
ON RESTRICTION OF CHARACTERS TO DEFECT GROUPS
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Abstract. We put forward a blockwise version of a recent conjecture of [Giannelli–
Navarro, 2018] on finite groups. Let B be a p-block of a finite group G with defect group
D. Let χ ∈ Irr(B) be a character with positive height. In this note we conjecture that
the number of distinct linear constituents of the restriction χD is 0 or at least p. We
prove that this is indeed the case for various classes of finite groups and p-blocks

1. Introduction

Let G be a finite group and let P be a Sylow p-subgroup of G. In [6], the first author
and G. Navarro study the number of linear constituents of the restriction to P of any
irreducible character χ of G. When χ(1) is coprime to p then it is immediate to see that
χP necessarily has a linear constituent. In the opposite case, when p divides χ(1) it is
proposed (and proved for various classes of groups) that χP has either 0 or at least p
distinct linear constituents.

In this note we introduce blocks in the picture. Let B be a p-block of the finite group G
and let D be a defect group of B. The purpose of this article is to study the restriction to
D of any irreducible character χ of G lying in the p-block B. Our first result generalizes
to this setting the trivial observation mentioned above about characters of degree coprime
to p.

Theorem A. Let χ ∈ Irr(G) be a character of height 0 in a p-block B with defect group
D. Then χD has a linear constituent.

Inspired by the results in [6], most of this note is devoted to study the opposite situation,
namely the restriction to D of irreducible characters of positive height in B. When G is
a symmetric or alternating group, we prove the following.

Theorem B. Let n be a natural number, let p be a prime and let B be a p-block of Sn

or An with defect group D. If χ ∈ Irr(B) has positive height, then the restriction χD has
at least p different linear constituents.

In general, χD does not necessarily have a linear constituent (take G = D non-abelian
for instance). Nevertheless, we believe that the following blockwise analogue of [6, Con-
jecture D] holds.
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Conjecture C. Let B be a p-block of a finite group G with defect group D. Suppose that
χ ∈ Irr(B) has positive height. Them χD has 0 or at least p different linear constituents.

If D is abelian, then the statement vacuously holds, since by Kessar–Malle [8] there
are no irreducible characters of positive height. Furthermore, in Section 2 we show that
Conjecture C holds when G is a sporadic simple group, except possibly for the following
four: Fi23, Fi

′
24, B, M . More evidence in support of Conjecture C is given by the following

result.

Theorem D. Let B be a p-block of a finite group G with defect group D. Then Conjecture
C holds in the following cases.

• B is nilpotent,
• D is normal in G,
• D is a metacyclic 2-group.

We also checked Conjecture C for all blocks of groups from the small group library and
the library of perfect groups in GAP [3]. We remark that in many situations the number
of linear constituents of χD is in fact a multiple of p, but this is not true in general.

For the principal block, Conjecture C is a consequence of [6, Conjecture D]. However,
in general we do not know if Conjecture C follows from (or implies) [6, Conjecture D].

We fix below some of the notation that will be used often throughout this note.

Notation. Let G be a finite group and let P be a Sylow p-subgroup of G. In this article
we will sometimes denote by Lin(G) the set of linear characters of G. Moreover, if B is a
p-block of G with defect group D then we let Irr(B) be the set of irreducible characters
of G lying in B. For χ ∈ Irr(B) we let h(χ) be the p-height of χ. In particular we have
that χ(1)p = pa−d+h(χ), where pa = |P |, pd = |D| and where np denotes the highest power
of p dividing the natural number n ∈ N.

2. Theorems A and D

We start by giving a concise proof of Theorem A of the introduction.

Theorem A. Let χ ∈ Irr(G) be a character of height 0 in a block B with defect group D.
Then χD has a linear constituent.

Proof. Let b be an extended Brauer main correspondent of B in DCG(D) (see [10, The-
orem 9.7]). By a result of Blau (cf. [10, Theorem 6.8]), χDCG(D) has an irreducible con-
stituent of height 0 in b. Hence, we may assume that G = DCG(D). Then by [10,
Theorem 9.12], we have χD = nξ where ξ ∈ Irr(D) and np = |G : D|p. Since χ has height
0, we obtain χ(1)p = |G : D|p = np and ξ(1) = 1. �

Now we prove a strong form of Conjecture C for nilpotent blocks.

Theorem 2.1. Let B be a nilpotent p-block of G with defect group D, and let χ ∈ Irr(B)
with positive height. Then the number of linear constituents of χD is divisible by p.

Proof. Let ψ ∈ Irr(B) of height 0. By Broué–Puig [1] there exists a non-linear θ ∈ Irr(D)
such that χ = θ∗ψ. It follows that χD = θψD. We may assume that ψD has a constituent
ρ ∈ Irr(D) such that θρ has a linear constituent λ ∈ Irr(D). Then [λθ, ρ] = [λ, θρ] 6= 0
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and we conclude that λθ = ρ since λθ is irreducible. Hence, [λ, θρ] = 1. We showed that
every linear constituent of θρ occurs with multiplicity 1. Since (θρ)(1) is divisible by p,
there must be at least p linear constituents in θρ. Moreover, if ρ′ ∈ Irr(D)\{ρ} is another
constituent of ψD, then [λ, θρ′] = [λθ, ρ′] = 0. The claim follows easily. �

The following verifies our conjecture for blocks with normal defect group.

Proposition 2.2. Let B be a p-block of G with normal defect group D and χ ∈ Irr(B).
If χD has a linear constituent, then χ has height 0.

Proof. If χD has a linear constituent, then χD is a sum of linear characters by Clifford
theory. Then D′ ⊆ ker(χ) and χ ∈ Irr(G/D′). Since D/D′ is an abelian normal subgroup
of G/D′, Ito’s theorem shows that χ(1) divides |G : D|. Hence, χ has height 0. �

Now we deal with the 2-blocks with metacyclic defect groups.

Theorem 2.3. Let B be a 2-block of G with metacyclic defect group D, and let χ ∈ Irr(B)
with positive height such that χD has a linear constituent. Then χD has at least two distinct
linear constituents. In particular, Conjecture C holds for tame blocks.

Proof. By Theorem 2.1, we may assume that B is non-nilpotent. By Kessar–Malle [8],
we may assume that D is non-abelian. Then it follows from [14, Theorem 8.1] that D is
dihedral, semidihedral or quaternion. Let x ∈ D such that |D : 〈x〉| = 2 and |〈x〉| = 2n.
Recall that the generalized decomposition numbers dxχφ (for φ ∈ IBr(CG(x))) are algebraic
integers in the cyclotomic field Q2n . In particular, there exist uniquely determined integers
a0, . . . , a2n−1−1 ∈ Z such that

dxχφ =
2n−1−1∑
i=0

aiζ
i

where ζ ∈ C is a primitive 2n-th root of unity. It follows from the orthogonality relations
for generalized decomposition numbers that a0 = 0 (see [2, Theorem 0]). In particular,

χ(x) =
∑

φ∈IBr(CG(x))

dxχφφ(1)

has no rational part. The same argument applies to the group D where the generalized
decomposition numbers are just the character values. This means that for every non-
linear θ ∈ Irr(D), θ(x) has no rational part. On the other hand, every linear character
θ ∈ Irr(D) satisfies θ(x) = ±1 since D/D′ is a Klein four-group. Hence, if χD has just
one linear constituent, then χ(x) would have a non-zero rational part, but this is not the
case. �

The following lemma is used to handle some of the sporadic groups.

Lemma 2.4. Let B be a block of G with defect group D, and let χ ∈ Irr(B). Suppose
that there exists x ∈ D such that |CD(x)| = |D : D′| and χ(x) = 0. Then χD has 0 or at
least p linear constituents.

Proof. By the second orthogonality relation, we have

|CD(x)| =
∑

θ∈Irr(D)

|θ(x)|2 ≥
∑

θ∈Irr(D/D′)

1 = |D : D′| = |CD(x)|.
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Hence, θ(x) = 0 for every non-linear θ ∈ Irr(D). Suppose that χD has linear constituents
λ1, . . . , λs with multiplicities a1, . . . , as > 0 respectively. Then a1λ1(x)+ . . .+asλs(x) = 0.
The λi(x) are |〈x〉|-th roots of unity and they form orbits under the Galois group of the
cyclotomic field Q|〈x〉|. Now it is easy to see that s ≥ p. �

Proposition 2.5. Conjecture C holds for the blocks of sporadic groups, except possibly
the principal 2-blocks and the principal 3-blocks of Fi23, Fi′24, B or M .

Proof. We first consider the blocks with non-maximal defect. The non-principal 2-blocks
were determined by Landrock [9]. Most of them have abelian or metacyclic defect groups.
Hence, by Kessar–Malle [8] and Theorem 2.3, only the following blocks need to be con-
sidered where the labeling is taken from GAP [3]:

(i) second 3-block of Co1 (defect 3),
(ii) second 2-block of Ly (defect 7),
(iii) fourth 3-block of M (defect 3).

For Co1 and M all characters of positive height vanish on an element x ∈ D \ Z(D).
Hence, the claim follows from Lemma 2.4. For Ly the claim can be proved with GAP
by restricting to the maximal subgroup 2.A11 which has odd index in Ly and therefore
contains every defect group.

Now we deal with the blocks of maximal defect. With GAP we can restrict to various
subgroups where the class fusion is known. This approach works for all blocks except the
ones listed in the statement. �

3. Symmetric and Alternating groups

The goal of this section is to prove Theorem B from the introduction.
We recall that if D is a Sylow p-subgroup of Sn (respectively An), then Conjecture C

holds by [6, Theorem A] (respectively [5]). We usually denote by Pn a chosen Sylow
p-subgroup of Sn and by Qn a fixed Sylow p-subgroup of An such that Qn ≤ Pn.

For any natural number n let P(n) be the set of partitions of n. Let H(n) be the subset
of P(n) consisting of all the hook partitions of n. Given λ = (λ1, . . . , λt) ∈ P(n) we
denote by Y(λ) the Young diagram of λ. As usual, we think of Y(λ) as the subset of the
Cartesian plane defined by Y(λ) = {(a, b) | 1 ≤ a ≤ t, 1 ≤ b ≤ λa}. Given (x, y) ∈ Y(λ)
we let Hx,y(λ) := {(a, y), (x, b) ∈ Y(λ) | a ≥ x, and b ≥ y} be the (x, y)-hook of λ and
we let hx,y(λ) = |Hx,y(λ)|. Given any e ∈ N we let He(λ) be the subset of Y(λ) consisting
of all the nodes (x, y) such that hx,y(λ) is a multiple of e. Finally, given any hook H of
λ we denote by λ−H the partition of n− |H| obtained by removing the rim of H from
Y(λ) (we refer the reader to [11, Section 1] for a precise description of this process). The
e-core of λ (denoted by Ce(λ)) is the (unique) partition obtained from λ by successively
removing hooks of length e.

Keeping λ a partition of n, we denote by |λ| = n the size of λ and we let χλ be the
corresponding irreducible character of Sn. Let p be a prime number. The p-blocks of Sn

are naturally labeled by p-core partitions. In particular given a p-core partition γ and
a natural number w such that n = |γ| + pw, we denote by B(γ, w) the p-block of Sn

consisting of all the irreducible characters χλ such that Cp(λ) = γ. We remind the reader
that the defect group D of B(γ, w) is a Sylow p-subgroup of Swp ≤ Sn.
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Keeping the notation described at the end of the introduction we let Irr0(B) be the
set of irreducible characters of height zero in the block B. The following description of
Irr0(B(γ, w)) follows from [13, Lemma 3.1].

Theorem 3.1. Let B = B(γ, w) be a p-block of Sn. Let wp = atp
t + · · · + a1p, be the

p-adic expansion of wp where at 6= 0. Let χλ ∈ Irr(B). The following are equivalent.

(i) χλ ∈ Irr0(B).

(ii) |Hpt(λ)| = at and χCpt (λ) ∈ Irr0(B(γ, w − atpt−1)).

Definition 3.2. Let m = atp
t+ · · ·+a1p be the p-adic expansion of m. Let n be a natural

number such that m ≤ n. An element g ∈ Sn has cycle type corresponding to m, if g is
the product of aj cycles of length pj, for all j ∈ {1, . . . , t}. In particular g has n−m fixed
points.

The Murnaghan–Nakayama rule (see [7, 2.4.7]) used together with Theorem 3.1 imply
the following statement.

Corollary 3.3. Let B = B(γ, w) be a p-block of Sn, let D be a defect group of B and let
χλ ∈ Irr(B) be such that h(χλ) > 0. Let g ∈ D be an element of cycle type corresponding
to wp. Then χλ(g) = 0.

The last ingredient needed to prove Theorem B for Sn is the following Lemma.

Lemma 3.4. Let B = B(γ, w) be a p-block of Sn. Let wp = atp
t + · · ·+a1p be the p-adic

expansion of wp where at 6= 0. Let D be a defect group of B. Then there exists g ∈ D of
cycle type corresponding to wp such that the following hold.

(i) θ(g) is a p-th root of unity for every linear character θ of D.
(ii) δ(g) = 0 for all δ ∈ Irr(D) such that p | δ(1).

Proof. Since D ∈ Sylp(Swp) we have that D ∼= (Ppt)
×at×· · ·× (Pp)

×a1 . Hence there exists
an element g ∈ D of cycle type corresponding to wp. Statements (i) and (ii) are now a
direct consequence of [6, Lemma 3.11]. �

Proof of Theorem B for Sn. Let B = B(γ, w) be a p-block of Sn and let D ∈ Sylp(Swp)
be a defect group of B, chosen such that D ≤ Pn. Let χ ∈ Irr(B) be such that h(χ) > 0.
From [6, Theorem 3.1] we know that χPn has a linear constituent. Hence there exists a
positive integer ` such that χD has ` distinct linear constituents. Call these θ1, . . . , θ`.
Suppose for a contradiction that ` < p. Let g ∈ D be an element of cycle type corre-
sponding to wp as prescribed in Lemma 3.4. Then Corollary 3.3 and Lemma 3.4 imply
that

0 = χD(g) = c1θ1(g) + · · ·+ c`θ`(g).

This is a contradiction, since θj(g) is a p-th root of unity for all j ∈ {1, . . . , `} by Lemma
3.4, and no N-linear combination of ` p-th roots of unity can be equal to 0. �
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3.1. Alternating groups. We start by recalling that if φ ∈ Irr(An) and λ ` n is such
that φ is an irreducible constituent of (χλ)An , then φ = (χλ)An if and only if λ 6= λ′. If
λ = λ′ then (χλ)An = φ+ φg, where g ∈ Sn r An.

Let B̃ be a p-block of An with defect group D̃ covered by the p-block B of Sn with defect
group D. We choose the defect groups in order to have D̃ ≤ D ≤ Pn and D̃ = D∩Qn. It
is shown in [5, Theorem A] that for any χ ∈ Irr(An) such that p divides χ(1) we have that
χQn has at least p distinct linear constituents. Hence we can assume for the rest of this
section that D is strictly contained in Pn. In particular we have that there exists w ∈ N
such that D ∈ Sylp(Swp) and D̃ ∈ Sylp(Awp), where Awp ≤ Swp ≤ Sn. Fix φ ∈ Irr(B̃)

such that h(φ) > 0 and let λ ` n be such that φ is an irreducible constituent of (χλ)An .
As usual let γ = Cp(λ) and hence we have that B = B(γ, w).

3.1.1. Odd primes. When p is an odd prime, we have that Pn = Qn and hence that
D = D̃. Moreover, by [12, Proposition 4.3] we have that h(χλ) = h(φ). For this reason
we can use an argument that is totally similar to the one given for symmetric groups.

Proof of Theorem B for An at odd primes. We start by observing that φD̃ has a linear
constituent θ. This follows directly from [5, Theorem A], where it is shown that φQn has a
linear constituent. Let θ1, . . . , θ` be all the distinct linear constituents of φD̃. Suppose for

a contradiction that ` < p. Let g ∈ D = D̃ be an element of cycle type wp as in Lemma
3.4. By Corollary 3.3 we have that χλ(g) = 0, since h(χλ) = h(φ) > 0. We deduce that
φ(g) = 0. This is clear if λ 6= λ′ because in this case φ = (χλ)An ; otherwise, if λ = λ′ then
we have that φ(g) = (χλ(g))/2 = 0, by [7, 2.5.13].

Using Lemma 3.4 it follows that

0 = φD̃(g) = c1θ1(g) + · · ·+ c`θ`(g).

This is a contradiction, by Lemma 3.4. �

3.1.2. The prime 2. Let p = 2 and let n ∈ N, for k ∈ {0, 1, . . . , n− 1} we let gk be the
element of S2n defined by

gk =
2k∏
i=1

(i, i+ 2k).

It is easy to check that P2n := 〈g0, . . . , gn−1〉 is a Sylow 2-subgroup of S2n . Moreover the
element γn ∈ P2n defined by γn = g1g2 · · · gn−1 has cycle type (2n−1, 2n−1). In particular
γn ∈ A2n ∩P2n = Q2n . Similarly, the element ωn ∈ P2n defined by ωn = g0γn is a 2n-cycle.

The following Lemma was first proved in [5, Lemma 3.4].

Lemma 3.5. Let γn and ωn be the elements defined above and let g ∈ {γn, ωn}. Then:

(i) θ(g) ∈ {−1,+1} for every linear character θ of P2n.
(ii) δ(g) = 0 for all δ ∈ Irr(P2n) such that δ(1) is even.

Remark 3.6. We recall that when p = 2 then h(φ) = h(χλ) if λ 6= λ′. On the other
hand we have that h(φ) = h(χλ) − 1 if λ = λ′. This follows from [12, Proposition 4.5].
Moreover, in this case we have that D̃ and Qn are proper subgroups of index 2 of D and
Pn respectively.
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Theorem 3.1 has an easier form when p = 2. We restate this result here.

Proposition 3.7. Let B = B(γ, w) be a 2-block of Sn and let 2w = 2w1 + · · · + 2wt be
the binary expansion of 2w, with w1 > · · · > wt > 0. Let χλ ∈ Irr(B). Then χλ ∈ Irr0(B)
if and only if there exists a unique 2w1-hook h in λ and χλ−h ∈ Irr0(B(γ, w − 2w1−1)).

Proposition 3.8. Let χλ ∈ Irr(B(γ, w)) be such that h(χλ) > 0. Suppose that 2w is not
a power of 2. Then there exists an element Ωλ ∈ D̃ such that the following hold.

(i) θ(Ωλ) ∈ {−1,+1} for all θ ∈ Lin(D).
(ii) δ(Ωλ) = 0 for all δ ∈ Irr(D) r Lin(D).

(iii) χλ(Ωλ) = 0.

Proof. Let 2w = 2w1 + · · ·+ 2wt be the binary expansion of 2w, where w1 > · · · > wt ≥ 1
and where t ≥ 2. Assume without loss of generality that D ∈ Syl2(S2w) fixes pointwise
the set {2w + 1, 2w + 2, . . . , n}. Then D = P2w1 × · · · × P2wt . For all j ∈ {1, . . . , t} let
ωwj

and γwj
be the elements of the component P2wj described in Lemma 3.5 (and in the

paragraph right above it). In particular ωwj
has cycle type (2wj) while γwj

has cycle type
(2wj−1, 2wj−1). Let Ω0,Ω1 and Ω2 be the elements of D defined by

Ω0 = ωw1 · · ·ωwt , Ω1 := γw1ω
−1
w1

Ω0 and Ω2 = γw2ω
−1
w2

Ω0.

Suppose that the binary length t of 2w is even. Set Ωλ = Ω0. Then Ωλ ∈ D̃ and
statements (i) and (ii) hold by Lemma 3.5. Moreover, Ωλ is an element of cycle type
corresponding to 2w (in the sense of Definition 3.2). Hence Corollary 3.3 implies that
χλ(Ωλ) = 0.

Suppose that t is odd. In this case Ω0 /∈ D̃, hence we must change our choice of
Ωλ. Since |λ| < 2 · 2w1 we clearly have that |H2w1 (λ)| ≤ 1. If |H2w1 (λ)| = 0 then we set
Ωλ = Ω2. Otherwise, if |H2w1 (λ)| = 1 then we set Ωλ = Ω1. It is now routine to check that
in both cases Ωλ ∈ D̃ and that conditions (i), (ii) and (iii) are fulfilled. This follows again
from Lemma 3.5 and from Proposition 3.7 used together with the Murnaghan–Nakayama
rule. �

If the weight w is a power of 2, then the knowledge of the 2-height of the irreducible
character χλ allows us to give a very precise description of the shape of the labeling
partition λ. The following statement is an immediate consequence of [13, Lemma 3.1].

Proposition 3.9. Let k ≥ 2 and let w = 2k−1. Let B = B(γ, w) be a 2-block of Sn and
let χλ ∈ Irr(B). Then the following hold.

(i) h(χλ) = 0 if and only if |H2k(λ)| = 1.
(ii) h(χλ) = 1 if and only if |H2k(λ)| = 0 and |H2k−1(λ)| = 2.
(iii) h(χλ) ≥ 2 if and only if |H2k−1(λ)| ≤ 1.

Proof of Theorem B for An at p = 2. If D̃ = Qn then the statement follows from [5, The-
orem A]. Hence we assume that D̃ < Qn. Equivalently, γ := C2(λ) is such that |γ| ≥ 3.

Since h(φ) > 0 we deduce from Remark 3.6 that h(χλ) > 0. Hence from Theorem B
for Sn we know that there exists ψ ∈ Lin(D) such that ψ is an irreducible constituent of
(χλ)D. Let θ = ψD̃. We claim that θ is a linear constituent of φD̃. If λ 6= λ′, this is obvious
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because φD̃ = (χλ)D̃. Otherwise, if λ = λ′ then let σ be an element of D r D̃. Then
(χλ)An = φ+ φσ and there exists Φ ∈ {φ, φσ} such that θ is an irreducible constituent of
ΦD̃. It follows that θσ is a constituent of (Φσ)D̃. The claim now follows by observing that
θσ = (ψσ)D̃ = θ.

Assume for a contradiction that θ is the only linear constituent of φD̃, appearing with
multiplicity m ∈ N. In particular this means that all the distinct linear constituents
ψ = ψ1, ψ2, . . . , ψ` of φD are such that (ψj)D̃ = θ.

Case 1. Suppose first that 2w is not a power of 2. Let Ωλ ∈ D̃ be the element prescribed
by Proposition 3.8. Then (using [7, 2.5.13] if λ = λ′) we have that

0 = φ(Ωλ) = c1ψ1(Ωλ) + · · ·+ c`ψ`(Ωλ) = mθ(Ωλ) = ±m,
by Proposition 3.8. This is clearly a contradiction, since m = c1 + . . .+ c` 6= 0.

Case 2. Let us now assume that 2w = 2k and that n = |γ| + 2k. Notice that since
h(φ) > 0 we have that D̃ 6= 1. Hence w > 1 and therefore k > 1.

If h(χλ) ≥ 2 then |H2k(λ)| = 0 and |H2k−1(λ)| ≤ 1, by Proposition 3.9. Hence if we
take x ∈ D̃ to be an element of cycle type (2k−1, 2k−1) then we have that χλ(x) = 0,
by the Murnaghan-Nakayama rule. It follows (using [7, 2.5.13] in case λ = λ′) that
0 = φ(x) = mθ(x) = ±m, where the second and third equalities follow from Lemma 3.5.
This is clearly a contradiction.

If h(χλ) = 1 then Remark 3.6 implies that λ 6= λ′, because h(φ) 6= 0. Hence φ = (χλ)An .
If λ is a hook partition of n then γ = (2, 1) and λ has exactly two distinct 2k−1-hooks,

by Proposition 3.9. It follows that λ = (2 + 2k−1, 11+2k−1
). Hence λ = λ′ and this is a

contradiction. We conclude that λ is not a hook partition. Equivalently, λ is a partition
of n such that (2, 2) ∈ Y(λ). This in particular shows that k > 2 (because the only
λ ` |γ| + 4 such that h(χλ) = 1 is such that λ = λ′). Hence there exists µ ` 2k such
that µ ⊆ λ and (2, 2) ∈ Y(µ). Moreover, since λ 6= λ′ we can always choose µ such that
µ 6= µ′. It follows that (χµ)A

2k
∈ Irr(A2k). Moreover, χµ(1) is even, since µ is not a

hook partition (see for instance [4, Lemma 3.1]). Since D̃ ∈ Syl2(A2k), it follows from [5,
Theorem A] that (χµ)D̃ has at least two distinct linear constituents. Observe now that χµ

is an irreducible constituent of (χλ)S
2k

and that D̃ ∈ Syl2(A2k), where A2k ≤ S2k ≤ Sn.
We conclude that θ can not be the unique linear constituent of φD̃. �
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