a
non-trivial normal X -subgroup. Let G be a co-minimal cover of F . Then G
has no non-trivial normal X -subgroup.
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Proof. Let G be a co-minimal cover of F , and suppose that G has a normal
X -subgroup N . For each groupH ∈ F , we haveH∩N ∈ X . SoH∩N = {1}.
Hence H ∼= H/H ∩ N ∼= HN/N ≤ G/N . By co-minimality, G/N ∼= G, so
N = {1}.

Example 2.10. We now give some applications of Proposition 2.9.

(a) Let X be the class of finite abelian groups. If no group in F has a
non-trivial abelian normal subgroup, then a co-minimal F -cover has
no non-trivial abelian normal subgroup.

(b) Let X be the class of finite soluble groups. The condition “no non-
trivial normal X -subgroup” means that the soluble radical is trivial.
So, if all groups in F have trivial soluble radical, then the same is true
of a co-minimal cover.

We conclude with some remarks on n-covers, which, recall, are F -covers
where F consists of the groups of order n.

Proposition 2.11. Let n = pα1
1 · · · pαk

k and G be a minimal n-cover. If Pi is
a Sylow pi-subgroup of G then Pi is a pαi

i -cover.

Proof. Let P be a group of order pαi
i . Then H = P ×Πj ̸=iZp

αj
j

is a group of

order n. So H is isomorphic to a subgroup of G. Hence P is isomorphic to
a subgroup of Pi.

Question 2.12. In the above situation, when is Pi a minimal pαi
i -cover

group?

Remark 2.13. If F is a set of soluble π-groups, then every soluble minimal
F -cover is a π-group, by Hall’s theorem. Moreover, if F is a set of π-groups,
then every minimum F -cover G satisfies Oπ′(G) = 1.

3 Two cyclic groups of prime order

In this section, we examine minimal covers for {Zq,Zr}, where q and r are
distinct primes. In particular, we will prove Theorem 1, which determines
when there are finitely many such covers.

Our first result handles the generic case.
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Proposition 3.1. Let q and r be distinct odd primes with at least one strictly
greater than 5. Then there are infinitely many minimal {Zq,Zr}-covers.

Proof. Without loss of generality we may assume that q < r, so r ≥ 7.
By Dirichlet’s theorem, there are infinitely many primes p satisfying p ≡ 1
(mod q) and p ≡ −1 (mod r). We claim that, for any such prime p, the group
G = PSL2(p) is a minimal F -cover, where F = {Zq,Zr}. To see this, we
consult the list of subgroups of PSL2(p) given in Suzuki [26, Theorem 3.6.25].
The subgroup A5 has order not divisible by r ≥ 7, and r ∤ p(p − 1), so the
only subgroup of order divisible by r is dihedral of order p + 1. But this
cannot be divisible by q | (p − 1), so no maximal subgroup of G has order
divisible by qr.

Remark 3.2. Since PSL2(p) is simple, we see that the minimal covers ex-
hibited in the proof of Proposition 3.1 are strongly minimal.

To handle the remaining pairs of primes, we first prove a general result,
which reduces our study to insoluble groups.

Proposition 3.3. Let G be a minimal {Zq,Zr}-cover. One of the following
holds:

(a) G is soluble, has an elementary abelian normal subgroup N , and G/N
is cyclic. Either N is a q-group and |G/N | = r, or N is an r-group
and |G/N | = q. There are three such groups, namely Zqr, Za

q : Zr and
Zb

r : Zq, where a is the multiplicative order of q modulo r and b is the
multiplicative order of r modulo q.

(b) G is not soluble and has a unique maximal normal subgroup N . (This
includes the case where G is simple.) The group N is equal to Φ(G)
(and in particular N is nilpotent), and the quotient G/N is a nonabelian
simple group that is also a minimal {Zq,Zr}-cover. Moreover, |N | is
coprime to qr, but if |N | ≠ 1, it is not coprime to |G/N |.

Proof. Suppose that G is soluble, so by Hall’s theorem there exists a Hall
{q, r}-subgroup. Thus by minimality G is a {q, r}-group. LetN be a minimal
normal subgroup of G, which without loss of generality we may assume to
be an elementary abelian q-group. If x has order r in G then ⟨N, x⟩ is a
{Zq,Zr}-cover, so by minimality G = ⟨N, x⟩.

To complete the proof of (a) we need to determine a and b. By minimality
N is an irreducible module for Zr over Fq. If it is the trivial module we obtain
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Zqr, so we may assume that it is non-trivial. Since Aut(Zr) acts transitively
on the set of isomorphism classes of non-trivial modules over an algebraically
closed field (of characteristic different from r), we see that Aut(Zr) acts
transitively on all non-trivial irreducible modules over any field, in particular
Fq, and this implies there is a unique group (Zq)

a : Zr up to isomorphism.
So it suffices to determine a: but if d is the multiplicative order of q modulo
r then Zr is a subgroup of GLd(q) (since the cyclotomic polynomial Φd(q)
divides |GLd(q)|, and r | Φd(q)). It is also not a subgroup of any smaller
linear group, so d = a. This proves (a).

Thus we may assume that G is not soluble. Let N be any maximal normal
subgroup. By minimality of G, at least one of q and r does not divide |N |.
Suppose exactly one does, so q | |N | without loss of generality. If x ∈ G has
order r, then x acts on the Sylow q-subgroups of N . The number of these is
prime to r, so x normalizes one, say P . Thus ⟨P, x⟩ is a soluble {q, r}-group
contained in G, contradicting minimality.

Thus each of q and r does not divide |N |. In particular, G/N must be
nonabelian simple. If G/N is not a minimal {Zq,Zr}-cover then we may
choose a proper subgroup M/N of G/N with order divisible by qr, whence
its preimage M also has order divisible by qr, contradicting minimality of G.

To prove uniqueness of N , let M be any other maximal normal subgroup
of G, and note the above discussion also holds for M . Clearly MN = G, so
G/N ∼= M/M ∩N . But then |M/M ∩N | and so |M | are divisible by qr, and
this contradicts the minimality of G.

If H is any maximal subgroup of G, then NH < G, since otherwise
H/(H ∩ N) ∼= G/N and so H is a cover. But this implies that N ≤ H.
So N ≤ Φ(G), and we must have equality as G/N is simple. Finally, if
gcd(|N |, |G/N |) = 1 then the Schur–Zassenhaus theorem implies that N has
a complement, which is a cover.

Corollary 3.4. If there are no nonabelian simple minimal {Zq,Zr}-covers,
then all minimal {Zq,Zr}-covers are soluble.

We next consider {q, r} = {3, 5}. Here there is a unique simple minimal
cover, but infinitely many insoluble covers.

Proposition 3.5.

(a) The only simple minimal {Z3,Z5}-cover is the alternating group A5.

(b) There are infinitely many insoluble {Z3,Z5}-covers.
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Proof. (a) Let G be a simple group, and we use the classification of finite
simple groups. First, it is easy that A5 actually is a minimal {Z3,Z5}-cover
so we assume that G is not A5. We will show that G always possesses a
proper subgroup of order divisible by 15, or |G| is not divisible by 15.

If G is an alternating group then clearly G contains A5 and we are done.
If G is a sporadic group then all maximal subgroups of G are known and we
may check the ATLAS of Finite Groups [5] (except for the Monster, where
all maximal subgroups have only recently been identified [6]; however, 2 · B
is a subgroup of M , and we are done).

Thus let G be a group of Lie type. Note that G cannot be a Suzuki group
(3 does not divide their orders) or a small Ree group (5 does not divide their
orders). For the large Ree groups, they all contain the Tits group, which
contains a maximal subgroup A6.2

2 (see [5, p. 74] for example).
Thus we may assume that G is a simple Chevalley or Steinberg group,

in characteristic p. Let G = G(pa) be the group; in all cases there is a Levi
subgroup of G that is either PSL2(p

a) or SL2(p
a). If pa ≡ 0,±1 (mod 5) then

15 divides the order of PSL2(p
a), and we are done, unless G = PSL(2, pa).

But, if p = 5, then G contains PSL2(5), whereas if p ≡ ±1 (mod 5) then G
contains PSL(2, p), which contains A5 because of the congruence condition.

So we may suppose that this is not the case. In particular, p ≡ ±2
(mod 5) and a is odd. These conditions imply that p has order 4 modulo 5.
A standard fact about cyclotomic polynomials is that if 5 | Φd(p

a) then d is
a power of 5 times 4. Thus if 5 | |G|, then Φ4(p

a) = p2a + 1 (or Φ20,Φ100,
etc.) divides |G(pa)|, so this excludes PSL2, PSL3, PSU3,

3D4 and G2 from
consideration. The groups PSp4(p

a) contain groups of the form PSL2(p
2a), so

these cannot be minimal covers. Since both PSL4(p
a) and PSU4(p

a) contain
PSp4(p

a), these cannot be minimal covers either.
The remaining groups we have not considered are symplectic and orthog-

onal groups (which all contain PSp4(p
a) = Ω5(p

a)) or exceptional groups
F4(p

a), E6(p
a), E7(p

a) and E8(p
a) (each of which contains the previous one

and the first one contains PSp4(p
a)) and 2E6(p

a) (which contains F4(p
a)).

This completes the list of groups of Lie type, so A5 is the only simple
minimal {Z3,Z5}-cover, as claimed.

(b) This follows from (a) and Proposition 2.4 applies to π = {3, 5}.

Note that Theorem 5 is an immediate consequence of Proposition 3.5(a).
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We now consider the case where q = 2. Let us outline our strategy
in this case. Suppose that G is a simple minimal {Z2,Zr}-cover. If M is
any maximal subgroup of G then M is not divisible by 2r, so any maximal
subgroup of order divisible by r has odd order. Of course, if R denotes a
Sylow r-subgroup of G thenNG(R) must be contained in a maximal subgroup
of G, which therefore must have odd order. Fortunately, there are very few
odd-order maximal subgroups of simple groups, and they are enumerated
in [18, Table 2]. The following lemma, which makes use of [18], is stated
in greater generality than required here so that it can be used in the next
section also.

Lemma 3.6. Let A be a finite almost simple group with socle S. Let p be
a Fermat prime. Let M be a maximal subgroup of A such that NS(P ) ≤ M
where P is a Sylow p-subgroup of S. Then M has even order, or p = 3 and
S = PSL2(3

a) for an odd integer a > 1.

Proof. Suppose that M has odd order. According to [18, Table 2], Table 1
gives the only possibilities for S and M ∩ S where S is a finite nonabelian
simple group and M is an odd-order maximal subgroup of an almost simple
group with socle S. (Not all examples in the table necessarily arise. In
particular, at the time of writing [18], it was not known if the subgroups in
the final two rows were maximal subgroups of the Monster. They have since
been proved not to be [15, 16].) In the first row, we require p = n but we
must have n ≥ 5 and n ≡ 3 (mod 4), which is impossible since p is a Fermat
prime. In the second row, we require q = pa but we must have q ≥ 4 and
q ≡ 3 (mod 4), which, since p is a Fermat prime, forces p = 3 and a > 1
to be odd; this gives the exception in the statement. For a contradiction,
suppose that one of the remaining rows holds. The restriction that p is a
Fermat prime means that we must have one of the following:

1. S = PSLd(q) and M =
(

1
(d,q−1)

qd−1
q−1

)
:d for an odd prime d

2. S = PSUd(q) and M =
(

1
(d,q+1)

qd+1
q+1

)
:d for an odd prime d.

Since M ∩S contains NS(P ), we may apply the theory of Sylow tori (see [20,
Theorem 25.19] for instance). In Case 1, this implies that p is a primitive
prime divisor of qd − 1, so op(q) = d, while in Case 2, this implies that p is
a primitive prime divisor of q2d − 1, so op(q) = 2d. In both cases, d divides
p− 1, which is impossible since d is odd and p is a Fermat prime.
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S M ∩ S conditions
An n:

(
n−1
2

)
n ≡ 3 (mod 4) prime

PSL2(q) q:
(
q−1
2

)
q ≡ 3 (mod 4) prime power

PSLd(q)
(

1
(d,q−1)

qd−1
q−1

)
:d d odd prime

PSUd(q)
(

1
(d,q+1)

qd+1
q+1

)
:d d odd prime

M23 23:11
Th 31:15
B 47:23
M 59:29
M 71:35

Table 1: Possibilities for an odd-order maximal subgroup M of an almost
simple group with socle S

Proposition 3.7. Let r be an odd prime. If r is a Fermat prime then there
are no simple minimal {Z2,Zr}-covers, and if r is not a Fermat prime then
there are infinitely many simple minimal {Z2,Zr}-covers.

Proof. First assume that r is a Fermat prime. For a contradiction, suppose
that S is a simple minimal {Z2,Zr}-cover. As indicated above, let R be a
Sylow r-subgroup of S and let M be a maximal subgroup of S containing
NS(R). Since r divides |M | we must have that |M | is odd. By Lemma 3.6, we
deduce that r = 3 and S = PSL2(3

a) for odd a > 1. However, PSL2(3) ∼= A4

is a subgroup of S = PSL2(3
a) that has order divisible by 2 and 3. This

establishes that S is not a minimal {Z2,Zr}-cover.
Now assume that r is not a Fermat prime, and let d be an odd prime

divisor of r − 1. Let p be a prime at least 5 that has order d modulo r, of
which there are infinitely many options by Dirichlet’s theorem on primes in
arithmetic progressions, and let G = PSLd(p). Then r divides (pd−1)/(p−1)
and so divides |G|, and if R is a Sylow r-subgroup of G then R is cyclic and
NG(R) has odd order. We claim that NG(R) is the only maximal subgroup
of G containing x, a non-trivial element of R.

To see this we use the work of Guralnick–Penttila–Praeger–Saxl on ppd-
elements [12]. We have set things up so that x is a ppd element, and in
the notation of [12], x is a ppd(d, p; d)-element. The possible subgroups of
GLd(p) containing x are enumerated in [12, Examples 2.1–2.9], and almost
all of them can immediately be ignored since d is a prime and d appears
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twice in the phrase ‘ppd(d, p; d)’. (The second d in this is e in [12], so in that
paper we have that d = e is prime.) We check each set of examples from [12]
in turn.

• Example 2.1 are classical groups, and since d = e is an odd prime, and
we are over a prime field, none of these applies.

• Examples 2.2 and 2.3 do not apply since they require e < d.

• Examples 2.4 and 2.5 do not apply as d is an odd prime.

• Example 2.6(a) does not apply since it requires r − 1 = d.

• For Examples 2.6(b) and 2.6(c), there are three tables of examples; we
need that d = e is a prime, and the only option is 3 ·A7 ≤ SL3(25) with
r = 7. This is an example, but we required that G be over a prime
field, so this may be excluded.

• For Example 2.7 there is a table of examples, and we find the options
G = M11, (d, p, r) = (5, 3, 11) and G = M23, M24, (d, p, r) = (11, 2, 23).
Since we have (not coincidentally) chosen p ≥ 5, these are not examples.

• In Example 2.8, e is always even, but in our case e = d is odd.

• In Example 2.9, there are no examples with d a prime and d = e.

We thus find that G = PSLd(p) is a minimal {Z2,Zr}-cover. As there are
infinitely many options for p, we find infinitely many such groups.

Remark 3.8. Using [12] we could actually determine exactly which simple
groups are minimal covers of {Z2,Zr}.

We therefore have the following corollary.

Corollary 3.9. If r is a Fermat prime then the set {Z2,Zr} has just three
minimal covers, namely Z2r, D2r and (Z2)

2a : Zr where r = 2a + 1.

Proof. Combining Corollary 3.4 with Proposition 3.7, we see that there are
no insoluble covers. Proposition 3.3(a) shows that the three groups in the
statement are the only possible soluble covers, and Cauchy’s theorem estab-
lishes that they actually are covers.

Propositions 3.1, 3.5, 3.7 and Corollary 3.9 together give Theorem 1.
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Remark 3.10. Our proofs use the Classification of Finite Simple Groups;
however, the fact that there are only three {Z2,Z3}-covers (namely Z6, S3

and A4) can be proved without the Classification. Three papers [9, 11, 23] in
1977 independently determined the finite simple groups with no elements of
order 6; and it is straightforward to show that, apart from the Suzuki groups
(whose orders are not divisible by 6), they all contain subgroups isomorphic
to S3 or A4.

4 Cauchy numbers

Building on the previous section, we now determine the Cauchy numbers,
thus proving Theorem 2. Recall that n is a Cauchy number if there is a finite
set W of groups of order divisible by n such that if n divides the order of G,
then G has a subgroup isomorphic to a group in W . The main result of the
previous section, Theorem 1, asserts that if n is the product of two distinct
primes, then n is a Cauchy number if and only if n is twice a Fermat prime.

We will use the term “n-group” (for positive integer n) for a group whose
order is divisible by n, and “n-witness” for an n-group which has no proper
subgroups which are n-groups. So n is a Cauchy number if and only if the
set of n-witnesses (up to isomorphism) is finite.

Remark 4.1. It was pointed out to us by Michael Kinyon that there is al-
ready a sequence of “Cauchy numbers”, arising in the Laplace summation
formula, see [22]. “Cauchy numbers” also occur in the theory of compress-
ible flow in continuum mechanics. However, we think that these topics are
sufficiently different that no confusion will ensue.

Proposition 4.2. A divisor of a Cauchy number is a Cauchy number.

Proof. It suffices to show that if m is a positive integer and p a prime such
that pm is a Cauchy number, then m is a Cauchy number. Let G be an m-
witness. We claim that either G or G×Zp is a pm-witness. Suppose that G
is not a pm-group. Then G×Zp is a pm-group. Let H be a proper subgroup
of G×Zp whose order is divisible by pm, and consider the projection π to the
first factor of the direct product. If π restricted to H is not a monomorphism,
then H = K ×Zp for some K < G; then K is not an m-group, so H is not a
pm-group. Otherwise, H ≤ G, contrary to assumption. On the other hand,
if G is a pm-group, it is clearly minimal.
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Now let Wm be the set of m-witnesses, and define a map F from Wm to
Wmp given by

F (G) =

{
G if G is a pm-group,

G× Zp otherwise.

We claim that F is one-to-one. By the Krull–Schmidt theorem, we need to
show that we cannot have F (G1) = G1 × Zp = G2 = F (G2). But if this
holds, then G1 and G2 are both m-witnesses, contradicting G1 < G2.

Therefore, |Wm| ≤ |Wpm|, whence |Wm| is finite and m is a Cauchy
number.

Our aim is to determine the Cauchy numbers. First we show that every
positive integer satisfies the analogous condition when we restrict to soluble
groups.

Proposition 4.3. For any natural number n, there are only finitely many
finite soluble groups which are n-witnesses.

Proof. Let G be such a group. We note that, by Hall’s theorem, |G| is a
π-number, where π is the set of primes dividing n. The aim is just to bound
|G|, not to strive for the best possible bound. The proof is by induction on
n; the induction begins by noting that the theorem is true when n is a prime
power.

Let N be a minimal normal subgroup of G. Then N is an elementary
abelian p-group, for some p dividing n. Let p′ = π\{p}. Also we let np be the
p-part of n. We will use the principle that, if G is an n-witness with normal
subgroup N , then G/N is an n/ gcd(n, |N |)-witness. Now if |N | < np, then
certainly |N | is bounded; and G/N is a soluble n/|N |-witness, so by the
inductive hypothesis |G/N | is also bounded. So |G| is bounded.

On the other hand, if |N | ≥ np, then G/N is a soluble n/np-witness, so
its order is bounded (and we note that G/N is a p′-group). Also, as N is a
minimal normal subgroup, it is generated by any G/N -orbit on non-identity
elements, so |N | ≤ p|G/N | is also bounded. We are done.

Proof of Theorem 2. Combining Proposition 4.2 with Theorem 1, we deduce
that if n is a Cauchy number which is not a prime power, then n = 2bpa,
where p is a Fermat prime. The next step is to show that either n = 6, or
n = 2pa where a ≥ 1 and p is a Fermat prime greater than 3. For this we
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have to exclude n = 18 and n = 4p where p is a Fermat prime (the cases
p = 3 and p = 5 require separate arguments).

(a) For n = 12, let f be an odd prime, let q = 2f and let G = PSL2(q).
Then G is a 12-witness. The maximal subgroups of G are, up to con-
jugacy, D2(q+1), D2(q−1), 2

f : (q − 1). Since f is odd, we know that
q ≡ 2 (mod 3), so 3 does not divide 2(q− 1) or 2f : (q− 1); and 4 does
not divide 2(q + 1).

(b) For n = 18, again let f be an odd prime, and take q = 3f and G =
PSL2(q). Then G is an 18-witness. For its only subgroups of order
divisible by 3 are PSL2(3) ∼= D6 and q : (q−1)/2; and (q−1)/2 is odd.

(c) For n = 20, note that A5 is a 20-witness, and so Proposition 2.4 shows
that 20 is not a Cauchy number.

(d) Let n = 4p, with p a prime greater than 5. By the Chinese Remainder
Theorem, there is an arithmetic progression of numbers r such that r ≡
1 (mod 4) and r ≡ −1 (mod p). Therefore, by Dirichlet’s Theorem,
there are infinitely many such prime numbers r. Fix such a prime r.
Let G = PSL2(r), which has order 1

2
(r − 1)r(r + 1). We claim that G

is an n-witness. First note that n divides |G|, since 4 divides r− 1 and
p divides 1

2
(r+1). We now claim that n divides the order of no proper

subgroup of G. For a contradiction, suppose that H is a maximal
subgroup of order divisible by n. Since p > 5, we know that H ̸= A5.
Since p > 2 and p divides r + 1, we know that p does not divide r − 1.
Therefore, consulting the list of maximal subgroups of PSL2(r), we see
that H ∼= Dr+1, but 4 does not divide r+ 1 since r ≡ 1 (mod 4). This
contradicts the fact that n divides |H|.

Now we have proved that a number not of the form described in the
theorem is not a Cauchy number. So from now on we assume that n = 2pa,
where p is a Fermat prime greater than 3 and a a positive integer, and have
to show that n is a Cauchy number. By Proposition 4.3 it suffices to show
that all n-witnesses are soluble.

Assume that there exists an insoluble n-witness, and let G be one with
a chosen minimal, and subject to this |G| minimal. Let N be a proper
nontrivial normal subgroup of G. Write pb = |N |p, so pa−b divides |G/N |.

We claim that G/N is soluble. For a contradiction, suppose otherwise.
Then 2pa−b divides |G/N |, but |G/N | < |G|, so, by our assumptions of
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minimality, G/N is not a 2pa−b-witness, so we may fix N ≤ H < G such that
2pa−b divides |H/N |. Then n = 2pa divides |H|, which contradicts G being
a n-witness.

We claim that G/N is a p-group. To see this, first note that N is insoluble
since G/N is soluble, so, in particular, |N | is even. Fix N ≤ P ≤ G such
that P/N is a Sylow p-subgroup of G/N . Then n = 2pa divides |P |. Since G
is a n-witness, we deduce that G = P . Therefore, G/N = P/N is a p-group.

Since every proper quotient ofG is a p-group, Op(G) is the unique minimal
normal subgroup of G. Write Op(G) = Sk where S is a nonabelian simple
group and k ≥ 1.

Let P be a Sylow p-subgroup of S and let H be a maximal subgroup of
G containing NG(P

k). Let P̂ be a Sylow p-subgroup of G containing P k.

Then P̂ ≤ NG(P
k) ≤ H since P k = P̂ ∩ Sk ⊴ P̂ . Therefore, pa divides

|H|. In particular, |H| is odd since G is a 2pa-witness, and Sk ̸≤ H since
H is a proper subgroup of G. In particular, the action of G on G/H is
faithful and primitive and the point stabiliser H has odd order. Therefore,
the main corollary in [18] restricts the possibilities for G and H. Namely,
if we identify S with the first factor of Sk, then H ∩ S = M ∩ S where M
is an odd-order maximal subgroup of an almost simple group with socle S.
However, NS(P ) ≤ NG(P

k) ≤ H, so NS(P ) ≤ M ∩ S, which means that |H|
is even, by Lemma 3.6. This contradiction completes the proof.

We conclude this section by commenting on the set of n-witnesses when
n is a Cauchy number. If n = pa, then the n-witnesses are the groups of
order n, and if n = 2p, for a Fermat prime p, then Corollary 3.9 implies that
the n-witnesses are Z2p, D2p, Z2a

2 : Zp where p = 2a +1. The following result
handles the remaining case.

Proposition 4.4. Let n = 2pa for a Fermat prime p > 3 and a > 1.

(a) Let P be a group of order pa and let V is an irreducible F2P -module.
Then V :P is a n-witness.

(b) Any n-witness has order dividing 2dpa where d is the maximum degree
of an representation of group of order pa over F2.

Proof. First consider part (a). Let G = V :P . Clearly n = 2pa divides |G|.
The maximal subgroups of G are P , of order pa, and V :H where H is a
maximal subgroup of P , of order 2pa−1. This proves that G is an n-witness.

18



Now consider part (b). Corollary 3.9 gives the result when a = 1. Now
assume that a > 1 and proceed by induction on a. Let G be an n-witness.
We know that G is soluble and hence a {2, p}-group, by Hall’s theorem.
Let M be a minimal normal subgroup of G. If M is a 2-group, then by
minimality, G/M must be a group of order pa, and since M is a minimal
normal subgroup, G/M must act irreducibly on M . Now assume that M
is a p-group. Suppose that |M | ≥ pa. Then by minimality, |G/M | = 2.
However, M is a minimal normal subgroup, so G/M must act irreducibly on
M , which forces |M | = p, so a = 1, contrary to our assumption. Therefore,
|M | < pa, so, by minimality, G/M is a 2pa/|M |-witness, and the claim holds
by induction.

5 Simple groups

Let us now turn to covers of finite simple groups, beginning with the following
general result.

Theorem 5.1. Let F be a finite set of finite simple groups of size n and G
be a minimum F-cover. Let N0 < N1 < · · · < Nk = G be a composition
series of G and Fi = {H ∈ F : H is isomorphic to a subgroup of Ni/Ni−1}.
Then

(a) k ≤ n.

(b)
⋃k

i=1Fi = F .

(c) Ni/Ni−1 is a minimum Fi-cover.

(d) Πk
i=1Ni/Ni−1 is a minimum F-cover.

Proof. The proof is by induction on k. For k = 1 all the statements are trivial.
Now assume k ≥ 2. Let F ′ = {H ∈ F : H is isomorphic to a subgroup of
Nk−1}. Then every simple subgroup of G is isomorphic to a subgroup of
Nk−1 or a subgroup of G/Nk−1. So F = F ′ ∪ Fk. Since G is a minimum
F -cover, F ′ and Fk are nonempty. Also Nk−1 is an F ′-cover and G/Nk−1 is
an Fk-cover. If Nk−1 is not a minimum F ′-cover and M is a minimum F ′-
cover then M ×G/Nk−1 is an F -cover whose order is less than |G| which is
a contradiction. Similarly G/Nk−1 is a minimum Fk-cover. So by induction
k − 1 ≤ |F ′| ≤ n − 1 which implies k ≤ n. Also by induction

⋃k−1
i=1 Fi = F ′
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and Ni/Ni−1 is a minimum Fi-cover for 1 ≤ i ≤ k − 1 and Πk−1
i=1Ni/Ni−1 is a

minimum F ′-cover. So Πk
i=1Ni/Ni−1 is a minimum F -cover.

We now consider Theorem 6, which we repeat below.

Theorem 6. Let M and N be nonabelian finite simple groups. If G is
a minimum cover of {M,N} then either G = M × N or G is simple and
|G| ≤ |M | · |N |.

In particular, if there is an {M,N}-cover of order less than |M | · |N |, then
any minimum {M,N}-cover is simple.

Before proving Theorem 6, let us note that both possibilities in the the-
orem can occur as the following two examples demonstrate. These examples
can be verified using the ATLAS of Finite Groups [5].

Example 5.2. Let M = A5 and N = PSL2(8). The orders of these groups
are 60 and 504. Their least common multiple is 2520 and their product is
30240. The only simple groups with order divisible by 2520 and not greater
than 30240 are A7, A8 and PSL3(4); none of these embed PSL2(8). By the
theorem, the unique minimum {M,N}-cover is M ×N .

Example 5.3. Let M = A6 and N = PSL2(7). Their orders are 360 and
168, with least common multiple 2520. There is a unique simple group of
order 2520, namely A7, which embeds both M and N . Therefore, A7 is the
unique minimum {M,N}-cover.
Proof of Theorem 6. By Theorem 5.1, either G is simple, or it has a compo-
sition series of length 2 with composition factors M and N .

Suppose, without loss of generality, that G has a normal subgroup iso-
morphic to M with quotient isomorphic to N . Hence CG(M) ◁ G and
M ∩ CG(M) = Z(M) = {1}. Each element of G acts on M by conjuga-
tion. A consequence of the Classification of Finite Simple Groups is that the
outer automorphism group of M is soluble. Since G has no non-trivial solu-
ble quotient, we see that each element of G induces an inner automorphism
of M . Let g ∈ G. Then there exists m ∈ M such that for all x ∈ M , we have
gxg−1 = mxm−1. So m−1g ∈ CG(M) which implies g ∈ MCG(M). Hence
G = MCG(M). Thus G has normal subgroups M and CG(M) intersecting
trivially (and commuting), so is their direct product.

Corollary 5.4. There is a function f such that, if F = {M,N} where M
and N are nonabelian finite simple groups with |N | > f(|M |), then M × N
is the unique minimum F-cover.
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Proof. Suppose not, and let G be a minimum F -cover. Then G is simple,
and has a subgroup N with index at most |M |. Now G acts faithfully on the
cosets of N , and so it is embeddable in the symmetric group of degree |M |,
with N as the point stabiliser. So N is embeddable in the symmetric group
of degree |M | − 1, and |N | ≤ (|M | − 1)!.

We conclude this section by asking: Is it possible for a set of two non-
abelian finite simple groups to have two nonisomorphic minimum covers?

In light of Theorem 6, if M and N are nonabelian finite simple groups
and F = {M,N} has two nonisomorphic minimum covers, then one of the
following must hold:

(a) there are two simple groups of the same order (smaller than |M | · |N |)
which are minimum F -covers; or

(b) there is a simple group of order |M | · |N | which is a minimum F -cover.

For (a), with the Classification of Finite Simple Groups, the only pairs of
nonisomorphic finite simple groups of the same order are {PSL3(4), A8} and
{PSp2m(q),PΩ2m+1(q)} for m ≥ 3 and q odd. Using the ATLAS [5], we can
show that the first pair are not both minimal covers of any pair of simple
groups. We suspect that there are no examples for the second pair either.

For (b), the following question arises which is of independent interest.

Question 5.5. Classify the triples (M,N,G) of nonabelian finite simple
groups such that |M | · |N | = |G|.

If G is a finite simple group that has a sharply t-transitive action of degree
n, then |An−t| · |G| = |An|. The following result addresses this special case.

Proposition 5.6. Let G be a finite simple group with a sharply t-transitive
action of degree n. Then An is a minimum cover of {An−t, G} if and only if
one of the following holds

(a) G = PSL2(2
f ) and (n, t) = (2f + 1, 3) where f ≥ 3

(b) G = M12 and (n, t) = (12, 5)

Proof. First assume that t = 1, so G acts regularly on n points. Since G has
a faithful action on strictly fewer points, G embeds in An−1. In particular,
An−1 is a minimum cover of {An−1, G}.

Now assume that t > 1. Consulting [3, Theorem 4.11], for example, the
only sharply t-transitive actions of a finite simple group G are:
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1. G = PSL2(2
f ) and (n, t) = (2f + 1, 3) where f ≥ 3

2. G = M11 and (n, t) = (11, 4)

3. G = M12 and (n, t) = (12, 5)

It is straightforward to rule out Case 2: M23 is a cover of {A7,M11}
and |M23| = 10200960 < 19958400 = |A11|. For Case 3, it is also easy
to verify (in Magma [2], say) that A12 is a minimum cover of {A7,M12}.
(For comparison with Case 2, while M24 is a cover of {A7,M12} we have
|M24| = 244823040 > 239500800 = |A12|.)

Case 1 remains. Fix f ≥ 3, write q = 2f and let G = PSL2(q). We claim
that Aq+1 is the smallest simple group to embed Aq−2 and G. If f ∈ {3, 4},
then this is easily verified in Magma [2], so let us assume that f ≥ 5. Let H
be a simple group embedding both Aq−1 and G. Since H embeds PSL2(q),
if H = Ad, then d ≥ q + 1 (see [17, Theorem 5.2.2]). Since H embeds
Aq−2 with q − 2 ≥ 30, we deduce that H is not a sporadic group (see [17,
Theorem 5.2.9]). Now assume that H is a classical group. Since H embeds
Aq−2, the dimension of the natural module for H must be at least q− 4 (see
[17, Theorem 5.3.7]). Consulting the order formulae for these groups, it is
easy to see that this implies that |H| ≥ 2(q−4)(q−6)/2. This means

log2 |H| ≥ 1
2
(q − 4)(q − 6) ≥ q log2(q + 1) ≥ log2 |Aq+1|.

Finally assume that H is an exceptional group of Lie type. In light of the
previous cases, consulting the possible maximal subgroups of H [19, Theo-
rem 8], we see that H does not embed Aq−2 with q−2 ≥ 30. Therefore, in all
cases, |H| ≥ |Aq+1|, so Aq+1 is a minimum cover of {Aq−2, G}, as claimed.

Corollary 5.7. A set of two nonabelian finite simple groups can have two
nonisomorphic minimum covers. For example,

(a) A2f+1 and A2f−2×PSL2(2
f ) are minimum covers of {A2f−2,PSL2(2

f )}
whenever f ≥ 3

(b) A12 and A7 ×M12 are minimum covers of {A7,M12}.

Remark 5.8. In an earlier version of the paper, we asked whether any prime
divisor of the order of a minimum cover of a set of finite groups must divide
the order of one of the groups in the set. However, this is false, since M23 is
the unique minimum cover of {PSL3(4), A8}, two simple groups of the same
order 20160 (this can be seen from the ATLAS [5]), but |M23| is divisible by
11 and 23, neither of which divide 20160.
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6 Groups of prime-power order

In this section we examine sets of p-groups, for p prime.

Remark 6.1. It is well known that the only groups of order 8 are Z8,Z4 ×
Z2,Z2 × Z2 × Z2, D8, Q8. So the only 4-cover groups of order 8 are Z4 × Z2

and D8. Similarly there are five groups of order p3 for an odd prime p which
are Zp3 ,Zp2 × Zp,Zp × Zp × Zp, and the two non-abelian groups

Gp =

{[
a b
0 1

]
: a ∈ 1 + pZp2 , b ∈ Zp2

}
,

and Heis(p) =


 1 a b

0 1 c
0 0 1

 : a, b, c ∈ Zp


with exponent p2 and p respectively. This implies the only p2-cover groups
of order p3 are Gp and Zp × Zp2

Proposition 6.2. Let p be a prime number. Then

(a) for p = 2 the only minimal 4-cover groups are Z4 × Z2 and D8;

(b) for p > 2 then the only minimal p2-cover groups are Zp2 × Zp and Gp.

Proof. Let G be a minimal p2-cover group. Then G is a p-group by Propo-
sition 2.5. It is well known that Zp2 and Zp × Zp are the only two group of
order p2 up to isomorphism. Let H and K = ⟨a⟩ be subgroups of G which
are isomorphic to Zp × Zp and Zp2 . Also G contains a normal subgroup N
of order p2. If N is cyclic then there is an element g ∈ H\N . Then ⟨g⟩N
is a p2-cover of order p3 and the proof is complete by Remark 6.1. So as-
sume N ∼= Zp × Zp. First assume |N ∩ K| = 1. Then NK is a p2-cover
of order p4. Hence G = NK. Since NG(N)/CG(N) is isomorphic to a sub-
group of Aut(N) ∼= GL(2, p), so |NG(N)/CG(N)| | p. Thus ap ∈ CG(N). So
ap ∈ Z(G). Also N ∩Z(G) is non-trivial so there is an element g ∈ Z(G)∩N
of order p. Hence ⟨g⟩K is a p2-cover of order p3 which is a contradiction by
minimality of G. Hence |N ∩K| = p. So |NK| = p3 and NK is a p2-cover.
So the proof is complete by Remark 6.1.

In the next case, we have the following.
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Theorem 6.3.

(a) There are two minimum 23-cover groups, both of order 25.

(b) For prime p > 2, there is no p3-cover of order p5, but there is one of
order p6; so a minimum p3-cover has order p6.

Proof. Part (a) can be proved by computer: we used the computer algebra
system GAP [10]. The two 8-covers are the groups SmallGroup(32,40) and
SmallGroup(32,43) in the GAP library. (There is no 8-cover of order 16.
For suppose that G was an 8-cover of order 16. Then G contains subgroups
A ∼= Z8 and B ∼= (Z2)

3; clearly |A∩B| ≤ 2, so |AB| = |A| · |B|/|A∩B| ≥ 32.)
For (b), the case p = 3 can also be shown using GAP. For p ≥ 5, we

proceed as follows. Let G be a p3-cover of order p5. Then G has nilpotency
class at most 4, so smaller than p; hence G is a regular p-group [13, p. 183].
Now [13, Theorem 12.4.5] shows that the elements of order p in G, together
with the identity, form a subgroup H of G. Now since G contains both
the elementary abelian group (Zp)

3 of order p3 and the non-abelian group
Heis(p) of order p3 and exponent p; so the subgroup H must satisfy |H| > p3,
so |H| ≥ p4. Now G must also contain the cyclic group K = Zp3 , and
|H ∩K| ≤ p, so |HK| ≥ p4 · p3/p = p6. So no p3-cover of order p5 can exist.

For the example, we start with the group E = Heis(p) of order p3 and
exponent p:

E = ⟨x, y, z | xp = yp = zp = [x, z] = [y, z] = 1, [x, y] = z⟩.

It is easy to see that E has an automorphism α such that α(x) = x and
α(y) = xy.

Now we use the following result [13, Theorem 15.3.1]:

Lemma 6.4. Let N be a finite group, α ∈ Aut(N), and m ∈ N. Then the
following assertions are equivalent:

(a) There exists a finite group H such that N ⊴ H, H/N = ⟨hN⟩ = Zm

and α(x) = hxh−1 for all x ∈ N ;

(b) There exists n ∈ N such that α(n) = n and αm(a) = nan−1 for all
a ∈ N .

We apply the lemma with m = p2 and n = z, giving a non-split extension
H of E such that H/E = ⟨aE⟩ ∼= Zp2 with ap

2
= z and ea = α(e) for all
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e ∈ E. For b := apy−1 ∈ H we compute bx = ap[x, y]y−1 = bz = bap
2
= b1+p.

Hence, H has subgroups E ∼= Heis(p), ⟨a⟩ ∼= Zp3 , ⟨ap, x⟩ ∼= Zp2 × Zp and
⟨b, x⟩ ∼= Gp.

Finally, set G = H × Zp; it is clear that G also contains (Zp)
3.

In addition, computation with GAP shows that, for p = 3, there are many
examples of p3-covers of order p6.

Next we show that there are infinitely many minimal 23-covers, and that
these may be taken to be strongly minimal; indeed, having no proper sub-
quotient which is a 23-cover.

For the proof we use the semidihedral group

SD2n = ⟨a, b | a2n−1

= b2 = 1, b−1ab = a2
n−2−1⟩

of order 2n, for n ≥ 4. We make a couple of observations about this group.

• Its centre is cyclic of order 2, generated by a2
n−2

.

• (ab)2 = a · a2n−2−1 = z, so ab has order 4.

• It is a 2-generated 2-group, and so has three maximal subgroups of in-
dex 2. These are ⟨a⟩ (cyclic), ⟨a2, b⟩ (dihedral) and ⟨a2, ab⟩ (generalized
quaternion).

Theorem 6.5. Let n ≥ 4, A = SD2n, and C = ⟨c⟩ = Z2. Then the group
A× C of order 2n+1 is a minimal and co-minimal 8-cover.

Proof. First we show that all groups of order 8 are subgroups of G. We have
⟨a2n−4⟩ ∼= Z8, ⟨a2

n−3
, c⟩ ∼= Z4 × Z2, ⟨a2

n−2
, b, c⟩ ∼= (Z2)

3, ⟨a2n−3
, b⟩ ∼= D8, and

⟨a2n−3
, ab⟩ ∼= Q8.

Now we show that no proper subgroup of G is an 8-cover. It suffices to
consider a maximal subgroup H. Let ϕ be the projection of A× C onto the
first factor. If c /∈ H, then the restriction of ϕ to H is an isomorphism to
A, so H is semidihedral. If c ∈ H, then H = K × C where K is a maximal
subgroup of A, and so is cyclic, dihedral or generalized quaternion. None of
these groups is an 8-cover.

Finally we show that no proper quotient of G is a 2-cover. Again it
suffices to consider maximal quotients G/N , where N is a normal subgroup
of G. Then N ≤ Z(G) = ⟨z, c⟩; so N = ⟨z⟩, ⟨c⟩ or ⟨zc⟩. If z /∈ N , then the
restriction of the projection G → G/N to A is an isomorphism, so G/N is
semidihedral. Otherwise G/N = (A/⟨z⟩) × C ∼= D2n−1 × Z2. Again none of
these groups, or any of their quotients, is an 8-cover.
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Remark 6.6. A slightly more elaborate argument shows that in fact no
quotient of a subgroup of G, apart from G itself, is an 8-cover.

The numbers of 8-covers of order 2n are given below, together with the
numbers of minimal and strongly minimal 8-covers, for 5 ≤ n ≤ 8.

Order 32 64 128 256
Number of groups 51 267 2328 56092
Number of 8-covers 2 45 745 14798

Number of minimal 8-covers 2 18 85 969
Number of strongly minimal 8-covers 2 14 3 7

Remark 6.7. A minimum 16-cover has order 28, and SmallGroup(256,384)

in the GAP library is an example.

In contrast to the upper bound for the order of a minimum pm-cover (the
order of the Sylow subgroup of Spm), we give a lower bound pΩ(m2), which is
probably rather weak.

We begin with a brief note. The fraction |GL(n, p)|/pn2
is the probability

that an n× n matrix over the field of order p is invertible. It can be written
as

n∏
i=1

(1− p−i).

The theory of infinite products shows that, as n → ∞ with p fixed, it de-
creases to a positive limit θ(p), which is an evaluation of a Jacobi theta-
function. It is easily seen that θ(p) is an increasing function of p. The
value of θ(2) is 0.2887 . . . . So the probability that an n× n matrix over the
p-element field is invertible is at least θ(2) for any n and p.

Lemma 6.8. Let G be a group of order pn. Then the number of n-tuples of
elements of G, which generate G is at least cpn

2
.

Proof. Let |G/Φ(G)| = pk. By Burnside’s basis theorem, a k-tuple g1, . . . , gk
generates G if and only if the images of g1, . . . , g

k in G/Φ(G) form a basis
for this quotient, which is isomorphic to a k-dimensional vector space over
the p-element field. The number of such bases is the order of GL(k, p), which
as noted is at least cpk

2
. For each basis element, there are pn−k elements of

the corresponding coset of Φ(G) in G. Also, we can complete the n-tuple by
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choosing arbitrary elements of G, each in pn ways. So the number of n-tuples
is

|GL(k, p)| · pk(n−k) · p(n−k)n ≥ cpn
2

,

as required.

Theorem 6.9. The order of a minimum pn-cover is at least p(2/27+o(1))n2
.

Proof. Suppose that G is a minimum pn-cover, of order pN . There are pNn

n-tuples of elements of G; among them are generating tuples for all groups of
order pn. By Lemma 6.8, each group of order pn has at least cpn

2
generating

n-tuples. So the number of groups of order pn is at most

pnN/(cpn
2

) = c−1pn(N−n).

However, it was proved by Higman and Sims [14, 25] (see also [1]) that
the number of different groups of order pn is p(2/27+o(1))n3

. So

c−1pn(N−n) ≥ p(2/27+o(1))n3

,

from which we find that N ≥ (2/27 + o(1))n2.

Question 6.10. Find better bounds for the order of a minimum pn-cover. In
particular, is there an upper bound of the form pF (n), where F is independent
of p?

In the next section, we will find the smallest abelian group which contains
all abelian groups of order pn; its order is roughly pn logn.

7 Cyclic, abelian and nilpotent groups

The observation that A5 is a minimum cover for {Z3, (Z2)
2,Z5} shows that

it is not true that, if all groups in F are abelian, nilpotent, or soluble, then
every minimum F -cover has the same property. Moreover, {Z2,Z3} has two
minimum covers, Z6 and S3. So the best we can hope is that, if all groups
in F have a certain property, then at least one minimum F -cover has this
property. This is the case for cyclic groups:

Theorem 7.1. Let n1, . . . , nk be positive integers and N = lcm(n1, . . . , nk).
Then ZN is a minimum cover for F = {Zn1 , . . . ,Znk

}.
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Proof. Clearly ZN is an F -cover, and by Proposition 2.1 it is minimum.

Perhaps the next simplest example of Question B is one which we have
not been able to settle:

Question 7.2. Let F be a set of abelian p-groups, for some prime p. Is there
a minimum F -cover which is an abelian p-group?

Theorem 7.3. Suppose that F is a finite set of finite nilpotent groups. Then
there is a minimum F-cover which is nilpotent. If Question 7.2 has an affir-
mative answer, then the same holds with “abelian” replacing “nilpotent”.

Proof. Let F = {F1, . . . , Fr} be a finite set of finite nilpotent groups, and
let G be a minimum F -cover. For each prime p, let Fi(p) be the Sylow p-
subgroup of Fi, and let F(p) = {F1(p), . . . , Fr(p)}. Let H(p) be a minimum
F(p)-cover, and note that H(p) is a p-group, by Proposition 2.5. Let H be
the direct product of the groups H(p). Now a Sylow p-subgroup G(p) of G
is an F(p)-cover, so |G(p)| ≥ |H(p)|, and thus |G| ≥ |H|. But since each
group in F is the direct product of its Sylow subgroups, it is embeddable in
H, and thus by minimality |G| = |H|. So H is a nilpotent cover of F with
smallest possible order.

Now suppose that all the groups in F are abelian, and that Question 7.2
has an affirmative answer. The same argument then applies, using the fact
that a nilpotent group is abelian if and only if all its Sylow subgroups are.

What is the order of the minimum cover? The theorem shows that it is
enough to find the order of a minimum cover of a set of p-groups. We can
answer this question in the case of abelian p-groups, again assuming that
Question 7.2 has an affirmative answer.

Suppose that F = {F1, . . . , Fr} is a set of abelian p-groups. We can write
each one in canonical form:

Fi = Zpa(i,1) × · · · × Zpa(i,k) ,

where a(i, 1) ≥ a(i, 2) ≥ · · · ≥ a(i, k); by adding extra zero terms if necessary
we can assume that the value of k is the same for each group. Let

c(j) = max{a(1, j), a(2, j), . . . , a(r, j)}

for j = 1, . . . , k. We claim that

c(1) ≥ c(2) ≥ · · · ≥ c(k).
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For suppose that c(j + 1) = a(i, j + 1). Then c(j) ≥ a(i, j) ≥ a(i, j + 1) =
c(j + 1).

Let
P = Zpc(1) × · · · × Zpc(k) .

The above claim shows that this is the canonical form for P .

Proposition 7.4. With the above notation, P is the smallest abelian F-
cover.

The proof depends on the following lemma:

Lemma 7.5. Let

A = Zpa(1) × · · · × Zpa(k) and B = Zpb(1) × · · · × Zpb(k)

be abelian p-groups in canonical form. Then B is embeddable in A if and
only if b(j) ≤ a(j) for j = 1, . . . , k.

Proof. Suppose that the inequalities hold. Then for each j we can choose a
subgroup Zpb(j) of Zpa(j) ; the direct product of these subgroups is isomorphic
to B.

Conversely, suppose that B is embeddable in A. Then B contains a
subgroup (Zpb(j))

j; in order to embed this in A, we require that at least j of
a(1), . . . , a(k) are greater than or equal to b(j) for each j. Since the a are
non-increasing, this requires a(j) ≥ b(j).

Now, to complete the proof of Proposition 7.4, note that in the notation
before the proposition, P embeds all the Fi if and only if c(j) ≥ a(i, j) for
all i. So P is the smallest abelian F -cover.

We can use this result to find the smallest abelian group containing every
abelian group of order pn.

Define a function f by the rule

f(n) =
n∑

k=1

⌊n/k⌋.

Corollary 7.6. Let F be the set of all abelian groups of order pn. There
is a unique smallest abelian F-cover; its order is pf(n). If the answer to
Question 7.2 is affirmative, it is a minimum F-cover.

29



Proof. In the notation introduced before Proposition 7.4, we have c(k) =
⌊n/k⌋ for k = 1, . . . , n. For if the factors in the canonical decomposition of
an abelian group of order pn have orders pa(1), pa(2), . . . , then

ka(k) ≤ a(1) + · · ·+ a(k) ≤ n,

so a(k) ≤ ⌊n/k⌋; but there is a group of order pn with k invariant factors
which are of nearly equal orders (that is, orders p⌊n/k⌋ or p⌈n/k⌉); the kth of
these in non-increasing order has order p⌊n/k⌋.

So the smallest abelian group covering F has order p
∑

⌊n/k⌋ = pf(n), as
required.

For pn = 22 and 23, this gives respectively 8 and 32 for the smallest
abelian group containing all abelian groups of order pn. We have seen that
these are also the orders of minimal covers for all groups of these orders.
Furthermore, no smaller group can cover all abelian groups of these orders,
by the proof of Theorem 6.3. So Question 7.2 has an affirmative answer in
these cases.

We note that the order of the smallest abelian cover of the class of abelian
groups of order pn is roughly pn logn, which can be contrasted with the lower
bound of pcn

2
for a group covering every group of order pn. More precisely,

f(n) = n(log n+2γ−1)+O(
√
n), where γ is the Euler–Mascheroni constant

(Dirichlet [7]).
The sequence of values of the function f is sequence A006218 in the On-

Line Encyclopedia of Integer Sequences [24]. This gives many interpretations
of the sequence, but the one given here appears to be new.

Combining the result for the prime factors of an integer n, we obain the
following result.

Theorem 7.7. Let n = pm1
1 · · · parr , where p1, . . . , pr are distinct primes.

Then the order of the smallest abelian group which embeds all abelian groups
of order n is

A(n) = p
f(m1)
1 · · · pf(mr)

r ,

where f(m) =
∑m

k=0⌊m/k⌋.

Note that A(n) = n if n is squarefree, while A(n) is roughly nlog logn if n
is a power of 2. The values of A(n) are not those given by sequence A102361
in the OEIS [24], although the first fifteen terms agree (and these sequences
agree at all fourth-power-free integers).
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We could ask whether similar results exist for soluble groups. But there
is an easy example to show that a set of soluble groups may have no soluble
minimum cover:

Example 7.8. Let A be the alternating group A4 and B the dihedral group
D10 of order 10. Then lcm(|A|, |B|) = 60, and both groups are embeddable
in A5, so A5 is a minimum cover. There is no other cover of order 60. For
such a group G would act on the five cosets of A; it is easily seen that either
the action is faithful (whence G ∼= A5) or A lies in the kernel (in which case
G ∼= A4 ×Z5); but in the second case G does not embed the dihedral group.

8 Further directions

We conclude by highlighting some further directions to be pursued, in addi-
tion to the various questions already posed in the paper.

First, the main definitions of this paper can be naturally dualised. Let F
be a set of finite groups. A group G is a dual F-cover if every group in F is
isomorphic to a quotient of G. We say that a dual F -cover G is

• minimal if no proper quotient of G is a dual F -cover;

• co-minimal if no proper subgroup of G is a dual F -cover;

• strongly minimal if it is both minimal and co-minimal;

• minimum if no dual F -cover has smaller order.

Note that a minimum dual cover is strongly minimal.
We have not investigated this concept except to note that, in the class

of abelian groups, subgroups and quotients coincide (because of duality for
abelian groups), so, for example, an abelian group is a minimum dual cover
of a class of abelian groups if and only if it is a minimum cover.

Question 8.1. Investigate dual covers along the lines we have followed for
covers.

Next, the work in Section 7 leads to the following question.

Question 8.2. For which classes X of groups, closed under the taking of
subgroups and direct product, is it true that, if F is a finite set of X -groups,
then there is a minimum F -cover which is an X -group?
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As we have seen, this is true for cyclic groups and for nilpotent groups,
but it is false for soluble groups (see Example 7.8). We have been unable to
resolve this question for abelian groups.

Finally, we give the answer to a question asked in an earlier version of
the paper. The question asked: For which groups G is it the case that G is
not a minimal cover of the set of its proper subgroups (equivalently, the set
of its maximal subgroups)?

Theorem 8.3. If G is not a minimal cover of the set of its proper subgroups,
then G is a p-group for some prime p, and all its maximal subgroups are
isomorphic.

Proof. If G is not of prime power order, then such a cover must contain all the
Sylow subgroups of G, and so must be at least as large as G. If G is a p-group,
then all maximal subgroups have index p; so, if two are nonisomorphic, then
again a cover must be at least as large as G.

Remark 8.4. The 2-groups with the property of the theorem were deter-
mined by Ćepulić [4].
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