The reciprocal character of the conjugation action

Benjamin Sambale*

October 21, 2020

Abstract

For a finite group G we investigate the smallest positive integer $e(G)$ such that the map sending $g \in G$ to $e(G)\left|G: \mathrm{C}_{G}(g)\right|$ is a generalized character of G. It turns out that $e(G)$ is strongly influenced by local data, but behaves irregularly for non-abelian simple groups. We interpret $e(G)$ as an elementary divisor of a certain non-negative integral matrix related to the character table of G. Our methods applied to Brauer characters also answers a recent question of Navarro: The p-Brauer character table of G determines $|G|_{p^{\prime}}$.

Keywords: conjugation action, generalized character
AMS classification: 20C15, 20C20

1 Introduction

The conjugation action of a finite group G on itself determines a permutation character π such that $\pi(g)=\left|\mathrm{C}_{G}(g)\right|$ for $g \in G$. Many authors have studied the decomposition of π into irreducible complex characters (see [1, 2, 4, 5, 6, 7, 10, 15, 16, 17). In the present paper we study the reciprocal class function $\tilde{\pi}$ defined by

$$
\tilde{\pi}(g):=\left|\mathrm{C}_{G}(g)\right|^{-1}
$$

for $g \in G$. By a result of Knörr (see [12, Problem 1.3(c)] or Proposition 1 below), there exists a positive integer m such that $m \tilde{\pi}$ is a generalized character of G. Since $\pi(1)=|G|$, it is obvious that $|G|$ divides m. If also $n \tilde{\pi}$ is a generalized character, then so is $\operatorname{gcd}(m, n) \tilde{\pi}$ by Euclidean division. We investigate the smallest positive integer $e(G)$ such that $e(G)|G| \tilde{\pi}$ is a generalized character. In most situations it is more convenient to work with the complementary divisor $e^{\prime}(G):=|G| / e(G)$ which is also an integer by Proposition 1 below.

We first demonstrate that many local properties of G are encoded in $e(G)$. In the subsequent section we illustrate by examples that most of our theorems cannot be generalized directly. For many simple groups we show that $e^{\prime}(G)$ is "small". In the last section we develop a similar theory of Brauer characters. Here we take the opportunity to show that $|G|_{p^{\prime}}$ is determined by the p-Brauer character table of G. This answers [13, Question A]. Finally, we give a partial answer to [13, Question C].

[^0]
2 Ordinary characters

Our notation follows mostly Navarro's books [11, 12]. In particular, the set of algebraic integers in \mathbb{C} is denoted by \mathbf{R}. The set of p-elements (resp. p^{\prime}-elements) of G is denoted by G_{p} (resp. $G_{p^{\prime}}$, deviating from [11). The usual scalar product of class functions χ, ψ of G is denoted by $[\chi, \psi]=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}$. For any real generalized character ρ and any $\chi \in \operatorname{Irr}(G)$ we will often use the fact $[\rho, \chi]=[\rho, \bar{\chi}]$ without further reference.

Proposition 1. For every finite group G the following holds:
(i) $e(G)$ divides $|G: \mathrm{Z}(G)|$. In particular, $e^{\prime}(G)$ is an integer divisible by $|\mathrm{Z}(G)|$.
(ii) If $|G|$ is even, so is $e^{\prime}(G)$.

Proof.

(i) Let $Z:=\mathrm{Z}(G)$. We need to check that $|G \| G: Z|[\tilde{\pi}, \chi]$ is an integer for every $\chi \in \operatorname{Irr}(G)$. Since $\tilde{\pi}$ is constant on the cosets of Z, we obtain

$$
\begin{aligned}
|G||G: Z|[\tilde{\pi}, \chi] & =\sum_{g \in G} \frac{\left|G: \mathrm{C}_{G}(g)\right| \chi(g)}{|Z|}=\sum_{g Z \in G / Z} \frac{\left|G: \mathrm{C}_{G}(g)\right|}{|Z|} \sum_{z \in Z} \chi(g z) \\
& =\sum_{g Z \in G / Z} \frac{\left|G: \mathrm{C}_{G}(g)\right| \chi(g)}{|Z| \chi(1)} \sum_{z \in Z} \chi(z)=\left[\chi_{Z}, 1_{Z}\right] \sum_{g Z \in G / Z} \frac{\left|G: \mathrm{C}_{G}(g)\right| \chi(g)}{\chi(1)} .
\end{aligned}
$$

Hence, only the characters $\chi \in \operatorname{Irr}(G / Z)$ can occur as constituents of $\tilde{\pi}$ and in this case

$$
|G||G: Z|[\tilde{\pi}, \chi]=\sum_{g Z \in G / Z}\left|G: \mathrm{C}_{G}(g)\right| \chi(g)
$$

is an algebraic integer. Since the Galois group of the cyclotomic field $\mathbb{Q}_{|G|}$ permutes the conjugacy classes of G (preserving their lengths), $|G||G: Z|[\tilde{\pi}, \chi]$ is also rational, so it must be an integer.
(ii) Let $|G|$ be even. As in (ii), it suffices to show that $|G|^{2}[\tilde{\pi}, \chi]$ is even for every $\chi \in \operatorname{Irr}(G)$. Let Γ be a set of representatives for the conjugacy classes of G. Let I be a maximal ideal of \mathbf{R} containing 2. For every integer m we have $m^{2} \equiv m(\bmod I)$. Hence,

$$
\begin{aligned}
|G|^{2}[\tilde{\pi}, \chi] & =\sum_{g \in G}\left|G: \mathrm{C}_{G}(g)\right| \chi(g)=\sum_{x \in \Gamma}\left|G: \mathrm{C}_{G}(x)\right|^{2} \chi(x) \\
& \equiv \sum_{x \in \Gamma}\left|G: \mathrm{C}_{G}(x)\right| \chi(x)=\sum_{g \in G} \chi(g)=|G|\left[1_{G}, \chi\right] \equiv 0 \quad(\bmod I) .
\end{aligned}
$$

It follows that $|G|^{2}[\tilde{\pi}, \chi] \in \mathbb{Z} \cap I=2 \mathbb{Z}$.
The proof of part (i) actually shows that $e(G)|G| \tilde{\pi}$ is a generalized character of $G / \mathrm{Z}(G)$ and $|G| \mid G$: $\mathrm{Z}(G) \mid[\tilde{\pi}, \chi]$ is divisible by $\chi(1)$. Part (iii) might suggest that the smallest prime divisor of $|G|$ always divides $e^{\prime}(G)$. However, there are non-trivial groups G such that $e^{\prime}(G)=1$. A concrete example of order $3^{9} 5^{5}$ will be constructed in the next section. We will show later that $e(G)=1$ if and only if G is abelian.

Proposition 2.

(i) For finite groups G_{1} and G_{2} we have $e\left(G_{1} \times G_{2}\right)=e\left(G_{1}\right) e\left(G_{2}\right)$.
(ii) If G is nilpotent, then $e^{\prime}(G)=|\mathrm{Z}(G)|$ and every $\chi \in \operatorname{Irr}(G / \mathrm{Z}(G))$ is a constituent of $\tilde{\pi}$.

Proof.

(i) It is clear that $\tilde{\pi}=\tilde{\pi}_{1} \times \tilde{\pi}_{2}$ where $\tilde{\pi}_{i}$ denotes the respective class function on G_{i}. This shows that $e\left(G_{1} \times G_{2}\right)$ divides $e\left(G_{1}\right) e\left(G_{2}\right)$. Moreover, $\left[\tilde{\pi}, \chi_{1} \times \chi_{2}\right]=\left[\tilde{\pi}_{1}, \chi_{1}\right]\left[\tilde{\pi}_{2}, \chi_{2}\right]$ for $\chi_{i} \in \operatorname{Irr}\left(G_{i}\right)$. By the definition of $e\left(G_{i}\right)$, the greatest common divisor of $\left\{e\left(G_{i}\right)\left|G_{i}\right|\left[\tilde{\pi}_{i}, \chi_{i}\right]: \chi_{i} \in \operatorname{Irr}\left(G_{i}\right)\right\}$ is 1 . In particular, 1 can be expressed as an integral linear combination of these numbers. Therefore, 1 is also an integral linear combination of $\left\{e\left(G_{1}\right) e\left(G_{2}\right)\left|G_{1} G_{2}\right|\left[\tilde{\pi}, \chi_{1} \times \chi_{2}\right]: \chi_{i} \in \operatorname{Irr}\left(G_{i}\right)\right\}$. This shows that $e\left(G_{1}\right) e\left(G_{2}\right)$ divides $e\left(G_{1} \times G_{2}\right)$.
(ii) By (i) we may assume that G is a p-group. By Proposition 1, $|Z|$ divides $e^{\prime}(G)$ where $Z:=\mathrm{Z}(G)$. Let I be a maximal ideal of \mathbf{R} containing p. Let $\chi \in \operatorname{Irr}(G / Z)$. Since all characters of G lie in the principal p-block of G, 11, Theorem 3.2] implies

$$
\frac{|G||G: Z|}{\chi(1)}[\tilde{\pi}, \chi]=\sum_{g Z \in G / Z} \frac{\left|G: \mathrm{C}_{G}(g)\right| \chi(g)}{\chi(1)} \equiv \sum_{g Z \in G / Z}\left|G: \mathrm{C}_{G}(g)\right| \equiv 1 \quad(\bmod I) .
$$

Therefore, χ is a constituent of $\tilde{\pi}$. Taking $\chi=1_{G}$ yields $|G||G: Z|\left[\tilde{\pi}, 1_{G}\right] \equiv 1(\bmod p)$, so $e^{\prime}(G)$ is not divisible by $p|Z|$.

We will see in the next section that nilpotent groups cannot be characterized in terms of $e(G)$. Moreover, in general not every $\chi \in \operatorname{Irr}(G / \mathrm{Z}(G))$ is a constituent of $\tilde{\pi}$ (the smallest counterexample is SmallGroup $(384,5556)$). The corresponding property of π was conjectured in [16] and disproved in [6]. We do not know any simple group S such that some $\chi \in \operatorname{Irr}(S)$ does not occur in $\tilde{\pi}$.

Now we study $e(G)$ in the presence of local information. The following reduction to the Sylow normalizer simplifies the construction of examples.

Lemma 3. Let P be a Sylow p-subgroup of G and let $N:=\mathrm{N}_{G}(P)$. Then p divides $e^{\prime}(G)$ if and only if p divides $e^{\prime}(N)$. In particular, if $\mathrm{C}_{P}(N) \neq 1$, then $e^{\prime}(G) \equiv 0(\bmod p)$. Now suppose that for all $x \in \mathrm{O}_{p^{\prime}}(N)$ we have

$$
\sum_{y \in \mathbb{Z}(P)}\left|H: \mathrm{C}_{H}(y)\right| \equiv 0 \quad(\bmod p)
$$

where $H:=\mathrm{C}_{N}(x)$. Then $e^{\prime}(G) \equiv 0(\bmod p)$.
Proof. Let I be a maximal ideal of \mathbf{R} containing p. Let $\chi \in \operatorname{Irr}(G)$. The conjugation action of P on G shows that

$$
|G|^{2}[\tilde{\pi}, \chi] \equiv \sum_{x \in \mathrm{C}_{G}(P)}\left|G: \mathrm{C}_{G}(x)\right| \chi(x) \quad(\bmod I) .
$$

For $x \in \mathrm{C}_{G}(P)$, Sylow's Theorem implies

$$
\left|G: \mathrm{C}_{G}(x)\right| \equiv\left|G: \mathrm{C}_{G}(x)\right|\left|\mathrm{C}_{G}(x): \mathrm{C}_{N}(x)\right|=|G: N|\left|N: \mathrm{C}_{N}(x)\right| \equiv\left|N: \mathrm{C}_{N}(x)\right| \quad(\bmod I) .
$$

Hence,

$$
\begin{equation*}
|G|^{2}[\tilde{\pi}, \chi] \equiv \sum_{x \in \mathrm{C}_{G}(P)}\left|N: \mathrm{C}_{N}(x)\right| \chi(x) \equiv \sum_{x \in N}\left|N: \mathrm{C}_{N}(x)\right| \chi(x)=|N|^{2}\left[\tilde{\pi}(N), \chi_{N}\right] \quad(\bmod I) \tag{1}
\end{equation*}
$$

where $\tilde{\pi}(N)(x):=\left|\mathrm{C}_{N}(x)\right|^{-1}$ for $x \in N$. If $e^{\prime}(N) \equiv 0(\bmod p)$, then the right hand side of 11$)$ is 0 and so is the left hand side. This shows that $e^{\prime}(G) \equiv 0(\bmod p)$. If $\mathrm{C}_{P}(N) \neq 1$, then $e^{\prime}(N) \equiv 0(\bmod p)$ by Proposition 1 .

Now suppose conversely that $e^{\prime}(G) \equiv 0(\bmod p)$. Since $|G|_{p}=|N|_{p}$, it suffices to show that

$$
|G||N|[\tilde{\pi}(N), \psi] \equiv 0 \quad(\bmod I)
$$

for every $\psi \in \operatorname{Irr}(N)$. By an elementary fusion argument of Burnside, elements in $\mathrm{C}_{G}(P)$ are conjugate in G if and only if they are conjugate in N. Hence, we can define a class function γ on G by

$$
\gamma(g):= \begin{cases}\tilde{\pi}(N)(x) & \text { if } g \text { is conjugate in } G \text { to } x \in \mathrm{C}_{G}(P) \\ 0 & \text { otherwise }\end{cases}
$$

for every $g \in G$. By (11) and Frobenius reciprocity,

$$
\begin{aligned}
|G||N|[\tilde{\pi}(N), \psi] & \equiv|G||N|\left[\gamma_{N}, \psi\right] \equiv|G||N|\left[\gamma, \psi^{G}\right] \equiv \sum_{x \in \mathrm{C}_{G}(P)}\left|N: \mathrm{C}_{N}(x)\right| \psi^{G}(x) \\
& \equiv|G|^{2}\left[\tilde{\pi}, \psi^{G}\right] \equiv 0 \quad(\bmod I)
\end{aligned}
$$

as desired.
For the last claim we may assume that $P \unlhd G$ and $N=G$. Recall that $\mathrm{C}_{G}(P)=\mathrm{Z}(P) \times Q$ where $Q=\mathrm{O}_{p^{\prime}}(G)$. Moreover, $\chi(x) \equiv \chi\left(x_{p^{\prime}}\right)(\bmod I)$ for every $x \in G$ by [12, Lemma 4.19]. Hence,

$$
|G|^{2}[\tilde{\pi}, \chi] \equiv \sum_{x \in Q} \chi(x) \sum_{y \in \mathrm{Z}(P)}\left|G: \mathrm{C}_{G}(x y)\right| \quad(\bmod I)
$$

Since $\mathrm{C}_{G}(x y)=\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}(y)=\mathrm{C}_{H}(y)$ where $x \in Q$ and $H:=\mathrm{C}_{G}(x)$, we conclude that

$$
\sum_{y \in \mathrm{Z}(P)}\left|G: \mathrm{C}_{G}(x y)\right|=|G: H| \sum_{y \in \mathrm{Z}(P)}\left|H: \mathrm{C}_{H}(y)\right| \equiv 0 \quad(\bmod I)
$$

and the claim follows.

In the situation of Lemma 3 it is not true that $e^{\prime}(G)$ and $e^{\prime}(N)$ have the same p-part. In general, $\tilde{\pi}$ is by no means compatible with restriction to arbitrary subgroups as the reader can convince herself.

Lemma 4. Let $N:=\mathrm{O}_{p^{\prime}}(G)$. Let g_{p} be the p-part of $g \in G$. Then the map $\gamma: G \rightarrow \mathbb{C}, g \mapsto\left|N: \mathrm{C}_{N}\left(g_{p}\right)\right|$ is a generalized character of G.

Proof. By Brauer's induction theorem, it suffices to show that the restriction of γ to every nilpotent subgroup $H \leq G$ is a generalized character of H. We write $H=H_{p} \times H_{p^{\prime}}$. By a result of Knörr (see [12, Problem 1.13]), the restriction $\gamma_{H_{p}}$ is a generalized character of H_{p}. Hence, also $\gamma_{H}=\gamma_{H_{p}} \times 1_{H_{p^{\prime}}}$ is a generalized character.

Note that $\mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is a p-group, since $\mathrm{O}_{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)=1$. In fact, $\left|\mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)\right|$ is the number of weakly closed elements in a fixed Sylow p-subgroup by the Z^{*}-theorem. The diagonal monomorphism $G \rightarrow \prod_{p} G / \mathrm{O}_{p^{\prime}}(G)$ embeds $\mathrm{Z}(G)$ into $\prod_{p} \mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$. Therefore, the following theorem generalizes Proposition 1(i).

Theorem 5. For every prime $p,\left|\mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)\right|$ divides $e^{\prime}(G)$.

Proof. Let $N:=\mathrm{O}_{p^{\prime}}(G), z:=|\mathrm{Z}(G / N)|$ and $\chi \in \operatorname{Irr}(G)$. Since every element of G can be factorized uniquely into a p-part and a p^{\prime}-part, we obtain

$$
\begin{equation*}
|G|^{2}[\tilde{\pi}, \chi]=\sum_{x \in G_{p^{\prime}}} \sum_{y \in \mathrm{C}_{G}(x)_{p}}\left|G: \mathrm{C}_{G}(x y)\right| \chi(x y) \tag{2}
\end{equation*}
$$

We now fix $x \in G_{p^{\prime}}$ and $H:=\mathrm{C}_{G}(x)$. In order to show that the inner sum of (2) is divisible by z in \mathbf{R} we may assume that χ is a character of H. After decomposing, we may even assume that $\chi \in \operatorname{Irr}(H)$. Since $x \in \mathrm{Z}(H)$, there exists a root of unity ζ such that $\chi(x y)=\zeta \chi(y)$ for every $y \in H_{p}$. Moreover, $\mathrm{C}_{G}(x y)=\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}(y)=\mathrm{C}_{H}(y)$ yields

$$
\sum_{y \in H_{p}}\left|G: \mathrm{C}_{G}(x y)\right| \chi(x y)=\zeta|G: H| \sum_{y \in H_{p}}\left|H: \mathrm{C}_{H}(y)\right| \chi(y)
$$

Let $N_{H}:=\mathrm{O}_{p^{\prime}}(H), Z^{*} / N:=\mathrm{Z}(G / N), Z_{H}^{*} / N_{H}:=\mathrm{Z}\left(H / N_{H}\right)$ and $z_{H}:=\left|Z_{H}^{*} / N_{H}\right|$. For $x \in Z^{*} \cap H$ and $h \in H$ we have $[x, h] \in N \cap H \leq N_{H}$. Hence, $Z^{*} \cap H \leq Z_{H}^{*}$ and we obtain

$$
\left|Z^{*}\right|=\left|Z^{*} H: H\right|\left|Z^{*} \cap H\right|| | G: H| | Z_{H}^{*}| | N: N_{H}\left|=|G: H| z_{H}\right| N \mid
$$

i. e. z divides $|G: H| z_{H}$. Therefore, it suffices to show that

$$
\begin{equation*}
\sum_{y \in H_{p}}\left|H: \mathrm{C}_{H}(y)\right| \chi(y) \equiv 0 \quad\left(\bmod z_{H}\right) \tag{3}
\end{equation*}
$$

(the left hand side is an integer since H_{p} is closed under Galois conjugation). To this end, we may assume that $H=G$ and $z_{H}=z$. By Proposition 1, there exists a generalized character ψ of G / N such that

$$
\psi(g N)=\left|G: Z^{*}\right|\left|G / N: \mathrm{C}_{G / N}(g N)\right|
$$

for $g \in G$. We identify ψ with its inflation to G. For $y \in G_{p}$ it is well-known that $\mathrm{C}_{G / N}(y N)=$ $\mathrm{C}_{G}(y) N / N$. Let γ be the generalized character defined in Lemma 4. Then

$$
(\psi \gamma)(y)=\left|G: Z^{*}\right|\left|G: \mathrm{C}_{G}(y) N \| N: \mathrm{C}_{N}(y)\right|=\left|G: Z^{*}\right|\left|G: \mathrm{C}_{G}(y)\right|
$$

for every $y \in G_{p}$. By a theorem of Frobenius (see [12, Corollary 7.14]),

$$
\sum_{y \in G_{p}}\left|G: Z^{*}\right|\left|G: \mathrm{C}_{G}(y)\right| \chi(y)=\sum_{y \in G_{p}}(\psi \tau \chi)(y) \equiv 0 \quad\left(\bmod |G|_{p}\right)
$$

It follows that

$$
|G: N|_{p^{\prime}} \sum_{y \in G_{p}}\left|G: \mathrm{C}_{G}(y)\right| \chi(y) \equiv 0 \quad(\bmod z)
$$

and (3) holds.

For any set of primes σ it is easy to see that $\mathrm{Z}\left(G / \mathrm{O}_{\sigma^{\prime}}(G)\right)$ embeds into $\prod_{p \in \sigma} \mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$. Hence, Theorem 5 remains true when p is replaced by σ. The following consequence extends Proposition 2.

Corollary 6. If G is p-nilpotent and $P \in \operatorname{Syl}_{p}(G)$, then $e^{\prime}(G)_{p}=|\mathrm{Z}(P)|$.

Proof. Let $N:=\mathrm{O}_{p^{\prime}}(G)$. Since $G / N \cong P$, Theorem 5 shows that $|\mathrm{Z}(P)|$ divides $e^{\prime}(G)$. For the converse relation, we suppose by way of contradiction that the map

$$
\gamma: G \rightarrow \mathbb{C}, \quad g \mapsto \frac{1}{p}|G: \mathrm{Z}(P)|\left|G: \mathrm{C}_{G}(g)\right|
$$

is a generalized character of G. For $x \in P$ we observe that $\mathrm{C}_{G}(x)=\mathrm{C}_{P}(x) \mathrm{C}_{N}(x)$. Hence,

$$
\left(1_{P}\right)^{G}(x)=\frac{1}{|P|} \sum_{\substack{g \in G \\ x^{g} \in P}} 1=\frac{1}{|P|}\left|\mathrm{C}_{G}(x)\right|\left|P: \mathrm{C}_{P}(x)\right|=\left|\mathrm{C}_{N}(x)\right|
$$

Consequently, $\mu:=\left(\gamma 1_{P}^{G}\right)_{P}$ is a generalized character of P such that

$$
\mu(x)=\frac{1}{p}\left|P: \mathrm{Z}(P)\left\|P: \mathrm{C}_{P}(x)\right\| N\right|^{2}
$$

for $x \in P$. In the proof of Proposition 2 we have seen however that

$$
\left[p \mu, 1_{P}\right] \equiv|N|^{2} \not \equiv 0 \quad(\bmod p)
$$

This contradiction shows that $e^{\prime}(G)_{p}$ divides $|\mathrm{Z}(P)|$.
Next we prove a partial converse of Corollary 6 .

Theorem 7. For every prime p we have $e(G)_{p}=1$ if and only if $\left|G^{\prime}\right|_{p}=1$. In particular, G is abelian if and only if $e(G)=1$.

Proof. If $\left|G^{\prime}\right|_{p}=1$, then $G / \mathrm{O}_{p^{\prime}}(G)$ is abelian and $e(G)_{p}=1$ by Theorem 5. Suppose conversely that $e(G)_{p}=1$. Then the map ψ with $\psi(g):=|G|_{p^{\prime}}\left|G: \mathrm{C}_{G}(g)\right|$ for $g \in G$ is a generalized character of G. Let P be a Sylow p-subgroup of G. Choose representatives $x_{1}, \ldots, x_{k} \in P$ for the conjugacy classes of p-elements of G. Then $\psi\left(x_{i}\right) \equiv \psi(1) \equiv|G|_{p^{\prime}} \not \equiv 0(\bmod p)$ by [12, Lemma 4.19] and $\psi\left(x_{i}\right)^{m} \equiv 1$ $(\bmod |P|)$ where $m:=\varphi(|P|)$ (Euler's totient function). The theorem of Frobenius we have used earlier (see [12, Corollary 7.14]) yields

$$
k \equiv \sum_{i=1}^{k} \psi\left(x_{i}\right)^{m}=|G|_{p^{\prime}} \sum_{g \in G_{p}} \psi(g)^{m-1} \equiv 0 \quad(\bmod |P|)
$$

In particular, $|P| \leq k \leq|P|$ and $|P|=k$. It follows that P is abelian and G is p-nilpotent by Burnside's transfer theorem. Hence, $G / \mathrm{O}_{p^{\prime}}(G)$ is abelian and $\left|G^{\prime}\right|_{p}=1$.

It is clear that $e(G)$ can be computed from the character table of G. There is in fact an interesting interpretation:

Proposition 8. Let X be the character table of G and let $Y:=\bar{X} X^{\mathrm{t}}$. Then the following holds:
(i) Y is a symmetric, non-negative integral matrix.
(ii) The eigenvalues of Y are $\left|\mathrm{C}_{G}(g)\right|$ where g represents the distinct conjugacy classes of G.
(iii) $e(G)|G|$ is the largest elementary divisor of Y.

Proof. Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \ldots, \chi_{k}\right\}$. Let $g_{1}, \ldots, g_{k} \in G$ be representatives for the conjugacy classes of G.
(i) The entry of Y at position (i, j) is

$$
\sum_{l=1}^{k} \overline{\chi_{i}\left(g_{l}\right)} \chi_{j}\left(g_{l}\right)=\frac{1}{|G|} \sum_{g \in G}\left|\mathrm{C}_{G}(g)\right| \overline{\chi_{i}(g)} \chi_{j}(g)=\left[\pi, \chi_{i} \overline{\chi_{j}}\right] \geq 0 .
$$

Now by definition, Y is symmetric.
(ii) By the second orthogonality relation,

$$
\bar{X}^{-1} Y \bar{X}=X^{\mathrm{t}} \bar{X}=\operatorname{diag}\left(\left|\mathrm{C}_{G}\left(g_{1}\right)\right|, \ldots,\left|\mathrm{C}_{G}\left(g_{k}\right)\right|\right)
$$

(iii) It suffices to show that $e(G)|G|$ is the smallest positive integer m such that $m Y^{-1}$ is an integral matrix. By the orthogonality relations, $X^{-1}=\left(\left|\mathrm{C}_{G}\left(g_{i}\right)\right|^{-1} \overline{\chi_{j}\left(g_{i}\right)}\right)_{i, j=1}^{k}$. Therefore,

$$
\begin{aligned}
Y^{-1} & =\left(X^{\mathrm{t}}\right)^{-1} \bar{X}^{-1}=\left(\sum_{l=1}^{k}\left|\mathrm{C}_{G}\left(g_{l}\right)\right|^{-2} \overline{\chi_{i}\left(g_{l}\right)} \chi_{j}\left(g_{l}\right)\right)_{i, j}=\left(\frac{1}{|G|} \sum_{l=1}^{k}\left|G: \mathrm{C}_{G}\left(g_{l}\right)\right| \tilde{\pi}\left(g_{l}\right) \overline{\chi_{i}\left(g_{l}\right)} \chi_{j}\left(g_{l}\right)\right)_{i, j} \\
& =\left(\frac{1}{|G|} \sum_{g \in G} \tilde{\pi}(g) \overline{\chi_{i}(g)} \chi_{j}(g)\right)_{i, j}=\left(\left[\tilde{\pi}, \chi_{i} \overline{\chi_{j}},\right]\right)_{i, j} .
\end{aligned}
$$

Clearly, $m\left[\tilde{\pi}, \chi_{i} \overline{\chi_{j}}\right]$ is an integer for all i, j if and only if $m\left[\tilde{\pi}, \chi_{i}\right]$ is an integer for $i=1, \ldots, k$. The claim follows.

3 Examples

Proposition 9. There exist non-trivial groups G such that $e^{\prime}(G)=1$.
Proof. By Proposition 1 and Theorem 5 we need a group of odd order such that $\mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)=1$ for every prime p. Let $A:=\left\langle a_{1}, \ldots, a_{4}\right\rangle \cong C_{9}^{4}, B:=\left\langle b_{1}, b_{2}\right\rangle \cong C_{25}^{2}$ and $C:=\langle c\rangle \cong C_{15}$. We define an action of C on $A \times B$ via

$$
\begin{array}{lll}
a_{1}^{c}=a_{2}^{4}, & a_{2}^{c}=a_{3}^{4}, & a_{3}^{c}=a_{4}^{4}, \\
a_{4}^{c}=\left(a_{1} a_{2} a_{3} a_{4}\right)^{-4}, & b_{1}^{c}=b_{2}^{6}, & b_{2}^{c}=\left(b_{1} b_{2}\right)^{-6} .
\end{array}
$$

Note that the action of c on A is the composition of the companion matrix of $X^{4}+X^{3}+X^{2}+X+1$ and the power map $a \mapsto a^{4}$. In particular, c^{5} induces an automorphism of order 3 on A. Similarly, c^{3} induces an automorphism of order 5 on B. Now let $G:=(A \times B) \rtimes C$. Then $P:=\left\langle a_{1}, \ldots, a_{4}, c^{5}\right\rangle$ is a Sylow 3 -subgroup of G and $Q:=\left\langle b_{1}, b_{2}, c^{3}\right\rangle$ is a Sylow 5 -subgroup. It is easy to see that $\mathrm{C}_{G}(P)=\left\langle a_{1}^{3}, \ldots, a_{4}^{3}\right\rangle$ and $\mathrm{C}_{G}(Q)=\left\langle b_{1}^{5}, b_{2}^{5}\right\rangle$. By the conjugation action of P (resp. Q) on G, we obtain

$$
\begin{aligned}
& |G|^{2}\left[\tilde{\pi}, 1_{G}\right]=\sum_{g \in G}\left|G: \mathrm{C}_{G}(g)\right| \equiv \sum_{g \in \mathrm{C}_{G}(P)}\left|G: \mathrm{C}_{G}(g)\right|=1+80 \cdot 5 \equiv-1 \quad(\bmod 3) \\
& |G|^{2}\left[\tilde{\pi}, 1_{G}\right]=\sum_{g \in G}\left|G: \mathrm{C}_{G}(g)\right| \equiv \sum_{g \in \mathrm{C}_{G}(Q)}\left|G: \mathrm{C}_{G}(g)\right|=1+24 \cdot 3 \equiv-2 \quad(\bmod 5) .
\end{aligned}
$$

Therefore, $e(G)=|G|$ and $e^{\prime}(G)=1$.
Our next example shows that there are non-nilpotent groups G such that $e^{\prime}(G)=|\mathrm{Z}(G)|$ (take $n=12$ for instance).

Proposition 10. Let $G=D_{2 n}$ be the dihedral group of order $2 n \geq 4$. Then

$$
e^{\prime}(G)= \begin{cases}4 & \text { if } n \equiv 2 \quad(\bmod 4) \\ 2 & \text { otherwise }\end{cases}
$$

Proof. As G is 2-nilpotent, Theorem 5 shows that $e^{\prime}(G)_{2}=4$ if $n \equiv 2(\bmod 4)$ and $e^{\prime}(G)_{2}=2$ otherwise. Moreover,

$$
|G|^{2}\left[\tilde{\pi}, 1_{G}\right]=\sum_{g \in G}\left|G: \mathrm{C}_{G}(g)\right|= \begin{cases}n^{2}+2 n-1 & \text { if } 2 \nmid n, \\ \frac{1}{2} n^{2}+2 n-2 & \text { if } 2 \mid n .\end{cases}
$$

Since the two numbers on the right hand side have no odd divisor in common with n, it follows that $e^{\prime}(G)_{2^{\prime}}=1$.

For many simple groups it turns out that $e^{\prime}(G)=2$.
Proposition 11. For every prime power $q>1$ we have

$$
\begin{aligned}
& e^{\prime}\left(\mathrm{GL}_{2}(q)\right)= \begin{cases}q-1 & \text { if } 2 \nmid q, \\
2(q-1) & \text { if } 2 \mid q .\end{cases} \\
& e^{\prime}\left(\mathrm{SL}_{2}(q)\right)=e^{\prime}\left(\mathrm{PSL}_{2}(q)\right)= \begin{cases}2 & \text { if } 3 \nmid q, \\
6 & \text { if } 3 \mid q .\end{cases}
\end{aligned}
$$

Proof. Suppose first that $G=\mathrm{GL}_{2}(q)$. By Proposition 1, $e^{\prime}(G)$ is divisible by $|\mathrm{Z}(G)|=q-1$ and by $2(q-1)$ if q is even. The class equation of G is

$$
\left(q^{2}-1\right)\left(q^{2}-q\right)=|G|=(q-1) \times 1+\frac{q^{2}-q}{2} \times\left(q^{2}-q\right)+(q-1) \times\left(q^{2}-1\right)+\frac{(q-1)(q-2)}{2} \times\left(q^{2}+q\right) .
$$

It follows that

$$
|G||G: \mathrm{Z}(G)|\left[\tilde{\pi}, 1_{G}\right]=1+\frac{\left(q^{2}-q\right)^{2}}{2} q+\left(q^{2}-1\right)^{2}+\frac{\left(q^{2}+q\right)^{2}}{2}(q-2)=q^{5}-q^{3}-3 q^{2}+2 .
$$

Since

$$
\begin{equation*}
\left(q^{5}-q^{3}-3 q^{2}+2\right)\left(1-3 q^{2}\right)+\left(q^{3}-q\right)\left(3 q^{4}-q^{2}-9 q\right)=2, \tag{4}
\end{equation*}
$$

we have $\operatorname{gcd}\left(|G||G: \mathrm{Z}(G)|\left[\tilde{\pi}, 1_{G}\right],|G: \mathrm{Z}(G)|\right) \leq 2$ and $e^{\prime}(G) \leq 2(q-1)$. If q is even, we obtain $e^{\prime}(G)=2(q-1)$ as desired. If q is odd, then $q^{5}-q^{3}-3 q^{2}+2$ is odd. Hence, $e^{\prime}(G)=q-1$ in this case.
Next we assume that q is even and $G=\mathrm{SL}_{2}(q)=\mathrm{PSL}_{2}(q)$. The class equation of G is

$$
q^{3}-q=|G|=1 \times 1+1 \times\left(q^{2}-1\right)+\frac{q}{2} \times q(q-1)+\frac{q-2}{2} \times q(q+1) .
$$

It follows that

$$
|G|^{2}\left[\tilde{\pi}, 1_{G}\right]=1+\left(q^{2}-1\right)^{2}+\frac{q}{2} q^{2}(q-1)^{2}+\frac{q-2}{2} q^{2}(q+1)^{2}=q^{5}-q^{3}-3 q^{2}+2 .
$$

By coincidence, (4) also shows that $\operatorname{gcd}\left(|G|^{2}\left[\tilde{\pi}, 1_{G}\right],|G|\right) \leq 2$ and the claim $e^{\prime}(G)=2$ follows from Proposition 1 .

Now let q be odd and $G=\mathrm{SL}_{2}(q)$. This time the class equation of G is

$$
q^{3}-q=|G|=2 \times 1+\frac{q-3}{2} \times q(q+1)+\frac{q-1}{2} \times q(q-1)+4 \times \frac{q^{2}-1}{2} .
$$

We obtain

$$
|G|^{2}\left[\tilde{\pi}, 1_{G}\right]=2+\frac{q-3}{2} q^{2}(q+1)^{2}+\frac{q-1}{2} q^{2}(q-1)^{2}+\left(q^{2}-1\right)^{2}=q^{5}-q^{4}-q^{3}-4 q^{2}+3 .
$$

Since

$$
\left(q^{5}-q^{4}-q^{3}-4 q^{2}+3\right)\left(2-5 q^{2}\right)+\left(q^{3}-q\right)\left(5 q^{4}-5 q^{3}-2 q^{2}-23 q\right)=6,
$$

it follows that $\operatorname{gcd}\left(|G|^{2}\left[\tilde{\pi}, 1_{G}\right],|G|\right) \in\{2,6\}$. If $3 \nmid q$, then

$$
q^{5}-q^{4}-q^{3}-4 q^{2}+3 \equiv q-1-q-4+3 \equiv 1 \quad(\bmod 3)
$$

and $\operatorname{gcd}\left(|G|^{2}\left[\tilde{\pi}, 1_{G}\right],|G|\right)=2$. In this case, $e^{\prime}(G)=2$ as desired.
Now let $3 \mid q$. Then $e^{\prime}(G) \mid 6$. It is well-known that the unitriangular matrices form a Sylow 3 -subgroup $P \cong \mathbb{F}_{q}$ of G. Moreover, $C:=\mathrm{C}_{G}(P)=P \times \mathrm{Z}(G) \cong P \times\langle-1\rangle$. The normalizer $N:=\mathrm{N}_{G}(P)$ consists of the upper triangular matrices with determinant 1. Hence, $\mathrm{O}_{3^{\prime}}(N)=\mathrm{Z}(G)$ and $N / C \cong\left(\mathbb{F}_{q}^{\times}\right)^{2} \cong C_{(q-1) / 2}$ acts semiregularly on P via multiplication. It follows that

$$
\sum_{y \in P}\left|N: \mathrm{C}_{N}(y)\right| \equiv 1+(q-1) \frac{q-1}{2} \equiv 0 \quad(\bmod 3) .
$$

Thus, Lemma 3 shows $3 \mid e^{\prime}(G)$ and $e^{\prime}(G)=6$. The final case $G=\operatorname{PSL}_{2}(q)$ with q odd requires a distinction between $q \equiv \pm 1(\bmod 4)$, but is otherwise similar. We omit the details.

Proposition 12. For every prime power $q>1$ and $G=\operatorname{PSU}_{3}(q)$ we have $e^{\prime}(G) \mid 8$ and $e^{\prime}(G)=2$ if $q \not \equiv-1(\bmod 4)$.

Proof. The character table of G was computed (with small errors) in [18] based on the results for $\operatorname{SU}(3, q)$. It depends therefore on $\operatorname{gcd}(q+1,3)$. In any event we use GAP 8 to determine the polynomial $f(q):=|G|^{2}\left[\tilde{\pi}, 1_{G}\right]$ as in the proof of Proposition 11. It turns out that $\operatorname{gcd}(f(q),|G|)$ always divides 32 . If $q \not \equiv-1(\bmod 4)$, then $f(q)$ is not divisible by 4 and the claim $e^{\prime}(G)=2$ follows from Proposition 1 . Now we assume that $q \equiv-1(\bmod 4)$. Then $f(q)$ is divisible by 16 only when $q \equiv 11(\bmod 16)$. In this case however, $|G|^{2}[\tilde{\pi}, S t]$ is not divisible by 16 where $S t$ is the Steinberg character of G.

We conjecture that $e^{\prime}\left(\operatorname{PSU}_{3}(q)\right)=4$ if $q \equiv-1(\bmod 4)$.
Proposition 13. For $n \geq 1$ we have $e^{\prime}\left(\operatorname{Sz}\left(2^{2 n+1}\right)\right)=2$.
Proof. Let $q=2^{2 n+1}$ and $G=\operatorname{Sz}(q)$. In order to deal with quantities like $\sqrt{q / 2}$, we use the generic character table from CHEVIE [9. A computation shows that

$$
|G|^{2}\left[\tilde{\pi}, 1_{G}\right]=q^{9}-\frac{3}{2} q^{8}-q^{7}+\frac{7}{2} q^{6}-5 q^{5}+\frac{7}{2} q^{4}-5 q^{3}+\frac{7}{2} q^{2}-2 q+2 \equiv 2 \quad(\bmod 4)
$$

and $\operatorname{gcd}\left(|G|^{2}\left[\tilde{\pi}, 1_{G}\right],|G|\right)$ divides 6 . It is well-known that $|G|=q^{2}\left(q^{2}+1\right)(q-1)$ is not divisible by 3 . Hence, the claim follows from Proposition 1.

For symmetric groups we determine the prime divisors of $e^{\prime}\left(S_{n}\right)$.
Proposition 14. Let p be a prime and let $n=\sum_{i>0} a_{i} p^{i}$ be the p-adic expansion of $n \geq 1$. Then p divides $e^{\prime}\left(S_{n}\right)$ if and only if $2 a_{i} \geq p$ for some $i \geq 1$. In particular, $e^{\prime}\left(S_{n}\right)_{p}=1$ if $p>2$ and $n<p(p+1) / 2$.

Proof. Let $G:=S_{n}$. For $i \geq 0$ let P_{i} be a Sylow p-subgroup of $S_{p^{i}}$. Then $P:=\prod_{i \geq 0} P_{i}^{a_{i}}$ is a Sylow p-subgroup of G. By Lemma 3, it suffices to consider $e^{\prime}(N)$ where $N:=\mathrm{N}_{G}(P)$. Since

$$
\left.N=\prod_{i \geq 0} \mathrm{~N}_{S_{p^{i}}}\left(P_{i}\right)\right\} S_{a_{i}},
$$

we may assume that $n=a_{i} p^{i}$ for some $i \geq 1$ by Proposition 2. It is well-known that P_{i} is an iterated wreath product of i copies of C_{p}. It follows that $\mathrm{Z}\left(P_{i}\right)$ has order p. Moreover, $\mathrm{C}_{G}(P)=\mathrm{Z}(P)=\mathrm{Z}\left(P_{i}\right)^{a_{i}}$. For $k=0, \ldots, a_{i}$ there are exactly $\binom{a_{i}}{k}(p-1)^{k}$ elements $\left(x_{1}, \ldots, x_{a_{i}}\right) \in \mathrm{Z}(P)$ such that $\left|\left\{i: x_{i} \neq 1\right\}\right|=$ k. It is easy to see that these elements form a conjugacy class in N. Consequently,

$$
\sum_{x \in \mathrm{Z}(P)}\left|N: \mathrm{C}_{N}(x)\right|=\sum_{k=0}^{a_{i}}\binom{a_{i}}{k}^{2}(p-1)^{2 k} \equiv \sum_{k=0}^{a_{i}}\binom{a_{i}}{k}^{2} \equiv\binom{2 a_{i}}{a_{i}} \quad(\bmod p)
$$

by the Vandermonde identity. If $2 a_{i} \geq p$, then $\binom{2 a_{i}}{a_{i}} \equiv 0(\bmod p)$ since $a_{i}<p$. In this case, Lemma 3 yields $e^{\prime}(N) \equiv 0(\bmod p)$. Now assume that $2 a_{i}<p$. Then

$$
|N|^{2}\left[\tilde{\pi}(N), 1_{N}\right] \equiv \sum_{x \in \mathbb{Z}(P)}\left|N: \mathrm{C}_{N}(x)\right| \equiv\binom{2 a_{i}}{a_{i}} \not \equiv 0 \quad(\bmod p) .
$$

Hence, $e^{\prime}(N)_{p}=1$.
Based on computer calculations up to $n=45$ we conjecture that

$$
e^{\prime}\left(S_{n}\right)_{2}=2^{a_{1}+a_{2}+\ldots}
$$

if $p=2$ in the situation of Proposition 14 A(n anonymous) referee noted that this number coincides with $|\mathrm{Z}(P)|$ where P is a Sylow 2-subgroup of S_{n}. We do not know how to describe $e^{\prime}\left(S_{n}\right)_{p}$ for odd primes p; it seems to depend only on $\lfloor n / p\rfloor$. We also noticed that

$$
e^{\prime}\left(S_{n}\right)= \begin{cases}e^{\prime}\left(A_{n}\right) & \text { if } n \equiv 0,1 \quad(\bmod 4), \\ 2 e^{\prime}\left(A_{n}\right) & \text { if } n \equiv 2,3 \quad(\bmod 4)\end{cases}
$$

for $5 \leq n \leq 45$. This might hold for all $n \geq 5$. In the following tables we list $\tilde{e}:=e^{\prime}(G) / 2$ for alternating groups and sporadic groups (these results were obtained with GAP).

G	\tilde{e}								
A_{5}	1	A_{6}	3	A_{7}	3	A_{8}	3	A_{9}	1
A_{10}	1	A_{11}	1	A_{12}	2	A_{13}	2	A_{14}	2
A_{15}	$2 \cdot 3^{2} \cdot 5$	A_{16}	$3^{2} \cdot 5$	A_{17}	$3^{2} \cdot 5$	A_{18}	$3 \cdot 5$	A_{19}	$3 \cdot 5$
A_{20}	$2 \cdot 3 \cdot 5$	A_{21}	$2 \cdot 3 \cdot 5$	A_{22}	$2 \cdot 3 \cdot 5$	A_{23}	$2 \cdot 3 \cdot 5$	A_{24}	$2 \cdot 3^{2} \cdot 5$
A_{25}	$2 \cdot 3^{2}$	A_{26}	$2 \cdot 3^{2}$	A_{27}	2	A_{28}	$2^{2} \cdot 7$	A_{29}	$2^{2} \cdot 7$
A_{30}	$2^{2} \cdot 7$	A_{31}	$2^{2} \cdot 7$	A_{32}	7	A_{33}	$3 \cdot 7$	A_{34}	$3 \cdot 7$
A_{35}	$3 \cdot 7$	A_{36}	$2 \cdot 7$	A_{37}	$2 \cdot 7$	A_{38}	$2 \cdot 7$	A_{39}	$2 \cdot 7$
A_{40}	$2 \cdot 5 \cdot 7$	A_{41}	$2 \cdot 5 \cdot 7$	A_{42}	$2 \cdot 3^{2} \cdot 5 \cdot 7$	A_{43}	$2 \cdot 3^{2} \cdot 5 \cdot 7$	A_{44}	$2^{2} \cdot 3^{2} \cdot 5 \cdot 7$
A_{45}	$2^{2} \cdot 3^{2} \cdot 5 \cdot 7$								

G	\tilde{e}										
M_{11}	1	M_{12}	1	J_{1}	1	M_{22}	1	J_{2}	5	M_{23}	1
$H S$	1	J_{3}	1	M_{24}	1	$M c L$	1	$H e$	1	$R u$	1
$S u z$	3	$O N$	1	$C o_{3}$	1	$C o_{2}$	1	$F i_{22}$	1	$H N$	1
$L y$	3	$T h$	1	$F i_{23}$	2	$C o_{1}$	1	J_{4}	1	F_{24}^{\prime}	1
B	1	M	1								

4 Brauer characters

For a given prime p, the restriction of our permutation character π to the set of p^{\prime}-elements $G_{p^{\prime}}$ yields a Brauer character π^{0} of G. Since $e(G)|G| \tilde{\pi}$ is a generalized character, there exists a smallest positive integer $f_{p}(G)$ such that $f_{p}(G)|G| \tilde{\pi}^{0}$ is a generalized Brauer character of G. Clearly, $f_{p}(G)$ divides $e(G)$. As in [11], we set $[\varphi, \mu]^{0}=\frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \varphi(g) \overline{\mu(g)}$ for class function φ and μ on G (or $G_{p^{\prime}}$). Recall that for every irreducible Brauer character $\varphi \in \operatorname{IBr}(G)$ there exists a projective indecomposable character Φ_{φ} such that $\left[\Phi_{\varphi}, \mu\right]^{0}=\delta_{\varphi \mu}$ where $\delta_{\varphi \mu}$ is the Kronecker delta ([11, Theorem 2.13]). We first prove the analogue of Proposition 8.

Proposition 15. Let $Y_{p}:=\overline{X_{p}} X_{p}^{\mathrm{t}}$ where X_{p} is the p-Brauer character table of G. Then Y_{p} is a symmetric, non-negative integral matrix with largest elementary divisor $f_{p}(G)|G|_{p^{\prime}}$. In particular, $f_{p}(G)$ divides $e(G)_{p^{\prime}}$.

Proof. Let $\operatorname{IBr}(G)=\left\{\varphi_{1}, \ldots, \varphi_{l}\right\}$ and $1 \leq s, t \leq l$. Let g_{1}, \ldots, g_{l} be representatives for the p^{\prime}-conjugacy classes of G. Following an idea of Chillag [3, Proposition 2.5], we define a non-negative integral matrix $A=\left(a_{i j}\right)$ by $\varphi_{i} \overline{\varphi_{s}} \varphi_{t}=\sum_{j=1}^{l} a_{i j} \varphi_{j}$. The equation $X_{p}^{-1} A X_{p}=\operatorname{diag}\left(\overline{\varphi_{s}} \varphi_{t}\left(g_{i}\right): i=1, \ldots, l\right)$ shows that

$$
\operatorname{tr} A=\sum_{i=1}^{l} \overline{\varphi_{s}}\left(g_{i}\right) \varphi_{t}\left(g_{i}\right)=\frac{1}{|G|} \sum_{g \in G_{p^{\prime}}} \pi(g) \overline{\varphi_{s}}(g) \varphi_{t}(g)=\left[\pi, \varphi_{s} \overline{\varphi_{t}}\right]^{0}
$$

is a non-negative integer. At the same time, this is the entry of Y_{p} at position (s, t). By construction, Y_{p} is also symmetric.

Now we compute the largest elementary divisor of Y_{p} by using the projective indecomposable characters $\Phi_{i}:=\Phi_{\varphi_{i}}$ for $i=1, \ldots, l$. For $1 \leq i, j \leq l$ let $a_{i j}:=\left[\tilde{\pi}, \Phi_{i} \overline{\Phi_{j}}\right]$. Then $\sum_{j=1}^{l} a_{i j} \varphi_{j}=\left(\Phi_{i} \tilde{\pi}\right)^{0}$ and

$$
\sum_{k=1}^{l} a_{i k}\left[\pi, \varphi_{k}{\overline{\varphi_{j}}}^{0}=\left[\pi, \sum_{k=1}^{l} a_{i k} \varphi_{k} \overline{\varphi_{j}}\right]^{0}=\left[\pi,\left(\Phi_{i} \tilde{\pi}\right)^{0}{\overline{\varphi_{j}}}^{0}=\left[\Phi_{i}, \varphi_{j}\right]^{0}=\delta_{i j}\right.\right.
$$

Hence, we have shown that $Y_{p}^{-1}=\left(a_{i j}\right)$ (notice the similarity to Y^{-1} in the proof of Proposition 8). Since $f_{p}(G)|G| \tilde{\pi}^{0}$ is a generalized Brauer character, it follows that $f_{p}(G)|G| Y_{p}^{-1}$ is an integral matrix. In particular, the largest elementary divisor e of Y_{p} divides $f_{p}(G)|G|$.
For the converse relation, recall that $\left[\varphi_{i}, \varphi_{j}\right]^{0}=c_{i j}^{\prime}$ where $\left(c_{i j}^{\prime}\right)$ is the inverse of the Cartan matrix C of G. Since $|G|_{p}$ is the largest elementary divisor of C, the numbers $|G|_{p} c_{i j}^{\prime}$ are integers. The trivial Brauer character can be expressed as $1_{G}^{0}=\sum_{i=1}^{l} c_{1 i}^{\prime} \Phi_{i}^{0}$. Therefore,

$$
|G|_{p} e\left[\tilde{\pi}, \Phi_{i}\right]=|G|_{p} e \sum_{j=1}^{l} c_{1 j}^{\prime}\left[\tilde{\pi} \Phi_{j}, \Phi_{i}\right]=\sum_{j=1}^{l}|G|_{p} c_{1 j}^{\prime} e a_{i j} \in \mathbb{Z}
$$

for $i=1, \ldots, l$. Hence, $e|G|_{p} \tilde{\pi}^{0}$ is a generalized Brauer character and $f_{p}(G)|G|$ divides $e|G|_{p}$. Thus, $f_{p}(G)|G|_{p^{\prime}}$ divides e. It remains to show that e is a p^{\prime}-number.
Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \ldots, \chi_{k}\right\}$ and $X_{1}:=\left(\chi_{i}\left(g_{j}\right)\right) \in \mathbb{C}^{k \times l}$. Let Q be the decomposition matrix of G. Then $X_{1}=Q X_{p}$ and the second orthogonality relation implies

$$
\operatorname{diag}\left(\left|\mathrm{C}_{G}\left(g_{i}\right)\right|: i=1, \ldots, l\right)=X_{1}^{\mathrm{t}} \overline{X_{1}}=X_{p}^{\mathrm{t}} Q^{\mathrm{t}} Q \overline{X_{p}}=X_{p}^{\mathrm{t}} C \overline{X_{p}}
$$

By [11, Corollary 2.18], we obtain that $\operatorname{det}\left(Y_{p}\right)=\left|\operatorname{det}\left(X_{p}\right)\right|^{2}=\left(\left|\mathrm{C}_{G}\left(g_{1}\right)\right| \ldots\left|\mathrm{C}_{G}\left(g_{l}\right)\right|\right)_{p^{\prime}}$. In particular, e is a p^{\prime}-number.

In contrast to the ordinary character table, the matrix $X_{p}^{\mathrm{t}} \overline{X_{p}}$ is in general not integral. Even if it is integral, its largest elementary divisor does not necessarily divide $|G|^{2}$. Somewhat surprisingly, $f_{p}(G)$ can be computed from the ordinary character table as follows.

Proposition 16. The smallest positive integer m such that $|G|_{p}|G| m[\tilde{\pi}, \chi]^{0} \in \mathbb{Z}$ for all $\chi \in \operatorname{Irr}(G)$ is $m=f_{p}(G)$.

Proof. By [11, Lemma 2.15], there exists a generalized character ψ of G such that

$$
\psi(g)= \begin{cases}|G|_{p}|G| f_{p}(G) \tilde{\pi}(g) & \text { if } g \in G_{p^{\prime}} \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $|G|_{p}|G| f_{p}(G)[\tilde{\pi}, \chi]^{0}=[\psi, \chi] \in \mathbb{Z}$ for all $\chi \in \operatorname{Irr}(G)$. Hence, m divides $f_{p}(G)$.
Conversely, every $\varphi \in \operatorname{IBr}(G)$ can be written in the form $\varphi=\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi^{0}$ where $a_{\chi} \in \mathbb{Z}$ for $\chi \in \operatorname{Irr}(G)$ (see [11, Corollary 2.16]). It follows that $|G|_{p}|G| m[\tilde{\pi}, \varphi]^{0} \in \mathbb{Z}$ for all $\varphi \in \operatorname{IBr}(G)$. This shows that $|G|_{p}|G| m \tilde{\pi}^{0}$ is a generalized Brauer character and $f_{p}(G)$ divides $|G|_{p} m$. Since $f_{p}(G)$ is a p^{\prime}-number, $f_{p}(G)$ actually divides m.

In many cases we noticed that $f_{p}(G)=e(G)_{p^{\prime}}$. However, the group $G=\operatorname{PSp}_{4}(5) .2$ is an exception with $e(G)_{2^{\prime}} / f_{2}(G)=3$. Another exception is $G=\mathrm{PSU}_{4}(4)$ with $e(G)_{5^{\prime}} / f_{5}(G)=3$.

Now we refine Theorem 7 .

Proposition 17. For every prime $q \neq p$ we have $f_{p}(G)_{q}=1$ if and only if $\left|G^{\prime}\right|_{q}=1$.
Proof. If $\left|G^{\prime}\right|_{q}=1$, then $f_{p}(G)_{q} \leq e(G)_{q}=1$ by Theorem 7. Suppose conversely, that $f_{p}(G)_{q}=1$. Then there exists a generalized Brauer character φ of G such that $\varphi(g)=|G|_{q^{\prime}}\left|G: \mathrm{C}_{G}(g)\right|$ for $g \in G_{p^{\prime}}$. As usual there exists a generalized character ψ of G such that $\psi^{0}=\varphi$. Since $G_{q} \subseteq G_{p^{\prime}}$ we can repeat the proof of Theorem 7 at this point.

Finally, we answer Navarro's question as promised in the introduction. The relevant case $(x=1)$ was proved by the author while the extension to $x \in G_{p^{\prime}}$ was established by G. R. Robinson (personal communication).

Theorem 18. The Brauer character table of G determines $\left|\mathrm{C}_{G}(x)\right|_{p^{\prime}}$ for every $x \in G_{p^{\prime}}$.

Proof. It is easy to show that the (Brauer) class function

$$
\rho:=\sum_{\varphi \in \operatorname{IBr}(G)} \frac{\Phi_{\varphi}(x)}{\left|\mathrm{C}_{G}(x)\right|_{p}} \bar{\varphi}
$$

vanishes off the conjugacy class of x and $\rho(x)=\left|\mathrm{C}_{G}(x)\right|_{p^{\prime}}$ (see [11, proof of Theorem 2.13]). Thus, it suffices to determine ρ from the Brauer character table X_{p}. By [11, Lemma 2.21], $\rho \in \mathbf{R}[\operatorname{IBr}(G)]$. Similarly, by [11, Lemma 2.15 and Corollary 2.17], the class function θ, defined to be $|G|_{p}$ on $G_{p^{\prime}}$ and 0 elsewhere, is a generalized projective character of G. Moreover, $[\theta, \rho]^{0}=\left|G: \mathrm{C}_{G}(x)\right|_{p}$. For every integer $d \geq 2$, we have $\rho(x) / d \notin \mathbb{Z}$ or $[\theta, \rho]^{0} / d \notin \mathbb{Z}$. In particular, $\rho / d \notin \mathbf{R}[\operatorname{IBr}(G)]$.
Let X_{p}^{\prime} be the matrix obtained from X_{p} of G by deleting the column corresponding to x. Since X_{p} is invertible, there exists a unique non-trivial solution $v \in \mathbb{C}^{l}$ of the linear system $v X_{p}^{\prime}=0$ up to scalar multiplication. We may assume that the components v_{i} of v are algebraic integers in the cyclotomic field $\mathbb{Q}_{|G|}$ and that $\sum_{i=1}^{l} v_{i} \varphi_{i}(x)$ is a positive rational integer where $\operatorname{IBr}(G)=\left\{\varphi_{1}, \ldots, \varphi_{l}\right\}$. We may further assume that $\frac{1}{d} v \notin \mathbf{R}^{l}$ for every integer $d \geq 2$. Then by the discussion above, we obtain $\rho=\sum_{i=1}^{l} v_{i} \varphi_{i}$. In particular,

$$
\left|\mathrm{C}_{G}(x)\right|_{p^{\prime}}=\rho(x)=\sum_{i=1}^{l} v_{i} \varphi_{i}(x)
$$

is determined by X_{p}.
G. Navarro made me aware that Theorem 18 can be used to give a partial answer to [13, Question C] as follows.

Theorem 19. Let $p \neq q$ be primes such that $q \notin\{3,5\}$. Then the p-Brauer character table of a finite group G determines whether G has abelian Sylow q-subgroups.

Proof. By [14], G has abelian Sylow q-subgroups if and only if $\left|\mathrm{C}_{G}(x)\right|_{q}=|G|_{q}$ for every q-element $x \in G$. By [13, Theorem B], the columns of the Brauer character table corresponding to q-elements can be spotted. Hence, the result follows from Theorem 18 .

Acknowledgment

I like to thank Christine Bessenrodt and Ruwen Hollenbach for interesting discussions on this topic. I also thank Geoffrey R. Robinson and Gabriel Navarro for sharing their observations with me. Moreover, I appreciate valuable information on CHEVIE by Frank Lübeck. Finally I am grateful to two anonymous referees for pointing out a gap in a proof of a former version of the paper. The work is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1).

References

[1] R. M. Adin and A. Frumkin, The conjugacy character of S_{n} tends to be regular, Israel J. Math. 59 (1987), 234-240.
[2] M. S. Chen, On the conjugating representation of a finite group, Chinese J. Math. 2 (1974), 239-245.
[3] D. Chillag, Nonnegative matrices, Brauer characters, normal subsets, and powers of representation modules, Linear Algebra Appl. 157 (1991), 69-99.
[4] K. L. Fields, On the conjugating representation of a finite group, Proc. Amer. Math. Soc. 34 (1972), 35-37.
[5] K. L. Fields, On the conjugating representation of a finite group, Rocky Mountain J. Math. 5 (1975), 345-347.
[6] E. Formanek, The conjugation representation and fusionless extensions, Proc. Amer. Math. Soc. 30 (1971), 73-74.
[7] J. S. Frame, On the reduction of the conjugating representation of a finite group, Bull. Amer. Math. Soc. 53 (1947), 584-589.
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.10.0; 2018, (http://www. gap-system.org).
[9] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
[10] G. Heide, J. Saxl, P. H. Tiep and A. E. Zalesski, Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3) 106 (2013), 908-930.
[11] G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, Vol. 250, Cambridge University Press, Cambridge, 1998.
[12] G. Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, Vol. 175, Cambridge University Press, Cambridge, 2018.
[13] G. Navarro, What do the modular characters know?, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), Art. 15, 6.
[14] G. Navarro and P. H. Tiep, Abelian Sylow subgroups in a finite group, J. Algebra 398 (2014), 519-526.
[15] Y. Roichman, Decomposition of the conjugacy representation of the symmetric groups, Israel J. Math. 97 (1997), 305-316.
[16] R. L. Roth, On the conjugating representation of a finite group, Pacific J. Math. 36 (1971), 515-521.
[17] T. Scharf, Ein weiterer Beweis, daß die konjugierende Darstellung der symmetrischen Gruppen jede irreduzible Darstellung enthält, Arch. Math. (Basel) 54 (1990), 427-429.
[18] W. A. Simpson and J. S. Frame, The character tables for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, q^{2}\right), \operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right)$, Canadian J. Math. 25 (1973), 486-494.

[^0]: *Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

