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1. Introduction. Given a (not necessarily irreducible) character ξ of a finite group H,
we investigate the question of whether or not there exist a finite group G containing H
and an irreducible character χ of G such that χH = ξ. If G and χ exist, we refer to χ as
an irreducible extension of ξ. Given the huge variety of different groups G that contain
a given group H, it may be surprising that sometimes, the character ξ may fail to have an
irreducible extension, but this can happen.

THEOREM A. Let H = SL(2, 3), and suppose that ξ = 1H + ϕ, where ϕ is the unique
real-valued degree 2 irreducible character of H. Then ξ has no irreducible extension.

In fact, SL(2, 3) is the smallest group that has a character with no irreducible exten-
sion. Also, SL(2, 3) is the smallest group that fails to be an M-group, and the following
theorem shows that this is not entirely a coincidence. (Recall that by definition, a not
necessarily irreducible character ϕ of a group H is monomial if ϕ = λH for some linear
character λ of a subgroup of H. Also, H is an M-group if every irreducible character of
H is monomial.

THEOREM B. If H is an M-group, then every character of H has an irreducible
extension.

It is not clear whether or not, conversely, it is true that if every character of some
group H has an irreducible extension, then H must be an M-group, but the following is a
step in that direction.

THEOREM C. Suppose that H is a solvable group that is not an M-group, and let
C be a cyclic group of order at least 7. Then some character of H × C fails to have an
irreducible extension.

The following theorem suggests that perhaps Theorem C would remain true if we drop
the hypothesis that H is solvable.

THEOREM D. Suppose that H has a non-monomial irreducible character ϕ such that
ϕ + 1H is not a permutation character, and let C be a cyclic group of order at least 7.
Then some character of H × C fails to have an irreducible extension.

For example, suppose we take H to be the alternating group A5. If ϕ is one of
the degree 3 irreducible characters of H, then ϕ is not monomial and ϕ + 1H is not a
permutation character. (Both of these assertions follow from the fact that A5 has no
proper subgroup with index 3 or 4.) We can thus apply Theorem D to conclude that some
character of A5 × C fails to have an irreducible extension, where C is an arbitrary cyclic
group of order at least 7.

Finally, we consider the question of whether or not a given character ξ of a finite group
H has an irreducible extension to a solvable group G. Of course, if ξ has an extension to a
solvable group, then H would have to be solvable, but as the next theorem suggests, even
in the case where H is solvable, the requirement that G should be solvable appears to be
quite restrictive.
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THEOREM E. Let α, λ ∈ Irr(H), where λ is linear, and write ξ = α + λ. Then ξ has
no irreducible extension to a solvable group unless ξ(1) is a prime power.

We do have one affirmative result concerning solvable extensions, however.

THEOREM F. If H is a abelian, then every character of H has an irreducible extension
to a solvable group.

Since an abelian group is certainly an M-group, it follows by Theorem B that every
character of an abelian group has an irreducible extension. The supergroup constructed
in the proof of Theorem B, however, is generally very far from being solvable, so we will
use a completely different argument to establish Theorem F.

We mention that we do not know if there exists a nonabelian group with the property
that every character has an irreducible extension to a solvable group.

2. Examples where no irreducible extension exists. Given a character ξ of a group
H and a group G containing H, we shall say that a character χ ∈ Irr(G) such that χH = ξ
is a monomial extension of ξ if χ is a monomial character. Also, we say that χ ∈ Irr(G)
is a primitive extension of ξ if χ is a primitive character, which means that that there
is no character α of a proper subgroup of G such that αG = χ. Note that if J ⊆ G and
α ∈ Irr(J) with αG = χ, then χ(1) = |G : J |α(1), so if χ(1) is prime, then either α(1) = 1
and χ is monomial, or else |G : J | = 1 and J = G. It follows that if ξ(1) is prime, then an
irreducible extension of ξ must be either a monomial extension or a primitive extension.

It is easy to establish a condition that is sufficient to guarantee that a character ξ of
H has no monomial extension.

(2.1) LEMMA. Let ξ be a faithful character of a group H, and write ξ(1) = n. If ξ has
an irreducible monomial extension, then there exists an abelian subgroup A/ H such that
H/A is isomorphic to a subgroup of the symmetric group Sn.

Proof. Let H ⊆ G, and suppose that χ ∈ Irr(G) is a monomial character of G such that
ξ = χH . Since χ is monomial, there exists a subgroup J ⊆ G and a linear character λ of J
such that λG = χ. Now n = ξ(1) = χ(1) = |G : J |λ(1) = |G : J |, so writing K = coreG(J),
we see that G/K is isomorphic to a subgroup of Sn. Then H/(K ∩H) ∼= KH/K is also
isomorphic to a subgroup of Sn, and so it suffices to observe that K ∩H is abelian.

Now λK is a linear constituent of χK , and since χ is irreducible and K / G, it follows
that every irreducible constituent of χK is linear, and thus K ′ ⊆ ker(χ). Then (K ∩H)′ ⊆
K ′ ∩H ⊆ ker(χ) ∩H = ker(ξ) = 1, and thus K ∩H is abelian, as required.

We can now prove Theorem A, which we restate here.

(2.2) THEOREM. Let H = SL(2, 3), and suppose that ξ = 1H + ϕ, where ϕ is the
unique real-valued degree 2 irreducible character of H. Then ξ has no irreducible extension.

Proof. Assuming that the theorem is false, let G ⊇ H and χ ∈ Irr(G) with χH = ξ, and
choose G to have the smallest possible order. Now ξ(1) = 3 and ξ is faithful, but since
no normal abelian subgroup of H has index dividing 3! = 6, Lemma 2.1 guarantees that
ξ has no monomial irreducible extension. Since ξ(1) is prime, it follows that χ must be
primitive.
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We have H∩ker(χ) = ker(ξ) = 1, and thus H is isomorphic to a subgroup of G/ker(χ).
Viewing χ as a character of G/ker(χ), we see that χ is an irreducible extension of the
character corresponding to ξ of the isomorphic copy of H in G/ker(χ). By the minimality
of G, therefore, we have ker(χ) = 1, so χ is faithful, and thus G is a degree 3 complex
linear group.

It follows by Theorem A of [1] that |G : Z| ≤ 360, where Z = Z(G). Also, we see that
if N / G and N 6⊆ Z, then N must be nonabelian, and since χ(1) is prime, we conclude
that χN is irreducible, and thus CG(N) = Z.

Now det(ϕ) is trivial, so det(ξ) is also trivial, and writing D = ker(det(χ)), we see
that H ⊆ D/ G, and thus D 6⊆ Z. Then χD is irreducible, and it follows by the minimality
of G that D = G, and thus det(χ) is trivial.

We see that χZ = 3µ for some faithful linear character µ of Z, and since det(χ)
is trivial, we have µ3 = 1Z , and thus |Z| divides 3. Also, Z ∩ H ⊆ Z(H), and since
|Z(H)| = 2, we deduce that Z ∩H = 1.

Let N/Z be a minimal normal subgroup of G/Z, so Z < N / G. As we have seen,
it follows that N is nonabelian and χN is irreducible, and thus χNH is irreducible. We
conclude by the minimality of G that NH = G.

We argue next that N/Z does not contain a subgroup isomorphic to the quaternion
group Q8. This is obvious if N/Z is abelian, and otherwise, since |N/Z| ≤ |G/Z| ≤ 360,
we see that N/Z must be isomorphic to one of the simple groups A5, PSL(3, 2) or A6.
Since none of these groups contains a copy of Q8, our assertion holds in this case too.

We have

N/Z ⊇ (N ∩H)Z/Z ∼= (N ∩H)/(N ∩H ∩ Z) = N ∩H ,

and thus N ∩H does not contain the copy of Q8 contained in H. Since N ∩H is a normal
subgroup of H, it follows that |N ∩H| ≤ 2, and thus |H : N ∩H| ≥ 12. Then

360 ≥ |G : Z| ≥ |NH : Z| = |NH : N ||N : Z| = |H : N ∩H||N : Z| ≥ 12||N : Z| ,

and hence |N/Z| ≤ 30. Then N/Z is not one of the groups A5, PSL(3, 2) or A6, and so
N/Z must be abelian. Since N is not abelian, Z must be nontrivial, and thus |Z| = 3.

Now χN is irreducible and N/Z is an abelian chief factor of G, and since χZ is a
multiple of a linear character, it follows that χN is fully ramified with respect to N/Z. We
deduce that |N/Z| = χ(1)2 = 9, and thus |N | = 27.

Since H has no nonidentity normal subgroup whose order is a power of 3, we have
N ∩ H = 1, and thus |G| = |NH| = |N ||H| = 27·24 = 648. In order to identify the
group G using the GAP or Magma software packages, we observe that N is the full Fitting
subgroup of G. (This follows since Z(H) is the unique minimal normal subgroup of H and
Z(H) does not centralize N because CG(N) = Z, and H ∩ Z = 1.)

Using GAP or Magma, we can check that (up to isomorphism) there are exactly three
groups X of order 648 such that F(X) is nonabelian and has order 27, and in only one of
these, namely SmallGroup(648,533), is the Fitting subgroup complemented. We deduce
that our group G must be SmallGroup(648,533).

Querying the software further, we find that G has exactly six faithful irreducible
characters of degree 3, and that there are exactly three conjugacy classes of complements
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to F(G) in G. For each such complement K, exactly two of the six restrictions χK have
a principal constituent. In each of these cases, χK has a unique nonprincipal irreducible
constituent of degree 2, but this character is never real. This contradiction completes the
proof.

It is interesting to note that according to the computer, the complements for the
Fitting subgroup of SmallGroup(648,533) actually are isomorphic to SL(2, 3). Also, the
computations show that if we were to replace ϕ with either of the two non-real irreducible
degree 2 characters of H = SL(2, 3), the resulting character ξ definitely would have an
irreducible extension.

We mention that it is also possible to complete the proof of Theorem 2.2 without the
computer, using some fairly deep theory instead. The following is a very brief sketch of
the argument. If T ⊆ H is a subgroup of order 3, then in the language of Chapter 8 of
[3], we see that ZT is a distinguished complement for N relative to Z in NT . It follows
that χTZ has a unique irreducible constituent with odd multiplicity, and thus χT also has
this property. Now χT = ξT = ϕT + 1T , and ϕT is the sum of two nonprincipal linear
characters. Then χT is a sum of three distinct linear characters, and this is the desired
contradiction.

(2.3) COROLLARY. Let K = GL(2, 3), and let θ, λ ∈ Irr(K), where λ is linear and θ
is faithful and has degree 2. Then θ + λ has no irreducible extension.

Proof. Let H = SL(2, 3) so H ⊆ K. It is easy to check that the restriction of θ + λ to
H is the character ξ of Theorem 2.2. An irreducible extension of θ + λ, therefore, would
be an irreducible extension of ξ, and since by Theorem 2.2, no such irreducible extension
exists, it follows that θ + λ has no irreducible extension.

Similarly, we have the following, which provides another example of a nonsolvable
group having a character with no irreducible extension.

(2.4) COROLLARY. Let K = SL(2, 5), and let θ ∈ Irr(K) have degree 2. Then θ+ 1K
has no irreducible extension.

Proof. Observe that K has a subgroup H isomorphic to SL(2, 3) and that the restriction
of θ+ 1K to H is the character ξ of Theorem 2.2. Since ξ has no irreducible extension, the
result follows.

3. Sums of monomial characters. The main result of this section is the following.

(3.1) THEOREM. Let θ1, θ2, . . . , θm be monomial (but not necessarily irreducible)
characters of some group H. Then θ1 +θ2 + · · ·+θm has a monomial irreducible extension.

If H is an M-group, then since every irreducible character of H is monomial, it follows
that every character of H is a sum of monomial characters. Assuming Theorem 3.1, there-
fore, we see that every character of H has an irreducible extension, and this is Theorem B.

We begin working toward a proof of Theorem 3.1 with some definitions. Given a finite
group H, we say that a C[H]-module V having a basis B is a monomial module with
monomial basis B if for each basis vector b ∈ B and each group element h ∈ H, there
exists a vector c ∈ B and a root of unity ε such that bh = εc. Note that if V is a monomial
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module for H with monomial basis B, then there is a natural associated permutation
action of H on the set B, and if this action is transitive, we say that the monomial module
V is transitive.

Next, we say that a square matrix M over C is a monomial matrix if each row and
each column of M contains exactly one nonzero entry, and all of the nonzero entries of M
are roots of unity. Finally, a matrix representation X of H is a monomial representation
if X (H) consists of monomial matrices.

Observe that a C[H]-module V is a monomial module with respect to some basis B
if and only if the corresponding matrix representation of H (with respect to the basis B)
is a monomial representation. It is easy to see that if θ is a (not necessarily irreducible)
monomial character of H, then θ is afforded by a monomial representation, and the cor-
responding monomial module is transitive on the relevant basis B. (In fact, if θ = λH ,
where λ is a linear character of a subgroup J of H, then the permutation action of H
on B is permutation isomorphic to the natural action of H on the right cosets of J in
H.) Conversely, the character afforded by a monomial representation corresponding to a
transitive monomial module is guaranteed to be a monomial character.

Given positive integers n and r, we write Mon(n, r) to denote the group of n × n
monomial matrices whose nonzero entries are r th roots of unity. Since each monomial
n × n matrix has exactly n nonzero entries, we see that |Mon(n, r)| = n!·rn, and in
particular Mon(n, r) is a finite subgroup of GL(n,C). (Although we shall not need this
fact, we mention that Mon(n, r) is isomorphic to the wreath product Cr o Sn, where Cr is
the cyclic group of order r and Sn is the symmetric group of degree n.)

(3.2) LEMMA. If r > 1, then the natural degree n monomial representation of Mon(n, r)
is irreducible.

One way to prove this would be to observe that Mon(n, r) contains the full group of
n × n permutation matrices, and it is well known that if n > 1, then the corresponding
n-dimensional permutation module has exactly two nonzero proper submodules: one of
dimension 1 and the other of dimension n− 1. To prove Lemma 3.2, therefore, it suffices
to show that if r > 1, then neither of these submodules is invariant under Mon(n, r). We
prefer, however, to give the following direct argument.

Proof of Lemma 3.2. Let V be the natural monomial module for Mon(n, r), where
dimC(V ) = n, and let B be the corresponding monomial basis. To show that V is ir-
reducible (in fact, that it is absolutely irreducible) it suffices to show that every linear
operator f : V → V that commutes with the action of Mon(n, r) is multiplication by some
scalar.

Let b ∈ B, and let g ∈ Mon(n, r) be the linear operator such that bg = b and cg = εc,
where ε is an r th root of unity different from 1. Then Cb is the fixed-point subspace of
g in V , and since f commutes with g we see that f must map Cb into itself, and thus
bf = βb for some scalar β. This shows that the matrix of f with respect to the basis B is
diagonal.

If b and c are arbitrary members of B, we can write bf = βb and cf = γc for scalars β
and γ, and it suffices to show that β = γ. To see this, let h ∈ Mon(n, r), where bh = c and
ch = b. Then βc = βbh = bfh = bhf = cf = γc, and it follows that β = γ, as required.
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Proof of Theorem 3.1. Write ξ =
∑
θi, so we must show that there exists an injective

homomorphism π from H into some finite group G, where G has a monomial irreducible
character χ and χ(π(h)) = ξ(h) for all h ∈ H.

Suppose first that ξ is faithful. Since θi is monomial for 1 ≤ i ≤ m, each of the
characters θi is afforded by a monomial representation Xi, where Xi corresponds to a
(transitive) monomial module Vi having a monomial basis Bi. Viewing the bases Bi as
disjoint sets, let B =

⋃
Bi, so |B| = n, where n = ξ(1). Let V be the C-linear span of B,

so V is the direct sum of its subspaces Vi.
Now if b ∈ B then b lies in one of the sets Bi, and thus bh is defined. In fact,

if we fix a sufficiently large integer r > 1, we can write bh = εc where c ∈ Bi ⊆ B
and ε is an r th root of unity. Then V is a monomial C[H]-module, with monomial
basis B, and this construction defines a homomorphism π : H → Mon(n, r) such that
ker(π) =

⋂
ker(Xi) = ker(ξ) = 1.

Now let M be the natural monomial representation of Mon(n, r), and let χ be the
character of Mon(n, r) afforded by M. Then χ is irreducible by Lemma 3.2, and χ is
monomial because V is transitive as a monomial module for Mon(n, r). Also,

χ(π(h)) = tr(M(π(h))) =
∑
i

tr(Xi(h)) =
∑
i

θi(h) = ξ(h) ,

and this completes the proof in the case where ξ is faithful.
In the general case, we can view ξ is a faithful character of H = H/ker(ξ), so by

the first part of the proof, there is a group K containing H and a monomial irreducible
character ψ of K that extends ξ. Now let G = H ×K and let χ = 1H × ψ, so χ ∈ Irr(G)
and χ is monomial.

If h ∈ H, let h denote the image of h in H, and observe that (h, h) lies in H ×H ⊆
H ×K = G. The map π : h 7→ (h, h) is an injective homomorphism from H into G, and
for h ∈ H, we have χ(π(h)) = χ(h, h) = ψ(h) = ξ(h), as wanted.

(3.3) COROLLARY. Let ξ be a character of a group H. Then there exists a finite
group G ⊇ H and an irreducible character χ of G such that χH = ξ+ψ for some character
ψ of H

Proof. There clearly exists a character ψ of H such that ξ + ψ is a multiple mρ of the
regular character ρ of H. Now ρ = (11)H so ρ is monomial, and thus ξ + ψ = mρ has an
irreducible extension by Theorem 3.1.

4. Cyclic groups. Our proof of Theorem 2.2 indicates that it can be quite difficult to
establish the nonexistence of a primitive extension of a character of some given group H.
The following lemma, however, shows that if H is cyclic of sufficiently large order, it is
easy to find characters that have no primitive extension.

(4.1) LEMMA. Let C be a cyclic group with |C| ≥ 7, and let ξ be a character of C that
has exactly two distinct irreducible constituents: the principal character and some faithful
linear character λ. Then ξ has no primitive extension.
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Proof. Since λ is faithful, there exists an element c ∈ C such that λ(c) = e2πi/n, where
n = |C| ≥ 7. Assuming that there exist a finite group G ⊇ C and a primitive character
χ ∈ Irr(G) such that χC = ξ, we work to obtain a contradiction.

Let X be a representation affording χ, so X (G) is a finite complex linear group, and
the matrix X (c) has exactly two distinct eigenvalues: 1 and e2πi/n. All of the eigenvalues
of X (c), therefore, lie on the unit circle in an arc of length 2π/n < π/3.

By a result of Frobenius (Theorem 14.15(b) of [2]), we deduce that the conjugates
of X (c) in X (G) centralize each other, and hence these conjugates generate an abelian
normal subgroup A of X (G). Since the representation X is primitive, the subgroup A
must be central in X (G), and hence the irreducibility of X guarantees that A consists of
scalar matrices. This is a contradiction, however, because X (c) lies in A and X (c) has two
distinct eigenvalues.

Next, we establish a result sufficient to prove that certain characters have no irre-
ducible monomial extension.

(4.2) LEMMA. Let ϕ ∈ Irr(H), where ϕ is not monomial and ϕ+1H is not a permutation
character, and let ξ = ϕ+m1H , wherem is a nonnegative integer. Then ξ has no irreducible
monomial extension.

Proof. Working to obtain a contradiction, suppose there exist a group G ⊇ H and a
character χ ∈ Irr(G) such that χH = ξ and χ is monomial. We have χ = λG, where λ is a
linear character of some subgroup J ⊆ G, and so by Mackey’s lemma, we have

ϕ+m1H = ξ = χH =
∑
x∈R

((λx)H∩Jx)H ,

where R is a set of representatives for the double cosets of the form JxH in G, and where
λx is the linear character of Jx defined by the formula λx(jx) = λ(j) for j ∈ J . It follows
that there is some element x ∈ R such that ϕ is a constituent of δH , where δ = (λx)D and
D = H ∩ Jx.

Now δH 6= ϕ because by assumption, ϕ is not monomial, and thus δH = ϕ+ t1H for
some integer t with 0 < t ≤ m. Then

0 < t = [δH , 1H ] = [δ, 1D] ≤ 1 ,

where the final inequality holds since δ is irreducible because it is the restriction to D of
the linear character λx. It follows that t = 1 and δ = 1D, and thus ϕ+ 1H = δH = (1D)H .
This is a contradiction since by assumption, ϕ+ 1H is not a permutation character.

We can now prove Theorem D, which we restate here.

(4.3) THEOREM. Suppose that H has a non-monomial irreducible character ϕ such
that ϕ+ 1H is not a permutation character, and let C be a cyclic group of order at least
7. Then some character of H × C fails to have an irreducible extension.
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Proof. Define α, β ∈ Irr(H ×C) by setting α = ϕ× 1C and β = 1H × λ, where λ is some
faithful linear character of C. Next, choose an integer m > 0 so that ϕ(1) + m is prime,
and let ξ = α+mβ. We argue by contradiction that ξ has no irreducible extension.

Suppose that G ⊇ (H × C) and that χ ∈ Irr(G) extends ξ. Then χ(1) = ξ(1) =
α(1) + mβ(1) = ϕ(1) + m, and since this is a prime number, we see that either χ must
be either monomial or is primitive. Lemma 4.1 applies because χ is an extension of the
character ϕ(1)1C +mλ of C, and we deduce that χ cannot be primitive. Also, Lemma 4.2
applies because χ is an extension of the character ϕ + m1H of H, and it follows that χ
cannot be monomial. This is the desired contradiction.

Next, we restate Theorem C.

(4.4) THEOREM. Suppose that H is a solvable group that is not an M-group, and let
C be a cyclic group of order at least 7. Then some character of H × C fails to have an
irreducible extension.

Since H is not an M-group in Theorem 4.4, there exists a non-monomial character
ϕ ∈ Irr(H). To prove the theorem, therefore, it suffices by Theorem 4.3 to show that
ϕ+ 1H is not a permutation character. Since H is solvable and ϕ is not monomial, we see
that Theorem 4.4 is a consequence of the following.

(4.5) LEMMA. Let ϕ ∈ Irr(H), where H is solvable, and suppose that ϕ + 1H is a
permutation character. Then ϕ is monomial.

Proof. Let K = ker(ϕ). Since ϕ+ 1H is a permutation character, we can write ϕ+ 1H =
(1J)H for some subgroup J of G, and thus K = ker(ϕ) ⊆ ker((1J)H), and hence K ⊆ J .
Now viewing ϕ as a character of H/K, we have ϕ+ 1H/K = (1J/K)H/K , so ϕ+ 1H/K is a
permutation character of H/K. Replacing H by H/K, we can assume that ϕ is faithful,
and we see that the permutation character ϕ+ 1H is also faithful.

Now J is the stabilizer of a point in the corresponding faithful permutation repre-
sentation, and so coreH(J) = 1. Since ϕ is irreducible, the permutation representation is
doubly transitive, and hence it is primitive, and thus J is a maximal subgroup of H.

Let N be a minimal normal subgroup of H, and observe that N 6⊆ J , so NJ = H.
Also, N is abelian because H is solvable, so an irreducible constituent λ of ϕN is linear.

Let T be the stabilizer of λ in H, and let η ∈ Irr(T ) be the Clifford correspondent of ϕ
with respect to λ. Then ϕ = ηH and ηN = eλ, where e = [ϕN , λ]. Now η(1) = eλ(1) = e,
and ηH = ϕ, so to prove that ϕ is monomial, it suffices to show that e = 1.

Since H = NJ , we have

e = [ϕN , λ] ≤ [(ϕ+ 1H)N , λ] = [((1J)H)N , λ] = [(1N∩J)N , λ] = [1N∩J , λN∩J ] ≤ 1 ,

where the final inequality holds since λ is linear, and thus λN∩J is irreducible. It follows
that e = 1, as wanted.

5. Solvable extensions. In this section we consider the question of when a character
ξ of a group H can have an irreducible extension to a solvable group containing H. The
following is Theorem E.
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(5.1) THEOREM. Let α, λ ∈ Irr(H), where λ is linear, and write ξ = α + λ. Then ξ
has no irreducible extension to a solvable group unless ξ(1) is a prime power.

Proof. Suppose that χ ∈ Irr(G), where G is solvable. It suffices to show that if there
exists a subgroup H ⊆ G such that χH has the form α + λ, where α ∈ Irr(H) and λ is
linear, then, χ(1) must be a power of a prime. We can assume that χ is faithful, and we
proceed by induction on |G : H|.

Suppose H < X < G and let ψ ∈ Irr(X) lie under χ and over α. Then either ψH = α
or ψH = α + λ. If ψH = α, then χX = ψ + ν for some linear character ν of X, and thus
since |G : X| < |G : H|, the inductive hypothesis applied with X in place of H yields that
χ(1) is a prime power, as required. Otherwise, ψH = α + λ, and since |X : H| < |G : H|,
the inductive hypothesis with X in place of G implies that ψ(1) is a prime power, and thus
χ(1) is a prime power, and we are done in this case too. We may assume, therefore, that
H is a maximal subgroup of G.

Now let L = coreG(H), and let K/L be a chief factor of G. Then KH = G and K/L
is abelian, and it follows that K ∩H = L. Write ϕ = λL and note that because λ is linear,
ϕ must be linear and invariant in H. If H is the full stabilizer of ϕ in G, then λG = χ by
the Clifford correspondence, and thus χ(1) = |G : H| = |K : L|, which is a prime power.
We can thus assume that ϕ is invariant in G, and thus either ϕ extends to K, or else ϕ is
fully ramified in K. (See, for example, Corollary 7.4 of [3].)

We can assume that K < G since otherwise, H = L / G and thus the irreducible
constituents α and λ of χH have equal degree, and thus χ(1) = 2, and there is nothing
further to prove. We can thus choose a chief factor N/K of G, and we argue that χN is
irreducible.

Write M = N ∩ H. Then M > L, and writing µ = λM , we see that µ is invariant
in H. Let β ∈ Irr(N) lie under χ and over µ. Since β lies over µ and µ is invariant in
H, we see that every H-conjugate of β also lies over µ. Also, NH = G, and thus every
G-conjugate of β lies over µ. Equivalently, every irreducible constituent of χN lies over µ.

If χN is not irreducible, it follows that the multiplicity of µ as a constituent of χM
is at least 2, and thus µ lies under α as well as under λ. Since µ is invariant in H, it
follows that αM is a multiple of µ, and thus χM is a multiple of µ. Then M is central in G
because χ is faithful, and in particular, M / G. This is a contradiction, however, because
H ⊇ M > L = coreG(H). We deduce that χN is irreducible, as claimed, and we have
χN = β

If ϕ extends to K, then all characters of K lying over ϕ are linear, and thus all
irreducible constituents of χK are linear, and hence K is abelian. It follows that β has
degree dividing |N : K|, which is a prime power, and since χ(1) = β(1), we are done in
this case.

We can now assume that ϕ is fully ramified with respect to K/L, so we can write
|K : L| = e2 for some integer e, and we see that e is a prime power. Also, we can assume
that |K : L| and |N : K| are relatively prime because otherwise, N/L is a p-group for some
prime p, and thus χ(1) = β(1) is a power of p.

Now M/L is the unique (up to conjugacy) complement for K/L relative to L in N/L,
and hence it follows by Theorem 8.4 of [3] that there is a bijection from Irr(N |ϕ) onto
Irr(M |ϕ), where if σ 7→ τ , then σ(1) = eτ(1). Now λM is a linear extension of ϕ to M ,

10



and since M/L is abelian, it follows that all members of Irr(M |ϕ) are linear, and thus the
degree of each member of Irr(N |ϕ) is e. In particular, χ(1) = β(1) = e, and this is a prime
power.

Finally, we establish Theorem F, which we restate here.

(5.2) THEOREM. If H is a abelian, then every character of H has an irreducible
extension to a solvable group.

In fact, we prove the following somewhat more general result.

(5.3) THEOREM. Let ξ be a character of a solvable group H, and suppose that every
irreducible constituent of ξ is linear. Then ξ has an irreducible extension to a solvable
group.

Proof. We can certainly assume that ξ(1) > 1, and we proceed by induction on ξ(1).
First, if ξ = mη, for some integer m > 1 and character η of H, then by the inductive
hypothesis, there exist a group K ⊇ H and a character ψ ∈ Irr(K) such that ψH = η.
Now let U be a solvable group having some irreducible character ϕ with ϕ(1) = m. (For
example, we can take U to be the wreath product A o C, where A is a nontrivial abelian
group and C is cyclic of order m.) Now let G = K × U and χ = ψ × η, so χ ∈ Irr(G).
Then χH = ϕ(1)η = mη = ξ, and we are done in this case.

We can now assume that ξ is not a proper multiple of any character, and we write
ξ = λ1+λ2+ · · ·+λn, where the λi are linear characters of H. Now let G = H oC, where C
is cyclic of order n, and observe that G is solvable. Let B be the base group of the wreath
product G, so we can write B = H1 ×H2 × · · · ×Hn, where the Hi are isomorphic to H,
and we view (by abuse of notation) λi as a character of Hi. Now let λ = λ1×λ2×· · ·×λn,
so λ is a linear character of B.

We argue next that the stabilizer of λ in C is trivial. To see this, let c be a generator of
C, and assume that the notation has been chosen so that (Hi)

c = Hi+1 and (λi)
c = λi+1,

where the subscripts are to be read modulo n. Now if cr stabilizes λ, then λi = λi+r for
all i. Now when the λi are viewed as characters of H, it follows that

λ1 + · · ·+ λr = λ1+r + · · ·+ λ2r = λ1+2r + · · ·+ λ3r = · · · ,

and thus
ξ = (n/r)(λ1 + · · ·+ λr) ,

and it follows that n/r = 1 so cr = cn = 1, and thus the stabilizer of λ in C is trivial as
claimed. It follows that B is the stabilizer of λ in G, and hence λG is irreducible, and we
write χ = λG.

Now χB = λ+ λc + · · ·+ λc
n−1

, so if we identify H1 with H, it is not hard to see that
χH = λ1 + · · ·+ λn = ξ, as required.
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