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Abstract

For a finite group G we investigate the smallest positive integer e(G) such that the map sending
g ∈ G to e(G)|G : CG(g)| is a generalized character of G. It turns out that e(G) is strongly
influenced by local data, but behaves irregularly for non-abelian simple groups. We interpret e(G)
as an elementary divisor of a certain non-negative integral matrix related to the character table
of G. Our methods applied to Brauer characters also answers a recent question of Navarro: The
p-Brauer character table of G determines |G|p′ .

Keywords: conjugation action, generalized character
AMS classification: 20C15, 20C20

1 Introduction

The conjugation action of a finite group G on itself determines a permutation character π such that
π(g) = |CG(g)| for g ∈ G. Many authors have studied the decomposition of π into irreducible complex
characters (see [1, 2, 4, 5, 6, 7, 10, 15, 16, 17]). In the present paper we study the reciprocal class
function π̃ defined by

π̃(g) := |CG(g)|−1

for g ∈ G. By a result of Knörr (see [12, Problem 1.3(c)] or Proposition 1 below), there exists a positive
integer m such that mπ̃ is a generalized character of G. Since π(1) = |G|, it is obvious that |G| divides
m. If also nπ̃ is a generalized character, then so is gcd(m,n)π̃ by Euclidean division. We investigate
the smallest positive integer e(G) such that e(G)|G|π̃ is a generalized character. In most situations it
is more convenient to work with the complementary divisor e′(G) := |G|/e(G) which is also an integer
by Proposition 1 below.

We first demonstrate that many local properties of G are encoded in e(G). In the subsequent section
we illustrate by examples that most of our theorems cannot be generalized directly. For many simple
groups we show that e′(G) is “small”. In the last section we develop a similar theory of Brauer characters.
Here we take the opportunity to show that |G|p′ is determined by the p-Brauer character table of G.
This answers [13, Question A]. Finally, we give a partial answer to [13, Question C].
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2 Ordinary characters

Our notation follows mostly Navarro’s books [11, 12]. In particular, the set of algebraic integers in C is
denoted byR. The set of p-elements (resp. p′-elements) of G is denoted by Gp (resp. Gp′ , deviating from
[11]). The usual scalar product of class functions χ, ψ of G is denoted by [χ, ψ] = 1

|G|
∑

g∈G χ(g)ψ(g).
For any real generalized character ρ and any χ ∈ Irr(G) we will often use the fact [ρ, χ] = [ρ, χ] without
further reference.

Proposition 1. For every finite group G the following holds:

(i) e(G) divides |G : Z(G)|. In particular, e′(G) is an integer divisible by |Z(G)|.

(ii) If |G| is even, so is e′(G).

Proof.

(i) Let Z := Z(G). We need to check that |G||G : Z|[π̃, χ] is an integer for every χ ∈ Irr(G). Since π̃
is constant on the cosets of Z, we obtain

|G||G : Z|[π̃, χ] =
∑
g∈G

|G : CG(g)|χ(g)

|Z|
=

∑
gZ∈G/Z

|G : CG(g)|
|Z|

∑
z∈Z

χ(gz)

=
∑

gZ∈G/Z

|G : CG(g)|χ(g)

|Z|χ(1)

∑
z∈Z

χ(z) = [χZ , 1Z ]
∑

gZ∈G/Z

|G : CG(g)|χ(g)

χ(1)
.

Hence, only the characters χ ∈ Irr(G/Z) can occur as constituents of π̃ and in this case

|G||G : Z|[π̃, χ] =
∑

gZ∈G/Z

|G : CG(g)|χ(g)

is an algebraic integer. Since the Galois group of the cyclotomic field Q|G| permutes the conjugacy
classes of G (preserving their lengths), |G||G : Z|[π̃, χ] is also rational, so it must be an integer.

(ii) Let |G| be even. As in (i), it suffices to show that |G|2[π̃, χ] is even for every χ ∈ Irr(G). Let Γ be
a set of representatives for the conjugacy classes of G. Let I be a maximal ideal of R containing
2. For every integer m we have m2 ≡ m (mod I). Hence,

|G|2[π̃, χ] =
∑
g∈G
|G : CG(g)|χ(g) =

∑
x∈Γ

|G : CG(x)|2χ(x)

≡
∑
x∈Γ

|G : CG(x)|χ(x) =
∑
g∈G

χ(g) = |G|[1G, χ] ≡ 0 (mod I).

It follows that |G|2[π̃, χ] ∈ Z ∩ I = 2Z.

The proof of part (i) actually shows that e(G)|G|π̃ is a generalized character of G/Z(G) and |G||G :

Z(G)|[π̃, χ] is divisible by χ(1). Part (ii) might suggest that the smallest prime divisor of |G| always
divides e′(G). However, there are non-trivial groups G such that e′(G) = 1. A concrete example of
order 3955 will be constructed in the next section. We will show later that e(G) = 1 if and only if G is
abelian.
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Proposition 2.

(i) For finite groups G1 and G2 we have e(G1 ×G2) = e(G1)e(G2).

(ii) If G is nilpotent, then e′(G) = |Z(G)| and every χ ∈ Irr(G/Z(G)) is a constituent of π̃.

Proof.

(i) It is clear that π̃ = π̃1 × π̃2 where π̃i denotes the respective class function on Gi. This shows
that e(G1×G2) divides e(G1)e(G2). Moreover, [π̃, χ1×χ2] = [π̃1, χ1][π̃2, χ2] for χi ∈ Irr(Gi). By
the definition of e(Gi), the greatest common divisor of {e(Gi)|Gi|[π̃i, χi] : χi ∈ Irr(Gi)} is 1. In
particular, 1 can be expressed as an integral linear combination of these numbers. Therefore, 1 is
also an integral linear combination of {e(G1)e(G2)|G1G2|[π̃, χ1 × χ2] : χi ∈ Irr(Gi)}. This shows
that e(G1)e(G2) divides e(G1 ×G2).

(ii) By (i) we may assume that G is a p-group. By Proposition 1, |Z| divides e′(G) where Z := Z(G).
Let I be a maximal ideal of R containing p. Let χ ∈ Irr(G/Z). Since all characters of G lie in the
principal p-block of G, [11, Theorem 3.2] implies

|G||G : Z|
χ(1)

[π̃, χ] =
∑

gZ∈G/Z

|G : CG(g)|χ(g)

χ(1)
≡

∑
gZ∈G/Z

|G : CG(g)| ≡ 1 (mod I).

Therefore, χ is a constituent of π̃. Taking χ = 1G yields |G||G : Z|[π̃, 1G] ≡ 1 (mod p), so e′(G)
is not divisible by p|Z|.

We will see in the next section that nilpotent groups cannot be characterized in terms of e(G). More-
over, in general not every χ ∈ Irr(G/Z(G)) is a constituent of π̃ (the smallest counterexample is
SmallGroup(384, 5556)). The corresponding property of π was conjectured in [16] and disproved in [6].
We do not know any simple group S such that some χ ∈ Irr(S) does not occur in π̃.

Now we study e(G) in the presence of local information. The following reduction to the Sylow normalizer
simplifies the construction of examples.

Lemma 3. Let P be a Sylow p-subgroup of G and let N := NG(P ). Then p divides e′(G) if and only
if p divides e′(N). In particular, if CP (N) 6= 1, then e′(G) ≡ 0 (mod p). Now suppose that for all
x ∈ Op′(N) we have ∑

y∈Z(P )

|H : CH(y)| ≡ 0 (mod p)

where H := CN (x). Then e′(G) ≡ 0 (mod p).

Proof. Let I be a maximal ideal of R containing p. Let χ ∈ Irr(G). The conjugation action of P on G
shows that

|G|2[π̃, χ] ≡
∑

x∈CG(P )

|G : CG(x)|χ(x) (mod I).

For x ∈ CG(P ), Sylow’s Theorem implies

|G : CG(x)| ≡ |G : CG(x)||CG(x) : CN (x)| = |G : N ||N : CN (x)| ≡ |N : CN (x)| (mod I).

Hence,

|G|2[π̃, χ] ≡
∑

x∈CG(P )

|N : CN (x)|χ(x) ≡
∑
x∈N
|N : CN (x)|χ(x) = |N |2[π̃(N), χN ] (mod I) (1)
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where π̃(N)(x) := |CN (x)|−1 for x ∈ N . If e′(N) ≡ 0 (mod p), then the right hand side of (1) is 0 and
so is the left hand side. This shows that e′(G) ≡ 0 (mod p). If CP (N) 6= 1, then e′(N) ≡ 0 (mod p)
by Proposition 1.

Now suppose conversely that e′(G) ≡ 0 (mod p). Since |G|p = |N |p, it suffices to show that

|G||N |[π̃(N), ψ] ≡ 0 (mod I)

for every ψ ∈ Irr(N). By an elementary fusion argument of Burnside, elements in CG(P ) are conjugate
in G if and only if they are conjugate in N . Hence, we can define a class function γ on G by

γ(g) :=

{
π̃(N)(x) if g is conjugate in G to x ∈ CG(P ),

0 otherwise

for every g ∈ G. By (1) and Frobenius reciprocity,

|G||N |[π̃(N), ψ] ≡ |G||N |[γN , ψ] ≡ |G||N |[γ, ψG] ≡
∑

x∈CG(P )

|N : CN (x)|ψG(x)

≡ |G|2[π̃, ψG] ≡ 0 (mod I)

as desired.

For the last claim we may assume that P E G and N = G. Recall that CG(P ) = Z(P ) × Q where
Q = Op′(G). Moreover, χ(x) ≡ χ(xp′) (mod I) for every x ∈ G by [12, Lemma 4.19]. Hence,

|G|2[π̃, χ] ≡
∑
x∈Q

χ(x)
∑

y∈Z(P )

|G : CG(xy)| (mod I).

Since CG(xy) = CG(x) ∩ CG(y) = CH(y) where x ∈ Q and H := CG(x), we conclude that∑
y∈Z(P )

|G : CG(xy)| = |G : H|
∑

y∈Z(P )

|H : CH(y)| ≡ 0 (mod I)

and the claim follows.

In the situation of Lemma 3 it is not true that e′(G) and e′(N) have the same p-part. In general, π̃ is
by no means compatible with restriction to arbitrary subgroups as the reader can convince herself.

Lemma 4. Let N := Op′(G). Let gp be the p-part of g ∈ G. Then the map γ : G→ C, g 7→ |N : CN (gp)|
is a generalized character of G.

Proof. By Brauer’s induction theorem, it suffices to show that the restriction of γ to every nilpotent
subgroup H ≤ G is a generalized character of H. We write H = Hp ×Hp′ . By a result of Knörr (see
[12, Problem 1.13]), the restriction γHp is a generalized character of Hp. Hence, also γH = γHp × 1Hp′

is a generalized character.

Note that Z(G/Op′(G)) is a p-group, since Op′(G/Op′(G)) = 1. In fact, |Z(G/Op′(G))| is the number of
weakly closed elements in a fixed Sylow p-subgroup by the Z∗-theorem. The diagonal monomorphism
G →

∏
pG/Op′(G) embeds Z(G) into

∏
p Z(G/Op′(G)). Therefore, the following theorem generalizes

Proposition 1(i).

Theorem 5. For every prime p, |Z(G/Op′(G))| divides e′(G).
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Proof. Let N := Op′(G), z := |Z(G/N)| and χ ∈ Irr(G). Since every element of G can be factorized
uniquely into a p-part and a p′-part, we obtain

|G|2[π̃, χ] =
∑
x∈Gp′

∑
y∈CG(x)p

|G : CG(xy)|χ(xy). (2)

We now fix x ∈ Gp′ and H := CG(x). In order to show that the inner sum of (2) is divisible by z in R
we may assume that χ is a character of H. After decomposing, we may even assume that χ ∈ Irr(H).
Since x ∈ Z(H), there exists a root of unity ζ such that χ(xy) = ζχ(y) for every y ∈ Hp. Moreover,
CG(xy) = CG(x) ∩ CG(y) = CH(y) yields∑

y∈Hp

|G : CG(xy)|χ(xy) = ζ|G : H|
∑
y∈Hp

|H : CH(y)|χ(y).

Let NH := Op′(H), Z∗/N := Z(G/N), Z∗H/NH := Z(H/NH) and zH := |Z∗H/NH |. For x ∈ Z∗∩H and
h ∈ H we have [x, h] ∈ N ∩H ≤ NH . Hence, Z∗ ∩H ≤ Z∗H and we obtain

|Z∗| = |Z∗H : H||Z∗ ∩H|
∣∣ |G : H||Z∗H ||N : NH | = |G : H|zH |N |,

i. e. z divides |G : H|zH . Therefore, it suffices to show that∑
y∈Hp

|H : CH(y)|χ(y) ≡ 0 (mod zH) (3)

(the left hand side is an integer since Hp is closed under Galois conjugation). To this end, we may
assume that H = G and zH = z. By Proposition 1, there exists a generalized character ψ of G/N such
that

ψ(gN) = |G : Z∗||G/N : CG/N (gN)|

for g ∈ G. We identify ψ with its inflation to G. For y ∈ Gp it is well-known that CG/N (yN) =
CG(y)N/N . Let γ be the generalized character defined in Lemma 4. Then

(ψγ)(y) = |G : Z∗||G : CG(y)N ||N : CN (y)| = |G : Z∗||G : CG(y)|

for every y ∈ Gp. By a theorem of Frobenius (see [12, Corollary 7.14]),∑
y∈Gp

|G : Z∗||G : CG(y)|χ(y) =
∑
y∈Gp

(ψτχ)(y) ≡ 0 (mod |G|p).

It follows that
|G : N |p′

∑
y∈Gp

|G : CG(y)|χ(y) ≡ 0 (mod z)

and (3) holds.

For any set of primes σ it is easy to see that Z(G/Oσ′(G)) embeds into
∏
p∈σ Z(G/Op′(G)). Hence,

Theorem 5 remains true when p is replaced by σ. The following consequence extends Proposition 2.

Corollary 6. If G is p-nilpotent and P ∈ Sylp(G), then e′(G)p = |Z(P )|.
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Proof. Let N := Op′(G). Since G/N ∼= P , Theorem 5 shows that |Z(P )| divides e′(G). For the converse
relation, we suppose by way of contradiction that the map

γ : G→ C, g 7→ 1

p
|G : Z(P )||G : CG(g)|

is a generalized character of G. For x ∈ P we observe that CG(x) = CP (x)CN (x). Hence,

(1P )G(x) =
1

|P |
∑
g∈G
xg∈P

1 =
1

|P |
|CG(x)||P : CP (x)| = |CN (x)|.

Consequently, µ := (γ1GP )P is a generalized character of P such that

µ(x) =
1

p
|P : Z(P )||P : CP (x)||N |2

for x ∈ P . In the proof of Proposition 2 we have seen however that

[pµ, 1P ] ≡ |N |2 6≡ 0 (mod p).

This contradiction shows that e′(G)p divides |Z(P )|.

Next we prove a partial converse of Corollary 6.

Theorem 7. For every prime p we have e(G)p = 1 if and only if |G′|p = 1. In particular, G is abelian
if and only if e(G) = 1.

Proof. If |G′|p = 1, then G/Op′(G) is abelian and e(G)p = 1 by Theorem 5. Suppose conversely that
e(G)p = 1. Then the map ψ with ψ(g) := |G|p′ |G : CG(g)| for g ∈ G is a generalized character of G.
Let P be a Sylow p-subgroup of G. Choose representatives x1, . . . , xk ∈ P for the conjugacy classes
of p-elements of G. Then ψ(xi) ≡ ψ(1) ≡ |G|p′ 6≡ 0 (mod p) by [12, Lemma 4.19] and ψ(xi)

m ≡ 1
(mod |P |) where m := ϕ(|P |) (Euler’s totient function). The theorem of Frobenius we have used earlier
(see [12, Corollary 7.14]) yields

k ≡
k∑
i=1

ψ(xi)
m = |G|p′

∑
g∈Gp

ψ(g)m−1 ≡ 0 (mod |P |).

In particular, |P | ≤ k ≤ |P | and |P | = k. It follows that P is abelian and G is p-nilpotent by Burnside’s
transfer theorem. Hence, G/Op′(G) is abelian and |G′|p = 1.

It is clear that e(G) can be computed from the character table of G. There is in fact an interesting
interpretation:

Proposition 8. Let X be the character table of G and let Y := XXt. Then the following holds:

(i) Y is a symmetric, non-negative integral matrix.

(ii) The eigenvalues of Y are |CG(g)| where g represents the distinct conjugacy classes of G.

(iii) e(G)|G| is the largest elementary divisor of Y .

Proof. Let Irr(G) = {χ1, . . . , χk}. Let g1, . . . , gk ∈ G be representatives for the conjugacy classes of G.
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(i) The entry of Y at position (i, j) is

k∑
l=1

χi(gl)χj(gl) =
1

|G|
∑
g∈G
|CG(g)|χi(g)χj(g) = [π, χiχj ] ≥ 0.

Now by definition, Y is symmetric.

(ii) By the second orthogonality relation,

X
−1
Y X = XtX = diag(|CG(g1)|, . . . , |CG(gk)|).

(iii) It suffices to show that e(G)|G| is the smallest positive integer m such that mY −1 is an integral
matrix. By the orthogonality relations, X−1 =

(
|CG(gi)|−1χj(gi)

)k
i,j=1

. Therefore,

Y −1 = (Xt)−1X
−1

=
( k∑
l=1

|CG(gl)|−2χi(gl)χj(gl)
)
i,j

=
( 1

|G|

k∑
l=1

|G : CG(gl)|π̃(gl)χi(gl)χj(gl)
)
i,j

=
( 1

|G|
∑
g∈G

π̃(g)χi(g)χj(g)
)
i,j

=
(
[π̃, χiχj , ]

)
i,j
.

Clearly, m[π̃, χiχj ] is an integer for all i, j if and only if m[π̃, χi] is an integer for i = 1, . . . , k.
The claim follows.

3 Examples

Proposition 9. There exist non-trivial groups G such that e′(G) = 1.

Proof. By Proposition 1 and Theorem 5 we need a group of odd order such that Z(G/Op′(G)) = 1 for
every prime p. Let A := 〈a1, . . . , a4〉 ∼= C4

9 , B := 〈b1, b2〉 ∼= C2
25 and C := 〈c〉 ∼= C15. We define an

action of C on A×B via

ac1 = a4
2, ac2 = a4

3, ac3 = a4
4,

ac4 = (a1a2a3a4)−4, bc1 = b62, bc2 = (b1b2)−6.

Note that the action of c on A is the composition of the companion matrix of X4 +X3 +X2 +X+1 and
the power map a 7→ a4. In particular, c5 induces an automorphism of order 3 on A. Similarly, c3 induces
an automorphism of order 5 on B. Now let G := (A × B) o C. Then P := 〈a1, . . . , a4, c

5〉 is a Sylow
3-subgroup of G and Q := 〈b1, b2, c3〉 is a Sylow 5-subgroup. It is easy to see that CG(P ) = 〈a3

1, . . . , a
3
4〉

and CG(Q) = 〈b51, b52〉. By the conjugation action of P (resp. Q) on G, we obtain

|G|2[π̃, 1G] =
∑
g∈G
|G : CG(g)| ≡

∑
g∈CG(P )

|G : CG(g)| = 1 + 80 · 5 ≡ −1 (mod 3)

|G|2[π̃, 1G] =
∑
g∈G
|G : CG(g)| ≡

∑
g∈CG(Q)

|G : CG(g)| = 1 + 24 · 3 ≡ −2 (mod 5).

Therefore, e(G) = |G| and e′(G) = 1.

Our next example shows that there are non-nilpotent groups G such that e′(G) = |Z(G)| (take n = 12
for instance).
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Proposition 10. Let G = D2n be the dihedral group of order 2n ≥ 4. Then

e′(G) =

{
4 if n ≡ 2 (mod 4),

2 otherwise.

Proof. As G is 2-nilpotent, Theorem 5 shows that e′(G)2 = 4 if n ≡ 2 (mod 4) and e′(G)2 = 2
otherwise. Moreover,

|G|2[π̃, 1G] =
∑
g∈G
|G : CG(g)| =

{
n2 + 2n− 1 if 2 - n,
1
2n

2 + 2n− 2 if 2 | n.

Since the two numbers on the right hand side have no odd divisor in common with n, it follows that
e′(G)2′ = 1.

For many simple groups it turns out that e′(G) = 2.

Proposition 11. For every prime power q > 1 we have

e′(GL2(q)) =

{
q − 1 if 2 - q,
2(q − 1) if 2 | q.

e′(SL2(q)) = e′(PSL2(q)) =

{
2 if 3 - q,
6 if 3 | q.

Proof. Suppose first that G = GL2(q). By Proposition 1, e′(G) is divisible by |Z(G)| = q − 1 and by
2(q − 1) if q is even. The class equation of G is

(q2− 1)(q2− q) = |G| = (q− 1)× 1 +
q2 − q

2
× (q2− q) + (q− 1)× (q2− 1) +

(q − 1)(q − 2)

2
× (q2 + q).

It follows that

|G||G : Z(G)|[π̃, 1G] = 1 +
(q2 − q)2

2
q + (q2 − 1)2 +

(q2 + q)2

2
(q − 2) = q5 − q3 − 3q2 + 2.

Since
(q5 − q3 − 3q2 + 2)(1− 3q2) + (q3 − q)(3q4 − q2 − 9q) = 2, (4)

we have gcd(|G||G : Z(G)|[π̃, 1G], |G : Z(G)|) ≤ 2 and e′(G) ≤ 2(q − 1). If q is even, we obtain
e′(G) = 2(q− 1) as desired. If q is odd, then q5− q3− 3q2 + 2 is odd. Hence, e′(G) = q− 1 in this case.

Next we assume that q is even and G = SL2(q) = PSL2(q). The class equation of G is

q3 − q = |G| = 1× 1 + 1× (q2 − 1) +
q

2
× q(q − 1) +

q − 2

2
× q(q + 1).

It follows that

|G|2[π̃, 1G] = 1 + (q2 − 1)2 +
q

2
q2(q − 1)2 +

q − 2

2
q2(q + 1)2 = q5 − q3 − 3q2 + 2.

By coincidence, (4) also shows that gcd(|G|2[π̃, 1G], |G|) ≤ 2 and the claim e′(G) = 2 follows from
Proposition 1.
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Now let q be odd and G = SL2(q). This time the class equation of G is

q3 − q = |G| = 2× 1 +
q − 3

2
× q(q + 1) +

q − 1

2
× q(q − 1) + 4× q2 − 1

2
.

We obtain

|G|2[π̃, 1G] = 2 +
q − 3

2
q2(q + 1)2 +

q − 1

2
q2(q − 1)2 + (q2 − 1)2 = q5 − q4 − q3 − 4q2 + 3.

Since
(q5 − q4 − q3 − 4q2 + 3)(2− 5q2) + (q3 − q)(5q4 − 5q3 − 2q2 − 23q) = 6,

it follows that gcd(|G|2[π̃, 1G], |G|) ∈ {2, 6}. If 3 - q, then

q5 − q4 − q3 − 4q2 + 3 ≡ q − 1− q − 4 + 3 ≡ 1 (mod 3)

and gcd(|G|2[π̃, 1G], |G|) = 2. In this case, e′(G) = 2 as desired.

Now let 3 | q. Then e′(G) | 6. It is well-known that the unitriangular matrices form a Sylow 3-subgroup
P ∼= Fq of G. Moreover, C := CG(P ) = P ×Z(G) ∼= P ×〈−1〉. The normalizer N := NG(P ) consists of
the upper triangular matrices with determinant 1. Hence, O3′(N) = Z(G) and N/C ∼= (F×q )2 ∼= C(q−1)/2

acts semiregularly on P via multiplication. It follows that∑
y∈P
|N : CN (y)| ≡ 1 + (q − 1)

q − 1

2
≡ 0 (mod 3).

Thus, Lemma 3 shows 3 | e′(G) and e′(G) = 6. The final case G = PSL2(q) with q odd requires a
distinction between q ≡ ±1 (mod 4), but is otherwise similar. We omit the details.

Proposition 12. For every prime power q > 1 and G = PSU3(q) we have e′(G) | 8 and e′(G) = 2 if
q 6≡ −1 (mod 4).

Proof. The character table of G was computed (with small errors) in [18] based on the results for
SU(3, q). It depends therefore on gcd(q+1, 3). In any event we use GAP [8] to determine the polynomial
f(q) := |G|2[π̃, 1G] as in the proof of Proposition 11. It turns out that gcd(f(q), |G|) always divides 32.
If q 6≡ −1 (mod 4), then f(q) is not divisible by 4 and the claim e′(G) = 2 follows from Proposition 1.
Now we assume that q ≡ −1 (mod 4). Then f(q) is divisible by 16 only when q ≡ 11 (mod 16). In
this case however, |G|2[π̃, St] is not divisible by 16 where St is the Steinberg character of G.

We conjecture that e′(PSU3(q)) = 4 if q ≡ −1 (mod 4).

Proposition 13. For n ≥ 1 we have e′(Sz(22n+1)) = 2.

Proof. Let q = 22n+1 and G = Sz(q). In order to deal with quantities like
√
q/2, we use the generic

character table from CHEVIE [9]. A computation shows that

|G|2[π̃, 1G] = q9 − 3

2
q8 − q7 +

7

2
q6 − 5q5 +

7

2
q4 − 5q3 +

7

2
q2 − 2q + 2 ≡ 2 (mod 4)

and gcd(|G|2[π̃, 1G], |G|) divides 6. It is well-known that |G| = q2(q2 + 1)(q − 1) is not divisible by 3.
Hence, the claim follows from Proposition 1.
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For symmetric groups we determine the prime divisors of e′(Sn).

Proposition 14. Let p be a prime and let n =
∑

i≥0 aip
i be the p-adic expansion of n ≥ 1. Then

p divides e′(Sn) if and only if 2ai ≥ p for some i ≥ 1. In particular, e′(Sn)p = 1 if p > 2 and
n < p(p+ 1)/2.

Proof. Let G := Sn. For i ≥ 0 let Pi be a Sylow p-subgroup of Spi . Then P :=
∏
i≥0 P

ai
i is a Sylow

p-subgroup of G. By Lemma 3, it suffices to consider e′(N) where N := NG(P ). Since

N =
∏
i≥0

NSpi
(Pi) o Sai ,

we may assume that n = aip
i for some i ≥ 1 by Proposition 2. It is well-known that Pi is an iterated

wreath product of i copies of Cp. It follows that Z(Pi) has order p. Moreover, CG(P ) = Z(P ) = Z(Pi)
ai .

For k = 0, . . . , ai there are exactly
(
ai
k

)
(p− 1)k elements (x1, . . . , xai) ∈ Z(P ) such that |{i : xi 6= 1}| =

k. It is easy to see that these elements form a conjugacy class in N . Consequently,∑
x∈Z(P )

|N : CN (x)| =
ai∑
k=0

(
ai
k

)2

(p− 1)2k ≡
ai∑
k=0

(
ai
k

)2

≡
(

2ai
ai

)
(mod p)

by the Vandermonde identity. If 2ai ≥ p, then
(

2ai
ai

)
≡ 0 (mod p) since ai < p. In this case, Lemma 3

yields e′(N) ≡ 0 (mod p). Now assume that 2ai < p. Then

|N |2[π̃(N), 1N ] ≡
∑

x∈Z(P )

|N : CN (x)| ≡
(

2ai
ai

)
6≡ 0 (mod p).

Hence, e′(N)p = 1.

Based on computer calculations up to n = 45 we conjecture that

e′(Sn)2 = 2a1+a2+...

if p = 2 in the situation of Proposition 14. A(n anonymous) referee noted that this number coincides
with |Z(P )| where P is a Sylow 2-subgroup of Sn. We do not know how to describe e′(Sn)p for odd
primes p; it seems to depend only on bn/pc. We also noticed that

e′(Sn) =

{
e′(An) if n ≡ 0, 1 (mod 4),

2e′(An) if n ≡ 2, 3 (mod 4)

for 5 ≤ n ≤ 45. This might hold for all n ≥ 5. In the following tables we list ẽ := e′(G)/2 for alternating
groups and sporadic groups (these results were obtained with GAP).

G ẽ G ẽ G ẽ G ẽ G ẽ

A5 1 A6 3 A7 3 A8 3 A9 1
A10 1 A11 1 A12 2 A13 2 A14 2
A15 2 · 32 · 5 A16 32 · 5 A17 32 · 5 A18 3 · 5 A19 3 · 5
A20 2 · 3 · 5 A21 2 · 3 · 5 A22 2 · 3 · 5 A23 2 · 3 · 5 A24 2 · 32 · 5
A25 2 · 32 A26 2 · 32 A27 2 A28 22 · 7 A29 22 · 7
A30 22 · 7 A31 22 · 7 A32 7 A33 3 · 7 A34 3 · 7
A35 3 · 7 A36 2 · 7 A37 2 · 7 A38 2 · 7 A39 2 · 7
A40 2 · 5 · 7 A41 2 · 5 · 7 A42 2 · 32 · 5 · 7 A43 2 · 32 · 5 · 7 A44 22 · 32 · 5 · 7
A45 22 · 32 · 5 · 7
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G ẽ G ẽ G ẽ G ẽ G ẽ G ẽ

M11 1 M12 1 J1 1 M22 1 J2 5 M23 1
HS 1 J3 1 M24 1 McL 1 He 1 Ru 1
Suz 3 ON 1 Co3 1 Co2 1 Fi22 1 HN 1
Ly 3 Th 1 Fi23 2 Co1 1 J4 1 F ′24 1
B 1 M 1

4 Brauer characters

For a given prime p, the restriction of our permutation character π to the set of p′-elements Gp′ yields
a Brauer character π0 of G. Since e(G)|G|π̃ is a generalized character, there exists a smallest positive
integer fp(G) such that fp(G)|G|π̃0 is a generalized Brauer character of G. Clearly, fp(G) divides e(G).
As in [11], we set [ϕ, µ]0 = 1

|G|
∑

g∈Gp′
ϕ(g)µ(g) for class function ϕ and µ on G (or Gp′). Recall that

for every irreducible Brauer character ϕ ∈ IBr(G) there exists a projective indecomposable character
Φϕ such that [Φϕ, µ]0 = δϕµ where δϕµ is the Kronecker delta ([11, Theorem 2.13]). We first prove the
analogue of Proposition 8.

Proposition 15. Let Yp := XpX
t
p where Xp is the p-Brauer character table of G. Then Yp is a

symmetric, non-negative integral matrix with largest elementary divisor fp(G)|G|p′. In particular, fp(G)
divides e(G)p′ .

Proof. Let IBr(G) = {ϕ1, . . . , ϕl} and 1 ≤ s, t ≤ l. Let g1, . . . , gl be representatives for the p′-conjugacy
classes of G. Following an idea of Chillag [3, Proposition 2.5], we define a non-negative integral matrix
A = (aij) by ϕiϕsϕt =

∑l
j=1 aijϕj . The equation X−1

p AXp = diag(ϕsϕt(gi) : i = 1, . . . , l) shows that

trA =

l∑
i=1

ϕs(gi)ϕt(gi) =
1

|G|
∑
g∈Gp′

π(g)ϕs(g)ϕt(g) = [π, ϕsϕt]
0

is a non-negative integer. At the same time, this is the entry of Yp at position (s, t). By construction,
Yp is also symmetric.

Now we compute the largest elementary divisor of Yp by using the projective indecomposable characters
Φi := Φϕi for i = 1, . . . , l. For 1 ≤ i, j ≤ l let aij := [π̃,ΦiΦj ]. Then

∑l
j=1 aijϕj = (Φiπ̃)0 and

l∑
k=1

aik[π, ϕkϕj ]
0 =

[
π,

l∑
k=1

aikϕkϕj

]0
= [π, (Φiπ̃)0ϕj ]

0 = [Φi, ϕj ]
0 = δij .

Hence, we have shown that Y −1
p = (aij) (notice the similarity to Y −1 in the proof of Proposition 8).

Since fp(G)|G|π̃0 is a generalized Brauer character, it follows that fp(G)|G|Y −1
p is an integral matrix.

In particular, the largest elementary divisor e of Yp divides fp(G)|G|.

For the converse relation, recall that [ϕi, ϕj ]
0 = c′ij where (c′ij) is the inverse of the Cartan matrix C

of G. Since |G|p is the largest elementary divisor of C, the numbers |G|pc′ij are integers. The trivial
Brauer character can be expressed as 10

G =
∑l

i=1 c
′
1iΦ

0
i . Therefore,

|G|pe[π̃,Φi] = |G|pe
l∑

j=1

c′1j [π̃Φj ,Φi] =
l∑

j=1

|G|pc′1jeaij ∈ Z

11



for i = 1, . . . , l. Hence, e|G|pπ̃0 is a generalized Brauer character and fp(G)|G| divides e|G|p. Thus,
fp(G)|G|p′ divides e. It remains to show that e is a p′-number.

Let Irr(G) = {χ1, . . . , χk} and X1 := (χi(gj)) ∈ Ck×l. Let Q be the decomposition matrix of G. Then
X1 = QXp and the second orthogonality relation implies

diag
(
|CG(gi)| : i = 1, . . . , l

)
= Xt

1X1 = Xt
pQ

tQXp = Xt
pCXp.

By [11, Corollary 2.18], we obtain that det(Yp) = |det(Xp)|2 = (|CG(g1)| . . . |CG(gl)|)p′ . In particular,
e is a p′-number.

In contrast to the ordinary character table, the matrix Xt
pXp is in general not integral. Even if it is

integral, its largest elementary divisor does not necessarily divide |G|2. Somewhat surprisingly, fp(G)
can be computed from the ordinary character table as follows.

Proposition 16. The smallest positive integer m such that |G|p|G|m[π̃, χ]0 ∈ Z for all χ ∈ Irr(G) is
m = fp(G).

Proof. By [11, Lemma 2.15], there exists a generalized character ψ of G such that

ψ(g) =

{
|G|p|G|fp(G)π̃(g) if g ∈ Gp′ ,
0 otherwise.

In particular, |G|p|G|fp(G)[π̃, χ]0 = [ψ, χ] ∈ Z for all χ ∈ Irr(G). Hence, m divides fp(G).

Conversely, every ϕ ∈ IBr(G) can be written in the form ϕ =
∑

χ∈Irr(G) aχχ
0 where aχ ∈ Z for

χ ∈ Irr(G) (see [11, Corollary 2.16]). It follows that |G|p|G|m[π̃, ϕ]0 ∈ Z for all ϕ ∈ IBr(G). This
shows that |G|p|G|mπ̃0 is a generalized Brauer character and fp(G) divides |G|pm. Since fp(G) is a
p′-number, fp(G) actually divides m.

In many cases we noticed that fp(G) = e(G)p′ . However, the group G = PSp4(5).2 is an exception
with e(G)2′/f2(G) = 3. Another exception is G = PSU4(4) with e(G)5′/f5(G) = 3.

Now we refine Theorem 7.

Proposition 17. For every prime q 6= p we have fp(G)q = 1 if and only if |G′|q = 1.

Proof. If |G′|q = 1, then fp(G)q ≤ e(G)q = 1 by Theorem 7. Suppose conversely, that fp(G)q = 1.
Then there exists a generalized Brauer character ϕ of G such that ϕ(g) = |G|q′ |G : CG(g)| for g ∈ Gp′ .
As usual there exists a generalized character ψ of G such that ψ0 = ϕ. Since Gq ⊆ Gp′ we can repeat
the proof of Theorem 7 at this point.

Finally, we answer Navarro’s question as promised in the introduction. The relevant case (x = 1) was
proved by the author while the extension to x ∈ Gp′ was established by G.R. Robinson (personal
communication).

Theorem 18. The Brauer character table of G determines |CG(x)|p′ for every x ∈ Gp′ .

12



Proof. It is easy to show that the (Brauer) class function

ρ :=
∑

ϕ∈IBr(G)

Φϕ(x)

|CG(x)|p
ϕ

vanishes off the conjugacy class of x and ρ(x) = |CG(x)|p′ (see [11, proof of Theorem 2.13]). Thus,
it suffices to determine ρ from the Brauer character table Xp. By [11, Lemma 2.21], ρ ∈ R[IBr(G)].
Similarly, by [11, Lemma 2.15 and Corollary 2.17], the class function θ, defined to be |G|p on Gp′ and
0 elsewhere, is a generalized projective character of G. Moreover, [θ, ρ]0 = |G : CG(x)|p. For every
integer d ≥ 2, we have ρ(x)/d /∈ Z or [θ, ρ]0/d /∈ Z. In particular, ρ/d /∈ R[IBr(G)].

Let X ′p be the matrix obtained from Xp of G by deleting the column corresponding to x. Since Xp is
invertible, there exists a unique non-trivial solution v ∈ Cl of the linear system vX ′p = 0 up to scalar
multiplication. We may assume that the components vi of v are algebraic integers in the cyclotomic field
Q|G| and that

∑l
i=1 viϕi(x) is a positive rational integer where IBr(G) = {ϕ1, . . . , ϕl}. We may further

assume that 1
dv /∈ Rl for every integer d ≥ 2. Then by the discussion above, we obtain ρ =

∑l
i=1 viϕi.

In particular,

|CG(x)|p′ = ρ(x) =
l∑

i=1

viϕi(x)

is determined by Xp.

G. Navarro made me aware that Theorem 18 can be used to give a partial answer to [13, Question C]
as follows.

Theorem 19. Let p 6= q be primes such that q /∈ {3, 5}. Then the p-Brauer character table of a finite
group G determines whether G has abelian Sylow q-subgroups.

Proof. By [14], G has abelian Sylow q-subgroups if and only if |CG(x)|q = |G|q for every q-element
x ∈ G. By [13, Theorem B], the columns of the Brauer character table corresponding to q-elements
can be spotted. Hence, the result follows from Theorem 18.
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