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Abstract
We determine the numerical invariants of blocks with defect group D2n ∗C2m

∼= Q2n ∗C2m (central product),
where n ≥ 3 and m ≥ 2. As a consequence, we prove Brauer’s k(B)-conjecture, Olsson’s conjecture (and
more generally Eaton’s conjecture), Brauer’s height zero conjecture, the Alperin-McKay conjecture, Alperin’s
weight conjecture and Robinson’s ordinary weight conjecture for these blocks. Moreover, we show that the
gluing problem has a unique solution in this case. This paper continues (Sambale, 2012, [21]).
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1 Introduction

Let R be a discrete complete valuation ring with quotient field K of characteristic 0. Moreover, let (π) be the
maximal ideal of R and F := R/(π). We assume that F is algebraically closed of characteristic 2. We fix a
finite group G, and assume that K contains all |G|-th roots of unity. Let B be a 2-block of RG with defect
group D. We denote the number of irreducible ordinary characters of B by k(B). These characters split in
ki(B) characters of height i ∈ N0. Here the height of a character χ in B is the largest integer h(χ) ≥ 0 such
that 2h(χ)|G : D|2

∣∣ χ(1), where |G : D|2 denotes the highest 2-power dividing |G : D|. Finally, let l(B) be the
number of irreducible Brauer characters of B.

In [21] we determined the invariants of B in the case D ∼= D2n ×C2m . In order to proceed with defect groups of
the form Q2n × C2m it is necessary (for the induction step) to discuss central products of the form D2n ∗ C2m

first. Let

D := 〈x, y, z | x2
n−1

= y2 = z2
m

= [x, z] = [y, z] = 1, yxy−1 = x−1, x2
n−2

= z2
m−1

〉 ∼= D2n ∗ C2m ,

where n ≥ 2 and m ≥ 1. For m = 1 we get D ∼= D2n . Then the invariants of B are known (see [2]). Hence,
we assume m ≥ 2. Similarly for n = 2 we get D = 〈y, z〉 ∼= C2 × C2m . Then B is nilpotent and everything is
known. Thus, we also assume n ≥ 3. Then we have D = 〈x, yz2m−2

, z〉 ∼= Q2n ∗ C2m . For n ≥ 4 we also have
D = 〈xz2m−2

, y, z〉 ∼= SD2n ∗ C2m , where SD2n denotes the semidihedral group of order 2n.

This paper follows (and uses) [21]. However, the proof of the main theorem is a bit more complicated as in [21],
since the upper bound for k(B) in terms of Cartan invariants of major subsections is not sharp. Hence, it is
necessary to consider generalized decomposition numbers and contributions. Here some of the calculations are
similar to the quaternion case in [14]. Moreover, we introduce a new approach to construct a set of representatives
for the conjugacy classes of subsections which uses only the fusion system of the block.
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2 Subsections

The first lemma shows that the situation splits naturally in two cases according to n = 3 or n ≥ 4.

Lemma 2.1. The automorphism group Aut(D) is a 2-group if and only if n ≥ 4.

Proof. Since Aut(Q8) ∼= S4, we see that Aut(Q8×C2m) is not a 2-group. An automorphism of Q8×C2m of odd
order acts trivially on (Q8×C2m)′ ∼= C2 and on Z(Q8×C2m)/(Q8×C2m)′ ∼= C2m and thus also on Z(Q8×C2m)
by Theorem 5.3.2 in [7]. Hence, Aut(Q8 ∗ C2m) = Aut(D8 ∗ C2m) is not a 2-group.

Now assume n ≥ 4. Then Φ(D) = 〈x2, z2〉 < Φ(D) Z(D) = 〈x2, z〉 are characteristic subgroups of D. Moreover,
〈x, z〉 is the only abelian maximal subgroup containing Φ(D) Z(D). Hence, every automorphism of Aut(D) of
odd order acts trivially on D/Φ(D). The claim follows from Theorem 5.1.4 in [7].

It follows that the inertial index e(B) of B equals 1 for n ≥ 4. In case n = 3 there are two possibilities
e(B) ∈ {1, 3}, since Φ(D) Z(D) is still characteristic in D. Now we investigate the fusion system F of the B-
subpairs. For this we use the notation of [15, 12], and we assume that the reader is familiar with these articles.
Let bD be a Brauer correspondent of B in RDCG(D). Then for every subgroup Q ≤ D there is a unique block
bQ of RQCG(Q) such that (Q, bQ) ≤ (D, bD). We denote the inertial group of bQ in NG(Q) by NG(Q, bQ). Then
AutF (Q) ∼= NG(Q, bQ)/CG(Q) and OutF (Q) ∼= NG(Q, bQ)/QCG(Q).

Lemma 2.2. Let Q1 := 〈x2n−3

, y, z〉 ∼= D8 ∗C2m and Q2 := 〈x2n−3

, xy, z〉 ∼= D8 ∗C2m . Then Q1 and Q2 are the
only candidates for proper F-centric, F-radical subgroups up to conjugation. In particular the fusion of subpairs
is controlled by NG(Q1, bQ1) ∪NG(Q2, bQ2) ∪D. Moreover, one of the following cases occurs:

(aa) n = e(B) = 3 or (n ≥ 4 and OutF (Q1) ∼= OutF (Q2) ∼= S3).

(ab) n ≥ 4, NG(Q1, bQ1
) = ND(Q1) CG(Q1), and OutF (Q2) ∼= S3.

(ba) n ≥ 4, OutF (Q1) ∼= S3, and NG(Q2, bQ2
) = ND(Q2) CG(Q2).

(bb) NG(Q1, bQ1) = ND(Q1) CG(Q1) and NG(Q2, bQ2) = ND(Q2) CG(Q2).

In case (bb) the block B is nilpotent.

Proof. Let Q < D be F-centric and F-radical. Then z ∈ Z(D) ⊆ CD(Q) ⊆ Q and Q = (Q ∩ 〈x, y〉) ∗ 〈z〉. If
Q ∩ 〈x, y〉 is abelian, we have

Q = 〈xiy, z〉 ∼= C2 × C2m or
Q = 〈x, z〉 ∼= C2n ∗ C2m

∼= C2max{n,m} × C2min{n,m}−1

for some i ∈ Z. In the first case Aut(Q) is a 2-group, since m ≥ 2. Then O2(AutF (Q)) 6= 1. Thus, assume
Q = 〈x, z〉. The group D ⊆ NG(Q, bQ) acts trivially on Q/Φ(Q), while a nontrivial automorphism of Aut(Q) of
odd order acts nontrivially on Q/Φ(Q) (see Theorem 5.1.4 in [7]). This contradicts O2(AutF (Q)) = 1. (Moreover,
by Lemma 5.4 in [12] we see that AutF (Q) is a 2-group.)

Hence by Lemma 2.1, Q is isomorphic to D8 ∗C2m and contains an element of the form xiy. After conjugation
with a suitable power of x we may assume Q ∈ {Q1, Q2}. This shows the first claim.

The second claim follows from Alperin’s fusion theorem. Here observe that in case n = 3 we have Q1 = Q2 = D.

Let S ≤ D be an arbitrary subgroup isomorphic to D8 ∗ C2m . If z /∈ S, then for 〈S, z〉 = (〈S, z〉 ∩ 〈x, y〉)〈z〉 we
have 〈S, z〉′ = S′ ∼= C2. However, this is impossible, since 〈S, z〉 ∩ 〈x, y〉 has at least order 16. This contradiction
shows z ∈ S. Thus, S is conjugate to Q ∈ {Q1, Q2} under D. In particular Q is fully F-normalized (see
Definition 2.2 in [12]). Hence, ND(Q) CG(Q)/QCG(Q) ∼= ND(Q)/Q ∼= C2 is a Sylow 2-subgroup of OutF (Q) =
NG(Q, bQ)/QCG(Q) by Proposition 2.5 in [12]. Assume ND(Q) CG(Q) < NG(Q, bQ). Since O2(OutF (Q)) = 1
and |Aut(Q)| = 2k · 3 for some k ∈ N, we get OutF (Q) ∼= S3.

The last claim follows from Alperin’s fusion theorem and e(B) = 1 (for n ≥ 4).
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The naming of these cases is adopted from [2]. Since the cases (ab) and (ba) are symmetric, we ignore case (ba)
for the rest of the paper. It is easy to see that Q1 and Q2 are not conjugate in D if n ≥ 4. Hence, by Alperin’s
fusion theorem the subpairs (Q1, bQ1) and (Q2, bQ2) are not conjugate in G. It is also easy to see that Q1 and
Q2 are always F-centric.

Lemma 2.3. Let Q ∈ {Q1, Q2} such that NG(Q, bQ)/QCG(Q) ∼= S3. Then

CQ(NG(Q, bQ)) = Z(Q) = 〈z〉.

Proof. Since Q ⊆ ND(Q, bQ), we have CQ(NG(Q, bQ)) ⊆ CQ(Q) = Z(Q). On the other hand ND(Q) and every
automorphism of AutF (Q) of odd order act trivially on Z(Q) = Z(D) = 〈z〉 ∼= C2m . Hence, the claim follows.

In order to determine a set of representatives for the conjugacy classes of B-subsections, we introduce a general
result which does not depend on B, D, or the characteristic of F .

Lemma 2.4. Let R be a set of representatives for the F-conjugacy classes of elements of D such that 〈α〉 is
fully F-normalized for α ∈ R (R always exists). Then{

(α, bα) : α ∈ R
}

is a set of representatives for the G-conjugacy classes of B-subsections, where bα := b〈α〉 has defect group CD(α).

Proof. Let (α, b) be an arbitrary B-subsection. Then (〈α〉, b) is a B-subpair which lies in some Sylow B-subpair.
Since all Sylow B-subpairs are conjugate in F , we may assume (〈α〉, b) ≤ (D, bD). This shows b = bα. By the
definition of R there exists a morphism f in F such that β := f(α) ∈ R. If we compose f with inclusion maps
from the left and the right, we get f : 〈α〉 → D. Then the definition of F implies f(α, bα) = (β, bβ).

It is also easy to see that we can always choose a representative α such that 〈α〉 is fully F-normalized.

Now suppose that (α, bα) and (β, bβ) with α, β ∈ R are conjugate by g ∈ G. Then (with a slight abuse of
notation) we have g ∈ HomF (〈α〉, 〈β〉). Hence, α = β.

It remains to prove that bα has defect group CD(α) for α ∈ R. By Proposition 2.5 in [12] 〈α〉 is also fully
F-centralized. Hence, Theorem 2.4(ii) in [11] implies the claim.

Lemma 2.5. The set R in the previous lemma is given as follows:

(i) xizj (i = 0, 1, . . . , 2n−2, j = 0, 1, . . . , 2m−1 − 1) in case (aa).

(ii) xizj and yzj (i = 0, 1, . . . , 2n−2, j = 0, 1, . . . , 2m−1 − 1) in case (ab).

Proof. By Lemma 2.3 in any case the elements xizj (i = 0, 1, . . . , 2n−2, j = 0, 1, . . . , 2m−1 − 1) are pairwise
non-conjugate in F . Moreover, 〈x, z〉 ⊆ CG(xizj) and |D : ND(〈xizj〉)| ≤ 2. Suppose that 〈xiyzj〉ED for some
i, j ∈ Z. Then we have xi+2yzj = x(xiyzj)x−1 ∈ 〈xiyzj〉 and the contradiction x2 ∈ 〈xiyzj〉. This shows that
the subgroups 〈xizj〉 are always fully F-normalized.

Assume that case (aa) occurs. Then the elements of the form x2iyzj (i, j ∈ Z) are conjugate to elements of
the form x2izj under D ∪NG(Q1, bQ1

). Similarly, the elements of the form x2i+1yzj (i, j ∈ Z) are conjugate to
elements of the form x2izj under D ∪NG(Q2, bQ2

). The claim follows in this case.

In case (ab) the given elements are pairwise non-conjugate, since no conjugate of yzj lies in Q2. As in case (aa)
the elements of the form x2iyzj (i, j ∈ Z) are conjugate to elements of the form yzj under D and the elements
of the form x2i+1yzj (i, j ∈ Z) are conjugate to elements of the form x2izj under D ∪NG(Q2, bQ2

). Finally, the
subgroups 〈yzj〉 are fully F-normalized, since yzj is not conjugate to an element in Q2.
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3 The numbers k(B), ki(B) and l(B)

Now we study the generalized decomposition numbers of B. If l(bu) = 1, then we denote the unique irreducible
modular character of bu by ϕu. In this case the generalized decomposition numbers duχϕu

for χ ∈ Irr(B) form a
column d(u). Let 2k be the order of u, and let ζ := ζ2k be a primitive 2k-th root of unity. Then the entries of
d(u) lie in the ring of integers Z[ζ]. Hence, there exist integers aui := (aui (χ))χ∈Irr(B) ∈ Zk(B) such that

duχϕu
=

2k−1−1∑
i=0

aui (χ)ζi.

We extend this by aui+2k−1 := −aui for all i ∈ Z.

Let |G| = 2ar where 2 - r. We may assume Q(ζ|G|) ⊆ K. Then Q(ζ|G|) | Q(ζr) is a Galois extension, and
we denote the corresponding Galois group by G := Gal

(
Q(ζ|G|) | Q(ζr)

)
. Restriction gives an isomorphism

G ∼= Gal
(
Q(ζ2a) | Q

)
. In particular |G| = 2a−1. For every γ ∈ G there is a number γ̃ ∈ N such that gcd(γ̃, |G|) = 1,

γ̃ ≡ 1 (mod r), and γ(ζ|G|) = ζ γ̃|G| hold. Then G acts on the set of subsections by γ(u, b) := (uγ̃ , b). For every
γ ∈ G we get

d(uγ̃) =
∑
s∈S

aus ζ
sγ̃
2k

(1)

for every system S of representatives of the cosets of 2k−1Z in Z. It follows that

aus = 21−a
∑
γ∈G

d
(
uγ̃
)
ζ−γ̃s
2k

(2)

for s ∈ S.

For sake of completeness, we state the following general lemma which does not depend on D.

Lemma 3.1. Let (u, bu) be a B-subsection with |〈u〉| = 2k and l(bu) = 1. If χ ∈ Irr(B) has height 0, then the
sum

2k−1−1∑
i=0

aui (χ) (3)

is odd.

Proof. See [21].

As in [21] we prove Olsson’s conjecture first.

Lemma 3.2. Olsson’s conjecture k0(B) ≤ 2m+1 = |D : D′| is satisfied in all cases.

Proof. Let γ ∈ G such that the restriction of γ to Q(ζ2a) is the complex conjugation. Then xγ̃ = x−1. The
block bx has defect group CD(x) = 〈x, z〉 by Lemma 2.4. Since we have shown that AutF (〈x, z〉) is a 2-group,
bx is nilpotent. In particular l(bx) = 1. Since the subsections (x, bx) and (x−1, bx−1) = (x−1, bx) = γ(x, bx) are
conjugate by y, we have d(x) = d(xγ̃) and

axj (χ) = ax−j(χ) = −ax2n−2−j(χ) (4)

for all χ ∈ Irr(B) by Eq. (1). In particular ax2n−3(χ) = 0. By the orthogonality relations we have (d(x), d(x)) =
|〈x, z〉| = 2n−2+m. On the other hand the subsections (x, bx) and (xi, bxi) = (xi, bx) are not conjugate for odd
i ∈ {3, 5, . . . , 2n−2 − 1}. Eq. (2) implies

(ax0 , a
x
0) = 22(1−a)

∑
γ,δ∈G

(
d(xγ̃), d(xδ̃)

)
= 22(1−a)22a−n+1(d(x), d(x)) = 2m+1.

Combining Eq. (4) with Lemma 3.1 we see that ax0(χ) 6= 0 is odd for characters χ ∈ Irr(B) of height 0. This
proves the lemma.
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We remark that Olsson’s conjecture in case (bb) also follows from Lemma 2.2. Moreover, in case (ab) Olsson’s
conjecture follows easily from Theorem 3.1 in [17].

Lemma 3.3. Let ν be the (exponential) valuation of R and let ζ be a primitive 2k-th root of unity for k ≥ 2.
Then 0 < ν(1 + ζ) < 1.

Proof. We prove this by induction on k. For k = 2 we have ζ ∈ {±i}, where i =
√
−1. Then 2ν(1 + i) = ν((1 +

i)2) = ν(2i) = 1 and the claim follows. Now let k ≥ 3. Then 2ν(1+ζ) = ν((1+ζ)2) = ν(1+ζ2 +2ζ) = ν(1+ζ2),
since ν(1 + ζ2) < 1 = ν(2ζ) by induction.

For the convenience of the reader we recall some known results.

Lemma 3.4 ((5G),(5H) in [1]). Let Mz := (mz
χψ)χ,ψ∈Irr(B) be the matrix of contributions. Then we have

(i) ν(mz
χψ) ≥ h(χ).

(ii) ν(mz
χψ) = h(χ)⇔ h(ψ) = 0.

Lemma 3.5 (Theorem 1.1 in [9]). Assume that there is an element α ∈ Z(D) such that CG(α) controls F .
Then k(B) ≥ k(bα) and l(B) ≥ l(bα).

Now we state the main result of this paper.

Theorem 3.6.

(i) In case (aa) and n = 3 we have k(B) = 2m−1 · 7, k0(B) = 2m+1, k1(B) = 2m−1 · 3, and l(B) = 3.

(ii) In case (aa) and n ≥ 4 we have k(B) = 2m−1(2n−2 + 5), k0(B) = 2m+1, k1(B) = 2m−1(2n−2 − 1),
kn−2(B) = 2m, and l(B) = 3.

(iii) In case (ab) we have k(B) = 2m−1(2n−2 + 4), k0(B) = 2m+1, k1(B) = 2m−1(2n−2 − 1), kn−2(B) = 2m−1,
and l(B) = 2.

(iv) In case (bb) we have k(B) = 2m−1(2n−2 + 3), k0(B) = 2m+1, k1(B) = 2m−1(2n−2 − 1), and l(B) = 1.

In particular Brauer’s k(B)-conjecture, Brauer’s height zero conjecture and the Alperin-McKay conjecture hold.

Proof. Assume first that case (bb) occurs. Then B is nilpotent and ki(B) is just the number ki(D) of irreducible
characters of D of degree 2i (i ≥ 0) and l(B) = 1. In particular k0(B) = |D : D′| = 2m+1 and k(B) =
k(D) = 2m−1(2n−2 + 3). Since |D| is the sum of the squares of the degrees of the irreducible characters, we get
k1(B) = k1(D) = 2m−1(2n−2 − 1).

Now assume that case (aa) or case (ab) occurs. We determine the numbers l(b) for the subsections in Lemma 2.5
and apply Theorem 5.9.4 in [13]. Let us begin with the non-major subsections. Since AutF (〈x, z〉) is a 2-group,
the block b〈x,z〉 with defect group 〈x, z〉 is nilpotent. Hence, we have l(bxizj ) = 1 for all i = 1, . . . , 2n−2 − 1 and
j = 0, 1, . . . , 2m−1 − 1. The blocks byzj (j = 0, 1, . . . , 2m−1 − 1) have CD(yzj) = 〈yzj , z〉 ∼= C2 × C2m as defect
group. Hence, they are also nilpotent, and it follows that l(byzj ) = 1.

The major subsections of B are given by (zj , bzj ) for j = 0, 1, . . . , 2m − 1 up to conjugation. By Lemma 2.3 the
cases for B and bzj coincide. As usual, the blocks bzj dominate blocks bzj of RCG(zj)/〈zj〉 with defect group
D/〈zj〉 ∼= D2n−1 ×C2m/|〈zj〉| for j 6= 0. By Theorem 5.8.11 in [13] we have l(bzj ) = l(bzj ). With the notation of
[21] the cases for bzj and bzj also coincide (see Theorem 1.5 in [14]). Now we discuss the cases (ab) and (aa)
separately.

Case (ab):
Then we have l(bzj ) = l(bzj ) = 2 for j = 1, . . . , 2m − 1 by Theorem 3.3 in [21]. Hence, Theorem 5.9.4 in [13]
implies

k(B)− l(B) = 2m−1(2n−2 − 1) + 2m−1 + 2(2m − 1) = 2m−1(2n−2 + 4)− 2.

Since B is a centrally controlled block, we have l(B) ≥ l(bz) = 2 and k(B) ≥ 2m−1(2n−2 + 4) by Lemma 3.5. In
order to bound k(B) from above we study the numbers dzχϕ. Let Dz := (dzχϕi

)χ∈Irr(B),
i=1,2

. Then (Dz)TDz = Cz
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is the Cartan matrix of bz. Since bz has defect group D2n−1 , the matrix Cz is uniquely determined up to basic
sets by Theorem 1 in [3]. From the tables in [5] we get

Cz = 2m
(

2n−3 + 1 2
2 4

)
up to basic sets (this can also be found in the proof of Theorem 3.15 in [14]). Hence, Lemma 1 in [20] implies
k(B) ≤ 2m−1(2n−2 +6). In order to derive a sharper bound, we consider the generalized decomposition numbers
more carefully. With a similar notation as above we write

dzχϕi
=

2m−1−1∑
j=0

aij(χ)ζj

for i = 1, 2, where ζ is a primitive 2m-th root of unity. Since the subsections (zj , bzj ) are pairwise non-conjugate
for j = 0, . . . , 2m − 1, we get

(a1i , a
1
j ) = (2n−2 + 2)δij , (a1i , a

2
j ) = 4δij , (a2i , a

2
j ) = 8δij

as in the proof of Lemma 3.2. We introduce the matrix Mz := (mz
χψ)χ,ψ∈Irr(B) = 2n+m−1Dz(Cz)−1DzT of

contributions. Then

mz
χψ = 4dzχϕ1

dzψϕ1
− 2(dzχϕ1

dzψϕ2
+ dzχϕ2

dzψϕ1
) + (2n−3 + 1)dzχϕ2

dzψϕ2
.

It follows from Lemma 3.4 that

h(χ) = 0⇐⇒ mz
χχ ∈ R× ⇐⇒ dzχϕ2

∈ R× ⇐⇒
2m−1−1∑
j=0

a2j (χ) ≡ 1 (mod 2). (5)

Assume that k(B) is as large as possible. Since (z, bz) is a major subsection, no row of Dz vanishes. Hence, for
j ∈ {0, 1, . . . , 2m−1 − 1} we have essentially the following possibilities (where ε1, ε2, ε3, ε4 ∈ {±1}; cf. proof of
Theorem 3.15 in [14]):

(I) :

(
a1j ±1 · · · ±1 ε1 ε2 ε3 ε4 . · · · · · · · · · · · · · · · .

a2j . · · · . ε1 ε2 ε3 ε4 ±1 ±1 ±1 ±1 . · · · .

)
,

(II) :

(
a1j ±1 · · · ±1 ε1 ε2 ε3 . · · · · · · · · · .

a2j . · · · . 2ε1 ε2 ε3 ±1 ±1 . · · · .

)
,

(III) :

(
a1j ±1 · · · ±1 ε1 ε2 . · · · .

a2j . · · · . 2ε1 2ε2 . · · · .

)
.

The number k(B) would be maximal if case (I) occurs for all j and for every character χ ∈ Irr(B) we have∑2m−1−1
j=0 |a1j (χ)| ≤ 1 and

∑2m−1−1
j=0 |a2j (χ)| ≤ 1. However, this contradicts Lemma 3.2 and Equation (5). This

explains why we have to take the cases (II) and (III) also into account. Now let α (resp. γ, δ) be the number of
indices j ∈ {0, 1, . . . , 2m−1−1} such that case (I) (resp. (II), (III)) occurs for aij . Then obviously α+β+γ = 2m−1.

It is easy to see that we may assume for all χ ∈ Irr(B) that
∑2m−1−1
j=0 |a1j (χ)| ≤ 1 in order to maximize k(B).

In contrast to that it does make sense to have a2j (χ) 6= 0 6= a2k(χ) for some j 6= k in order to satisfy Olsson’s
conjecture in view of Equation (5). Let δ be the number of pairs (χ, j) ∈ Irr(B)×{0, 1, . . . , 2m−1− 1} such that
there exists a k 6= j with a2j (χ)a2k(χ) 6= 0. Then it follows that

γ = 2m−1 − α− β,
k(B) ≤ (2n−2 + 6)α+ (2n−2 + 4)β + (2n−2 + 2)γ − δ/2

= 2m+n−3 + 6α+ 4β + 2γ − δ/2
= 2m+n−3 + 2m + 4α+ 2β − δ/2,

8α+ 4β − δ ≤ k0(B) ≤ 2m+1.
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This gives k(B) ≤ 2m+n−3+2m+1 = 2m−1(2n−2+4). Together with the lower bound above, we have shown that
k(B) = 2m−1(2n−2 + 4) and l(B) = 2. In particular the cases (I), (II) and (III) are really the only possibilities
which can occur. The inequalities above imply also k0(B) = 2m+1. However we do not know the precise values
of α, β, γ, and δ. We will see in a moment that δ = 0. Assume the contrary. If χ ∈ Irr(B) is a character such that
a2j (χ)a2k(χ) 6= 0 for some j 6= k, then it is easy to see that a2j (χ)a2k(χ) ∈ {±1} and a2l (χ) = 0 for all l /∈ {j, k}.
For if not, we would have 8α + 4β − δ < k0(B) or k(B) < 2m+n−3 + 2m + 4α + 2β − δ/2. Hence, we have to
exclude the following types of rows of Dz (where ε ∈ {±1}): (εζj , εζj + εζk), (εζj , εζj − εζk), (0, εζj + εζk), and
(0, εζj − εζk). Let dzχ. be the row of Dz corresponding to the character χ ∈ Irr(B). If dzχ. = (εζj , εζj + εζk) for
j 6= k we have

mz
χχ = 4− 2(2 + ζj−k + ζk−j) + (2n−3 + 1)(2 + ζj−k + ζk−j) = 4 + (2n−3 − 1)(2 + ζj−k + ζk−j).

Since ν(ζj−k + ζk−j) = ν(ζj−k(ζj−k + ζk−j)) = ν(1 + ζ2(j−k)), Lemma 3.3 implies ν(2 + ζj−k + ζk−j) ≤ 1. This
yields the contradiction 1 ≤ h(χ) < ν(mz

χχ) ≤ 1. A very similar calculation works for the other types of rows.
Thus, we have shown δ = 0. Then the rows of Dz have the following forms: (±ζj , 0), (εζj , εζj), (0,±ζj), and
(εζj , 2εζj). We already know which of these rows correspond to characters of height 0. In order to determine
ki(B) we calculate the contributions for the remaining rows. If dzχ. = (±ζj , 0), we havemz

χχ = 4. Then Lemma 3.4
implies h(χ) = 1. The number of these rows is precisely

(2n−2 − 2)α+ (2n−2 − 1)β + 2n−2γ = 2n+m−3 − 2α− β = 2n+m−3 − 2m−1 = 2m−1(2n−2 − 1).

Now assume that ψ ∈ Irr(B) is a character of height 0 such that dzψ. = (0,±ζj) (such characters always
exist). Let χ ∈ Irr(B) such that dzχ. = (εζk, 2εζk), where ε ∈ {±1}. Then mz

χψ = −2(±εζk−j) + (2n−3 +

1)(±ε2ζk−j) = ±ε2n−2ζk−j , and Lemma 3.4 implies h(χ) = n− 2. The number of these characters is precisely
k(B)− k0(B)− 2m−1(2n−2 − 1) = 2m−1. This gives ki(B) for i ∈ N (recall that n ≥ 4 in case (ab)).

Case (aa):
Here the arguments are similar, so that we will leave out some details. By Theorem 3.3 in [21] we have

k(B)− l(B) = 2m−1(2n−2 − 1) + 3(2m − 1) = 2m−1(2n−2 + 5)− 3.

Again B is centrally controlled, and l(B) ≥ 3 and k(B) ≥ 2m−1(2n−2 + 5) follow from Lemma 3.5. The Cartan
matrix Cz of bz is uniquely determined by Theorem 1 in [3]. Hence, the tables in [5] give

Cz = 2m

2n−3 + 1 1 1
1 2 0
1 0 2


up to basic sets (this can also be found in the proof of Theorem 3.17 in [14] with an unnecessary negative sign
there). Lemma 1 in [20] gives the weak bound k(B) ≤ 2m−1(2n−2 + 6). We write IBr(bz) = {ϕ1, ϕ2, ϕ3} and
define the integral columns aij for i = 1, 2, 3 and j = 0, 1, . . . , 2m−1 − 1 as in case (ab). Then we can calculate
the scalar products (aij , a

k
l ). In particular the orthogonality relations imply that the columns a2j and a3j consist

of four entries ±1 and zeros elsewhere. The contributions are given by

mz
χψ = 4dzχϕ1

dzψϕ1
− 2
(
dzχϕ1

dzψϕ2
+ dzχϕ2

dzψϕ1
+ dzχϕ1

dzψϕ3
+ dzχϕ3

dzψϕ1

)
+ dzχϕ2

dzψϕ3
+ dzχϕ3

dzψϕ2
+ (2n−2 + 1)

(
dzχϕ2

dzψϕ2
+ dzχϕ3

dzψϕ3

)
for χ, ψ ∈ Irr(B). As before Lemma 3.4 implies

h(χ) = 0⇐⇒ mz
χχ ∈ R× ⇐⇒ |dzχϕ2

+ dzχϕ3
|2 ∈ R×

⇐⇒ dzχϕ2
+ dzχϕ3

∈ R× ⇐⇒
2m−1−1∑
j=0

(
a2j (χ) + a3j (χ)

)
≡ 1 (mod 2).

(6)

In order to search the maximum value for k(B) (in view of Lemma 3.2 and Equation (6)) we have to consider
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the following possibilities (where ε1, ε2, ε3, ε4 ∈ {±1}):

(I) :

 a1j ±1 · · · ±1 ε1 ε2 ε3 ε4 . · · · · · · · · · · · · · · · .

a2j . · · · . ε1 ε2 . . ±1 ±1 . · · · · · · · · · .

a3j . · · · · · · · · · . ε3 ε4 . . ±1 ±1 . · · · .

 ,

(II) :

 a1j ±1 · · · ±1 ε1 ε2 ε3 . · · · · · · · · · · · · .

a2j . · · · . ε1 ε2 . ε4 ±1 . · · · · · · .

a3j . · · · · · · . ε2 ε3 −ε4 . ±1 . · · · .

 ,

(III) :

 a1j ±1 · · · ±1 ε1 ε2 . · · · · · · · · · .

a2j . · · · . ε1 ε2 ε3 ε4 . · · · .

a3j . · · · . ε1 ε2 −ε3 −ε4 . · · · .

 .

We define α, β and γ as in case (ab). Then we have α+ β+ γ = 2m−1. Let δ be the number of triples (χ, i, j) ∈
Irr(B) × {2, 3} × {0, 1, . . . , 2m−1 − 1} such that there exists a k 6= j with aij(χ)a2k(χ) 6= 0 or aij(χ)a3k(χ) 6= 0.
Then the following holds:

γ = 2m−1 − α− β,
k(B) ≤ (2n−2 + 6)α+ (2n−2 + 5)β + (2n−2 + 4)γ − δ/2

= 2n+m−3 + 2m+1 + 2α+ β − δ/2,
8α+ 4β − δ ≤ k0(B) ≤ 2m+1.

This gives k(B) ≤ 2n+m−3 + 2m+1 + 2m−1 = 2m−1(2n−2 + 5). Together with the lower bound we have shown
that k(B) = 2m−1(2n−2 + 5), k0(B) = 2m+1, and l(B) = 3. In particular the maximal value for k(B) is indeed
attended. Moreover, δ = 0. Let χ ∈ Irr(B) such that dzχ. = (±ζj , 0, 0). Then mz

χχ = 4 and h(χ) = 1 by
Lemma 3.4. The number of these characters is

(2n−2 − 2)α+ (2n−2 − 1)β + 2n−2γ = 2n+m−1 − 2m−1 = 2m−1(2n−2 − 1).

Now let ψ ∈ Irr(B) a character of height 0 such that dzψ. = (0, 0,±ζj), and let χ ∈ Irr(B) such that dzχ. =

(εζk, εζk, εζk), where ε ∈ {±1}. Then we have mz
χψ = −2(±εζk−j)± εζk−j + (2n−2 + 1)(±εζk−j) = ±ε2n−2ζk−j

and h(χ) = n− 2. The same holds if dzχ. = (0, εζk,−εζk). This gives the numbers ki(B) for i ∈ N. Observe that
we have to add k1(B) and kn−2(B) in case n = 3.

We add some remarks. It is easy to see that also Eaton’s conjecture is satisfied which provides a generalization
of Brauer’s k(B)-conjecture and Olsson’s conjecture (see [4]). Brauer’s k(B)-conjecture already follows from
Theorem 2 in [19]. If we take m = 1 in the formulas for ki(B) and l(B) we get exactly the invariants for the
defect group Q2n (see [14]). However, recall that D2n ∗C2

∼= D2n . The principal block of D gives an example for
case (bb). For n = 3 the principal block of DoC3 gives an example for case (aa). If n = 4, the principal blocks of
SL(2, 7)∗C2m and 2.S4∗C2m show that also the cases (aa) and (ab) can occur. Here 2.S4 = SmallGroup(48,28)
denotes the double cover of S4 which is not isomorphic to GL(2, 3) (this can be seen with GAP).

4 Alperin’s weight conjecture

In this section we will prove Alperin’s weight conjecture using Proposition 5.4 in [8].

Theorem 4.1. Alperin’s weight conjecture holds for B.

Proof. Let Q ≤ D be F-centric and F-radical. By Lemma 2.2 we have OutF (Q) ∼= S3, OutF (Q) ∼= C3, or
OutF (Q) = 1 (in the last two cases we have Q = D). In particular OutF (Q) has trivial Schur multiplier.
Moreover, the group algebras F1 and FS3 have precisely one block of defect 0, while FC3 has three blocks of
defect 0. Now the claim follows from Theorem 3.6 and Proposition 5.4 in [8].
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5 Ordinary weight conjecture

In this section we prove Robinson’s ordinary weight conjecture (OWC) for B (see [18]). If OWC holds for all
groups and all blocks, then also Alperin’s weight conjecture holds. However, for our particular block B this
implication is not known. In the same sense OWC is equivalent to Dade’s projective conjecture (see [4]). For
χ ∈ Irr(B) let d(χ) := n+m−1−h(χ) be the defect of χ. We set ki(B) = |{χ ∈ Irr(B) : d(χ) = i}| for i ∈ N.

Lemma 5.1. Let ζ be a primitive 2m-th root of unity. Then for n = 3 the (ordinary) character table of D is
given as follows:

1 x y z

1 1 1 ζ2r

1 -1 1 ζ2r

1 1 -1 ζ2r

1 -1 -1 ζ2r

2 0 0 ζ2r+1

where r = 0, 1, . . . , 2m−1 − 1.

Proof. We just take the characters χ ∈ Irr(D8 × C2m) with χ(x2z2
m−1

) = χ(1).

Theorem 5.2. The ordinary weight conjecture holds for B.

Proof. We prove the version in Conjecture 6.5 in [8]. We may assume that B is not nilpotent, and thus case (bb)
does not occur. Suppose that n = 3 and case (aa) occurs. Then D is the only F-centric, F-radical subgroup
of D. Since OutF (D) ∼= C3, the set ND consists only of the trivial chain (with the notation of [8]). We have
w(D, d) = 0 for d /∈ {m + 1,m + 2}, since then kd(D) = 0. For d = m + 1 we get w(D, d) = 3 · 2m−1 by
Lemma 5.1. In case d = m + 2 it follows that w(D, d) = 3 · 2m−1 + 2m−1 = 2m+1. Hence, OWC follows from
Theorem 3.6.

Now let n ≥ 4 and assume that case (aa) occurs. Then there are three F-centric, F-radical subgroups up to
conjugation: Q1, Q2 and D. Since OutF (D) = 1, it follows easily that w(D, d) = kd(D) for all d ∈ N. By
Theorem 3.6 it suffices to show

w(Q, d) =

{
2m−1 if d = m+ 1

0 otherwise

for Q ∈ {Q1, Q2}, because km+1(B) = kn−2(B) = 2m. We already have w(Q, d) = 0 unless d ∈ {m+ 1,m+ 2}.
W. l. o. g. let Q = Q1.

Let d = m + 1. Up to conjugation NQ consists of the trivial chain σ : 1 and the chain τ : 1 < C, where
C ≤ OutF (Q) has order 2. We consider the chain σ first. Here I(σ) = OutF (Q) ∼= S3 acts trivially on the
characters of Q or defect m+ 1 by Lemma 5.1. This contributes 2m−1 to the alternating sum of w(Q, d). Now
consider the chain τ . Here I(τ) = C and z(FC) = 0 where z(FC) is the number of blocks of defect 0 in FC.
Hence, the contribution of τ vanishes and we get w(Q, d) = 2m−1 as desired.

Let d = m + 2. Then we have I(σ, µ) ∼= S3 for every character µ ∈ Irr(Q) with µ(x2
n−3

) = µ(y) = 1. For the
other characters of Q with defect d we have I(σ, µ) ∼= C2. Hence, the chain σ contributes 2m−1 to the alternating
sum. There are 2m characters µ ∈ Irr(D) which are not fixed under I(τ) = C. Hence, they split in 2m−1 orbits
of length 2. For these characters we have I(τ, µ) = 1. For the other irreducible characters µ of D of defect d we
have I(τ, µ) = C. Thus, the contribution of τ to the alternating sum is −2m−1. This shows w(Q, d) = 0.

In case (ab) we have only two F-centric, F-radical subgroups: Q2 and D. Since kn−2(B) = 2m−1 in this case,
the calculations above imply the result.
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6 The gluing problem

Finally we show that the gluing problem (see Conjecture 4.2 in [10]) for the block B has a unique solution.
We will not recall the very technical statement of the gluing problem. Instead we refer to [16] for most of the
notations. Observe that the field F is denoted by k in [16].

Theorem 6.1. The gluing problem for B has a unique solution.

Proof. Assume first that n ≥ 4. Let σ be a chain of F-centric subgroups of D, and let Q ≤ D be the largest
subgroup occurring in σ. Then as in the proof of Lemma 2.2 we have Q = (Q∩〈x, y〉)∗〈z〉. If Q∩〈x, y〉 is abelian
or Q = D, then AutF (Q) and AutF (σ) are 2-groups. In this case we get Hi(AutF (σ), F×) = 0 for i = 1, 2 (see
proof of Corollary 2.2 in [16]). Now assume that Q ∈ {Q1, Q2} and AutF (Q) ∼= S4. Then it is easy to see that
Q does not contain a proper F-centric subgroup. Hence, σ consists only of Q and AutF (σ) = AutF (Q). Thus,
also in this case we get Hi(AutF (σ), F×) = 0 for i = 1, 2. It follows that AiF = 0 and H0([S(Fc)],A2

F ) =
H1([S(Fc)],A1

F ) = 0. Hence, by Theorem 1.1 in [16] the gluing problem has only the trivial solution.

Now let n = 3. Then we have Hi(AutF (σ), F×) = 0 for i = 1, 2 unless σ = D and case (aa) occurs. In this case
AutF (σ) = AutF (D) ∼= A4. Here H2(AutF (σ), F×) = 0, but H1(AutF (σ), F×) ∼= H1(A4, F

×) ∼= H1(C3, F
×) ∼=

C3. Hence, we have to consider the situation more closely. Up to conjugation there are three chains of F-centric
subgroups: Q := 〈x, z〉, D, and Q < D. Since [S(Fc)] is partially ordered by taking subchains, one can view
[S(Fc)] as a category, where the morphisms are given by the pairs of ordered chains. In our case [S(Fc)] has
precisely five morphisms. With the notations of [22] the functor A1

F is a representation of [S(Fc)] over Z. Hence,
we can view A1

F as a moduleM over the incidence algebra of [S(Fc)]. More precisely, we have

M :=
⊕

a∈Ob[S(Fc)]

A1
F (a) = A1

F (D) ∼= C3.

Now we can determine H1([S(Fc)],A1
F ) using Lemma 6.2(2) in [22]. For this let d : Hom[S(Fc)] → M a

derivation. Then we have d(α) = 0 for all α ∈ Hom[S(Fc)] with α 6= (D,D) =: α1. Moreover,

d(α1) = d(α1α1) = (A1
F (α1))(d(α1)) + d(α1) = 2d(α1) = 0.

Hence, H1([S(Fc)],A1
F ) = 0.
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