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Abstract

Let G be a π-separable group with a Hall π-subgroup H or order n. For x ∈ H let λ(x) be the
number of Hall π-subgroups of G containing x. We show that

∏
d|n

∏
x∈H λ(xd)

n
d µ(d) = 1, where µ is

the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt
and Navarro–Rizo. We further investigate an additive version of this formula.
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1 Introduction

Navarro and Rizo [5] proved the following fixed point equation related to formulas of Brauer and
Wielandt.

Theorem 1 (Navarro–Rizo). Let P be a finite p-group acting on a p′-group N . Then

|CN (P )| =
(∏
x∈P

|CN (x)|
|CN (xp)|1/p

) p
|P |(p−1)

. (1.1)

For a finite group G and x ∈ P ∈ Sylp(G) let λG(x) be the number of Sylow p-subgroups of G
containing x. In the situation of Theorem 1, the Sylow p-subgroups of G := N ⋊ P have the form
nPn−1 for n ∈ N . Note that NG(P ) = CN (P )P . Suppose that x ∈ P ∩ nPn−1. Then there exists
y ∈ P such that x = nyn−1. Since [n, y] = xy−1 ∈ P ∩N = 1, it follows that x = y and n ∈ CN (x).
Hence, λG(x) = |CN (x) : CN (P )| for all x ∈ P . Now (1.1) turns into the more elegant formula:∏

x∈P
λG(x

p) =
∏
x∈P

λG(x)
p. (1.2)

We show that this holds more generally for all p-solvable groups. In fact, our main theorem applies
to π-separable groups, where π is any set of primes. Recall that a π-separable group G has a unique
conjugacy class of Hall π-subgroups. For a π-element x ∈ G let λG(x) be the number of Hall π-subgroups
of G containing x.
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Theorem 2. Let G be a π-separable group with a Hall π-subgroup H of order n. Then∏
d |n

(∏
x∈H

λG

(
xd

)n
d

)µ(d)
= 1, (1.3)

where µ is the Möbius function.

For π = {p}, (1.3) becomes (1.2). We will show in Proposition 4 that (1.3) holds for arbitrary groups
whenever they have a cyclic Hall π-subgroup (by a result of Wielandt, the Hall π-subgroups are
conjugate in this situation too, see [2, Satz III.5.8]). In general, the left hand side of (1.2) can be larger
or smaller than the right hand side (consider G = A5 and G = GL(3, 2) for p = 2). We did not find a
non-solvable group fulfilling (1.2) for p = 2.

In the last section we obtain the following additive version of (1.3).

Theorem 3. Let G be a finite group with a Hall subgroup H of order n. Then

1

n2

∑
d |n

µ(d)
∑
h∈H

λG(h
d)

n
d

is a non-negative integer, which is zero if and only if 1 ̸= H ⊴G.

2 The proof of Theorem 2

In the first step we reduce Theorem 2 to π-nilpotent groups. Let α(G) be the left hand side of (1.3).
Since

α(G) =
(∏
d |n

∏
x∈H

λG(x
d)µ(d)/d

)n
,

we may replace n by the product of the prime divisors of |H|. Suppose that p ∈ π does not divide n.
Then ⟨xd⟩ = ⟨xdp⟩ for all x ∈ H and d | n. Since λG(x

d) only depends on ⟨xd⟩, it follows that∏
d |np

∏
x∈H

λG(x
d)

np
d
µ(d) =

∏
d |n

∏
x∈H

λG(x
d)

np
d
µ(d)λG(x

d)−
n
d
µ(d) = α(G)p−1.

Hence, we can assume that n =
∏

p∈π p.

Suppose that N := Oπ(G) ̸= 1. Since N lies in every Hall π-subgroup of G, we have λG(xy) = λG(x)
for all x ∈ H and y ∈ N . Moreover, λG(x) = λG/N (xN). By induction on |G|, we obtain

α(G) =
∏
x∈H

∏
d |n

λG(x
d)

n
d
µ(d) =

∏
xN∈H/N

(∏
d |n

λG/N (xdN)
n
d
µ(d)

)|N |
= α(G/N)|N | = 1.

Thus, we may assume that Oπ(G) = 1. Then N := Oπ′(G) ̸= 1. By the argument from the introduction,
we have λHN (x) = |CN (x) : CN (H)| for x ∈ H. If x lies in another Hall π-subgroup K, then

λHN (x) = |CN (x) : CN (H)| = |CN (x) : CN (K)| = λKN (x),

because H and K are conjugate in G. It follows that λG(x) = λHN (x)λG/N (xN). Hence, by the same
argument as before, α(G) = α(HN)α(G/N). By induction on |G|, we may assume that G = HN , i. e.
G is a π-nilpotent group.

Next, we reduce to the case where H is cyclic. Under this assumption, the result holds for arbitrary
groups.
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Proposition 4. Let G be a group with a cyclic Hall subgroup H. Then (1.3) holds.

Proof. For every generator h of H we have λG(h) = 1. Now let h ∈ H be of order n
e < n. Then for

every d | e there exist exactly d elements x ∈ H such that xd = h. Hence, the exponent of λG(h) in
(1.3) is ∑

d | e

d
n

d
µ(d) = n

∑
d | e

µ(d) = 0.

For the general case, let Z be the set of cyclic subgroups of H. Instead of running over all elements
of H, we run over Z ∈ Z and then over z ∈ Z. In order to track multiplicity, we use the Möbius
function µ of the lattice Z. Since the subgroups of a cyclic group of order d are in bijection to the
divisors of d, we have µ(Z,W ) = µ(|W/Z|) whenever Z ≤ W and µ(Z,W ) = 0 otherwise. We define
f(Z) :=

∑
W∈Z µ(Z,W ). Recall the inversion formula for Euler’s totient function:

φ(n) =
∑
d |n

n

d
µ(d). (2.1)

For W ∈ Z, let [W ] be the set of generators of W . For any function γ : G → Z, we have∏
w∈W

γ(w) =
∏

Z≤W

∏
z∈[Z]

γ(z).

By Möbius inversion, it follows that
∏

w∈[W ] γ(w) =
∏

Z≤W

∏
z∈Z γ(z)µ(Z,W ) and

∏
x∈H

γ(x) =
∏
W∈Z

∏
w∈[W ]

γ(w) =
∏
W∈Z

∏
Z≤W

∏
z∈Z

γ(z)µ(Z,W ) =
∏
Z∈Z

(∏
z∈Z

γ(z)
)f(Z)

. (2.2)

Counting the number of factors on both sides also reveals that

|H| =
∑
Z∈Z

|Z|f(Z). (2.3)

Assuming G = NH, we have

λG(x) = |CN (x) : CN (H)| = |CN (x) : CN (Z)||CN (Z) : CN (H)| = λZN (x)|CN (Z) : CN (H)| (2.4)

for x ∈ Z ∈ Z. Now we can put everything together and apply Proposition 4:

α(G)
(2.2)
=

∏
Z∈Z

(∏
z∈Z

∏
d |n

λG(z
d)

n
d
µ(d)

)f(Z) (2.4)
=

∏
Z∈Z

(
α(NZ)

∏
d |n

|CN (Z) : CN (H)||Z|n
d
µ(d)

)f(Z)

(2.1)
=

∏
Z∈Z

|CN (Z) : CN (H)|φ(n)|Z|f(Z) (2.3)
=

(
|CN (H)|−|H|

∏
Z∈Z

|CN (Z)||Z|f(Z)
)φ(n)

.

At this point, the claim follows from Wielandt’s formula [8, Satz 2.3], which we prove for sake of
self-containment.

Theorem 5 (Wielandt). Let H be a group acting coprimely on a group N . Then

|CN (H)||H| =
∑
Z∈Z

|CN (Z)||Z|f(Z).
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Proof. Since Wielandt’s paper is hard to follow (even for a German native speaker), we use some
modern ingredients. We consider N as a H-set via conjugation. By a theorem of Hartley–Turull [1,
Lemma 2.6.2] (see also [7, Satz 9.20]), there exist a direct product A of elementary abelian groups
and an isomorphism of H-sets φ : N → A, i. e. φ(nh) = φ(n)h for n ∈ N and h ∈ H. It follows
that φ(CN (Z)) = CA(Z) for Z ∈ Z. Thus, we may replace N by A. Then N decomposes into its
(characteristic) Sylow subgroups N = N1 × . . .×Nk. Since CN (Z) = CN1(Z)× . . .×CNk

(Z), we may
assume further that N = N1 is elementary abelian. Thus, N is an FpH-module for some prime p not
dividing |H|. The corresponding Brauer character χ : H → C can be regarded as an ordinary character
since |H| is coprime to p. We further extend χ to the complex group algebra CH. For S ⊆ H let
S+ :=

∑
s∈S s ∈ CH. The additive version of (2.2) reads

H+ =
∑
Z∈Z

f(Z)Z+.

By the first orthogonality relation, χ(Z+) = |Z|[χZ , 1Z ], where [χZ , 1Z ] is the multiplicity of the trivial
character 1Z as a constituent of the restriction χZ . On the other hand, we have |CN (Z)| = p[χZ ,1Z ]. It
follows that

|CN (H)||H| = p|H|[χ,1H ] = pχ(H
+) = p

∑
Z∈Z |Z|[χZ ,1Z ]f(Z) =

∏
Z∈Z

|CN (Z)||Z|f(Z).

The proof of Theorem 5 relies on the Feit–Thompson theorem to guarantee that H or N is solvable.
In comparison, the proof of Theorem 1 does not require representation theory, but uses the fact that
Sylow subgroups are nilpotent.

3 The proof of Theorem 3

A π-element x ∈ G lies in a Hall π-subgroup H if and only if x ∈ NG(H). Hence, the map λG : H → Z is
the permutation character of the conjugation action of H on the set Hallπ(G) of all Hall π-subgroups
of G (we do not assume that these subgroups are conjugate in G). We use the following recipe to
construct a related character.

Theorem 6. Let χ be a character of a finite group H and let α be a character of a permutation group
A ≤ Sn. For a ∈ A let ci(a) be the number of cycles of a of length i. Then the map χα : H → C with

χα(h) =
1

|A|
∑
a∈A

α(a)
n∏

i=1

χ(hi)ci(a)

for h ∈ H is a character or the zero map.

Proof. See [3, Theorem 7.7.7 and Eq. (7.7.9)].

We assume the notation of Theorem 3 and choose a cyclic subgroup A ≤ Sn generated by a cycle of
length n. Let α ∈ Irr(A) be a faithful character. For B ≤ A of order d,

∑
b∈[B] α(b) is the sum of

the primitive roots of unity of order d. A simple Möbius inversion shows that this sum equals µ(d).
Moreover, every b ∈ [B] is a product of n/d disjoint cycles of length d. Thus, cd(b) = n/d and ci(b) = 0
for i ̸= d.
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We apply Theorem 6 with χ = λG. For h ∈ H we compute

χα(h) =
1

n

∑
d |n

∑
a∈A

|⟨a⟩|=d

α(a)λG(h
d)

n
d =

1

n

∑
d |n

µ(d)λG(h
d)

n
d .

Taking the scalar product of χα and the trivial character of H, shows that

βG(H) :=
1

n2

∑
h∈H

∑
d |n

µ(d)λG(h
d)

n
d

is a non-negative integer. This confirms the first part of Theorem 3.

If H ⊴ G, then λG(h) = 1 for all h ∈ H and it follows that βG(H) = 0 unless H = 1 (where
βG(H) = 1). Now assume that H is not normal in G. In particular, n > 1. Let t := |Hallπ(G)|. If
t = 2, then |G : NG(H)| = 2 and NG(H) ⊴ G. But this would imply that Hg = Oπ(NG(H)) = H for
every g ∈ G. Hence, t ≥ 3.

Next we investigate the contribution of d = 1 to βG(H). Note that λG(h)
n is the number of fixed

points of h on Hallπ(G)n, acting diagonally. The number of orbits of H on Hallπ(G) is at most tn/n.
Using Burnside’s lemma and the trivial estimate λG(h

d) ≤ t for d ̸= 1 and h ∈ H, we obtain

nβG(H) ≥ 1

n

∑
h∈H

λG(h)
n − 1

n

∑
h∈H

∑
1 ̸= d |n

t
n
d ≥ tn

n
−

∑
1 ̸= d |n

t
n
d .

It suffices to show that
n

∑
1 ̸= d |n

t
n
d < tn.

If n is a prime, this reduces to nt < tn and we are done as t ≥ 3. If n = 4 and t = 3, the claim can be
checked directly. In all other cases, one can verify that n ≤ t

n
2
−1 and

n
∑

1 ̸= d |n

t
n
d ≤

n−1∑
k=0

tk =
tn − 1

t− 1
< tn.

This finishes the proof.

We remark that the degree χα(1) = 1
n

∑
d|n µ(d)t

n/d has several interesting interpretations. For in-
stance, if t is a prime power, then χα(1) is the number of irreducible polynomials of degree n over the
finite field Ft (see [6, Corollary 10.2.3]). In general, χα(1) is the rank of the n-th quotient of the lower
central series of a free group of rank t (see [4, Theorem 5.11 and Corollary 5.12]).

We now give an interpretation of βG(H) in a special case. Suppose that H is nilpotent with regular
Sylow subgroups (for all primes). Then the d-powers form a subgroup Hd, and for every h ∈ Hd there
exist exactly |H : Hd| elements x ∈ H with xd = h (see [2, Hauptsatz III.10.5 and Satz III.10.6]).
Burnside’s lemma applied to Hd acting on Hallπ(G)n/d yields

βG(H) =
1

n

∑
d |n

µ(d)fn/d(H
d),

where fn/d(H
d) is the number of orbits of Hd on Hallπ(G)n/d.
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Finally, we comment on a curiosity. In order to produce similar quantities as βG(H), we may replace
λG by any character of any finite group G. For instance, let τ be the conjugation character of G = A5

on Syl3(G). We compute

1

602

∑
d | 60

µ(d)
∑
g∈G

τ(gd)
n
d = 277777777777777777777777777773333333332754803832758090933.

Similar curious numbers arise from G ∈ {S5,PSL(2, 9),PGL(2, 9)}. This can be explained by the
presents of large powers of τ(1) = 10.
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