On a fixed point formula of Navarro-Rizo

Benjamin Sambale*

January 10, 2024

Abstract

Let G be a π -separable group with a Hall π -subgroup H or order n. For $x \in H$ let $\lambda(x)$ be the number of Hall π -subgroups of G containing x. We show that $\prod_{d|n} \prod_{x \in H} \lambda(x^d)^{\frac{n}{d}\mu(d)} = 1$, where μ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro–Rizo. We further investigate an additive version of this formula.

Keywords: fixed points, coprime action, Sylow subgroups, p-solvable groups, π -separable groups **AMS classification:** 20D10, 20D20

1 Introduction

Navarro and Rizo [5] proved the following fixed point equation related to formulas of Brauer and Wielandt.

Theorem 1 (Navarro-Rizo). Let P be a finite p-group acting on a p'-group N. Then

$$|C_N(P)| = \left(\prod_{x \in P} \frac{|C_N(x)|}{|C_N(x^p)|^{1/p}}\right)^{\frac{p}{|P|(p-1)}}.$$
 (1.1)

For a finite group G and $x \in P \in \operatorname{Syl}_p(G)$ let $\lambda_G(x)$ be the number of Sylow p-subgroups of G containing x. In the situation of Theorem 1, the Sylow p-subgroups of $G := N \rtimes P$ have the form nPn^{-1} for $n \in N$. Note that $\operatorname{N}_G(P) = \operatorname{C}_N(P)P$. Suppose that $x \in P \cap nPn^{-1}$. Then there exists $y \in P$ such that $x = nyn^{-1}$. Since $[n, y] = xy^{-1} \in P \cap N = 1$, it follows that x = y and $n \in \operatorname{C}_N(x)$. Hence, $\lambda_G(x) = |\operatorname{C}_N(x) : \operatorname{C}_N(P)|$ for all $x \in P$. Now (1.1) turns into the more elegant formula:

$$\prod_{x \in P} \lambda_G(x^p) = \prod_{x \in P} \lambda_G(x)^p. \tag{1.2}$$

We show that this holds more generally for all p-solvable groups. In fact, our main theorem applies to π -separable groups, where π is any set of primes. Recall that a π -separable group G has a unique conjugacy class of Hall π -subgroups. For a π -element $x \in G$ let $\lambda_G(x)$ be the number of Hall π -subgroups of G containing x.

^{*}Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

Theorem 2. Let G be a π -separable group with a Hall π -subgroup H of order n. Then

$$\prod_{d \mid n} \left(\prod_{x \in H} \lambda_G(x^d)^{\frac{n}{d}} \right)^{\mu(d)} = 1, \tag{1.3}$$

where μ is the Möbius function.

For $\pi = \{p\}$, (1.3) becomes (1.2). We will show in Proposition 4 that (1.3) holds for arbitrary groups whenever they have a cyclic Hall π -subgroup (by a result of Wielandt, the Hall π -subgroups are conjugate in this situation too, see [2, Satz III.5.8]). In general, the left hand side of (1.2) can be larger or smaller than the right hand side (consider $G = A_5$ and G = GL(3,2) for p=2). We did not find a non-solvable group fulfilling (1.2) for p=2.

In the last section we obtain the following additive version of (1.3).

Theorem 3. Let G be a finite group with a Hall subgroup H of order n. Then

$$\frac{1}{n^2} \sum_{d \mid n} \mu(d) \sum_{h \in H} \lambda_G(h^d)^{\frac{n}{d}}$$

is a non-negative integer, which is zero if and only if $1 \neq H \leq G$.

2 The proof of Theorem 2

In the first step we reduce Theorem 2 to π -nilpotent groups. Let $\alpha(G)$ be the left hand side of (1.3). Since

$$\alpha(G) = \left(\prod_{d \mid n} \prod_{x \in H} \lambda_G(x^d)^{\mu(d)/d}\right)^n,$$

we may replace n by the product of the prime divisors of |H|. Suppose that $p \in \pi$ does not divide n. Then $\langle x^d \rangle = \langle x^{dp} \rangle$ for all $x \in H$ and $d \mid n$. Since $\lambda_G(x^d)$ only depends on $\langle x^d \rangle$, it follows that

$$\prod_{d \mid np} \prod_{x \in H} \lambda_G(x^d)^{\frac{np}{d}\mu(d)} = \prod_{d \mid n} \prod_{x \in H} \lambda_G(x^d)^{\frac{np}{d}\mu(d)} \lambda_G(x^d)^{-\frac{n}{d}\mu(d)} = \alpha(G)^{p-1}.$$

Hence, we can assume that $n = \prod_{p \in \pi} p$.

Suppose that $N := O_{\pi}(G) \neq 1$. Since N lies in every Hall π -subgroup of G, we have $\lambda_G(xy) = \lambda_G(x)$ for all $x \in H$ and $y \in N$. Moreover, $\lambda_G(x) = \lambda_{G/N}(xN)$. By induction on |G|, we obtain

$$\alpha(G) = \prod_{x \in H} \prod_{d \mid n} \lambda_G(x^d)^{\frac{n}{d}\mu(d)} = \prod_{xN \in H/N} \left(\prod_{d \mid n} \lambda_{G/N}(x^d N)^{\frac{n}{d}\mu(d)} \right)^{|N|} = \alpha(G/N)^{|N|} = 1.$$

Thus, we may assume that $O_{\pi}(G) = 1$. Then $N := O_{\pi'}(G) \neq 1$. By the argument from the introduction, we have $\lambda_{HN}(x) = |C_N(x)| : C_N(H)$ for $x \in H$. If x lies in another Hall π -subgroup K, then

$$\lambda_{HN}(x) = |C_N(x) : C_N(H)| = |C_N(x) : C_N(K)| = \lambda_{KN}(x),$$

because H and K are conjugate in G. It follows that $\lambda_G(x) = \lambda_{HN}(x)\lambda_{G/N}(xN)$. Hence, by the same argument as before, $\alpha(G) = \alpha(HN)\alpha(G/N)$. By induction on |G|, we may assume that G = HN, i. e. G is a π -nilpotent group.

Next, we reduce to the case where H is cyclic. Under this assumption, the result holds for arbitrary groups.

Proposition 4. Let G be a group with a cyclic Hall subgroup H. Then (1.3) holds.

Proof. For every generator h of H we have $\lambda_G(h) = 1$. Now let $h \in H$ be of order $\frac{n}{e} < n$. Then for every $d \mid e$ there exist exactly d elements $x \in H$ such that $x^d = h$. Hence, the exponent of $\lambda_G(h)$ in (1.3) is

$$\sum_{d \mid e} d \frac{n}{d} \mu(d) = n \sum_{d \mid e} \mu(d) = 0.$$

For the general case, let \mathcal{Z} be the set of cyclic subgroups of H. Instead of running over all elements of H, we run over $Z \in \mathcal{Z}$ and then over $z \in Z$. In order to track multiplicity, we use the Möbius function μ of the lattice \mathcal{Z} . Since the subgroups of a cyclic group of order d are in bijection to the divisors of d, we have $\mu(Z,W) = \mu(|W/Z|)$ whenever $Z \leq W$ and $\mu(Z,W) = 0$ otherwise. We define $f(Z) := \sum_{W \in \mathcal{Z}} \mu(Z,W)$. Recall the inversion formula for Euler's totient function:

$$\varphi(n) = \sum_{d \mid n} \frac{n}{d} \mu(d). \tag{2.1}$$

For $W \in \mathcal{Z}$, let [W] be the set of generators of W. For any function $\gamma: G \to \mathbb{Z}$, we have

$$\prod_{w \in W} \gamma(w) = \prod_{Z \le W} \prod_{z \in [Z]} \gamma(z).$$

By Möbius inversion, it follows that $\prod_{w \in [W]} \gamma(w) = \prod_{Z \leq W} \prod_{z \in Z} \gamma(z)^{\mu(Z,W)}$ and

$$\prod_{x \in H} \gamma(x) = \prod_{W \in \mathcal{Z}} \prod_{w \in [W]} \gamma(w) = \prod_{W \in \mathcal{Z}} \prod_{Z \le W} \prod_{z \in Z} \gamma(z)^{\mu(Z,W)} = \prod_{Z \in \mathcal{Z}} \left(\prod_{z \in Z} \gamma(z)\right)^{f(Z)}.$$
 (2.2)

Counting the number of factors on both sides also reveals that

$$|H| = \sum_{Z \in \mathcal{Z}} |Z| f(Z). \tag{2.3}$$

Assuming G = NH, we have

$$\lambda_G(x) = |C_N(x) : C_N(H)| = |C_N(x) : C_N(Z)||C_N(Z) : C_N(H)| = \lambda_{ZN}(x)|C_N(Z) : C_N(H)| \tag{2.4}$$

for $x \in Z \in \mathcal{Z}$. Now we can put everything together and apply Proposition 4:

$$\alpha(G) \stackrel{(2.2)}{=} \prod_{Z \in \mathcal{Z}} \left(\prod_{z \in Z} \prod_{d \mid n} \lambda_G(z^d)^{\frac{n}{d}\mu(d)} \right)^{f(Z)} \stackrel{(2.4)}{=} \prod_{Z \in \mathcal{Z}} \left(\alpha(NZ) \prod_{d \mid n} |C_N(Z) : C_N(H)|^{|Z|\frac{n}{d}\mu(d)} \right)^{f(Z)}$$

$$\stackrel{(2.1)}{=} \prod_{Z \in \mathcal{Z}} |C_N(Z) : C_N(H)|^{\varphi(n)|Z|f(Z)} \stackrel{(2.3)}{=} \left(|C_N(H)|^{-|H|} \prod_{Z \in \mathcal{Z}} |C_N(Z)|^{|Z|f(Z)} \right)^{\varphi(n)}.$$

At this point, the claim follows from Wielandt's formula [8, Satz 2.3], which we prove for sake of self-containment.

Theorem 5 (Wielandt). Let H be a group acting coprimely on a group N. Then

$$|\mathcal{C}_N(H)|^{|H|} = \sum_{Z \in \mathcal{Z}} |\mathcal{C}_N(Z)|^{|Z|f(Z)}.$$

Proof. Since Wielandt's paper is hard to follow (even for a German native speaker), we use some modern ingredients. We consider N as a H-set via conjugation. By a theorem of Hartley–Turull [1, Lemma 2.6.2] (see also [7, Satz 9.20]), there exist a direct product A of elementary abelian groups and an isomorphism of H-sets $\varphi: N \to A$, i.e. $\varphi(n^h) = \varphi(n)^h$ for $n \in N$ and $h \in H$. It follows that $\varphi(C_N(Z)) = C_A(Z)$ for $Z \in \mathcal{Z}$. Thus, we may replace N by A. Then N decomposes into its (characteristic) Sylow subgroups $N = N_1 \times \ldots \times N_k$. Since $C_N(Z) = C_{N_1}(Z) \times \ldots \times C_{N_k}(Z)$, we may assume further that $N = N_1$ is elementary abelian. Thus, N is an \mathbb{F}_pH -module for some prime p not dividing |H|. The corresponding Brauer character $\chi: H \to \mathbb{C}$ can be regarded as an ordinary character since |H| is coprime to p. We further extend χ to the complex group algebra $\mathbb{C}H$. For $S \subseteq H$ let $S^+ := \sum_{s \in S} s \in \mathbb{C}H$. The additive version of (2.2) reads

$$H^+ = \sum_{Z \in \mathcal{Z}} f(Z)Z^+.$$

By the first orthogonality relation, $\chi(Z^+) = |Z|[\chi_Z, 1_Z]$, where $[\chi_Z, 1_Z]$ is the multiplicity of the trivial character 1_Z as a constituent of the restriction χ_Z . On the other hand, we have $|\mathcal{C}_N(Z)| = p^{[\chi_Z, 1_Z]}$. It follows that

$$|\mathbf{C}_{N}(H)|^{|H|} = p^{|H|[\chi,1_{H}]} = p^{\chi(H^{+})} = p^{\sum_{Z \in \mathcal{Z}} |Z|[\chi_{Z},1_{Z}]f(Z)} = \prod_{Z \in \mathcal{Z}} |\mathbf{C}_{N}(Z)|^{|Z|f(Z)}.$$

The proof of Theorem 5 relies on the Feit–Thompson theorem to guarantee that H or N is solvable. In comparison, the proof of Theorem 1 does not require representation theory, but uses the fact that Sylow subgroups are nilpotent.

3 The proof of Theorem 3

A π -element $x \in G$ lies in a Hall π -subgroup H if and only if $x \in N_G(H)$. Hence, the map $\lambda_G : H \to \mathbb{Z}$ is the permutation character of the conjugation action of H on the set $\operatorname{Hall}_{\pi}(G)$ of all Hall π -subgroups of G (we do not assume that these subgroups are conjugate in G). We use the following recipe to construct a related character.

Theorem 6. Let χ be a character of a finite group H and let α be a character of a permutation group $A \leq S_n$. For $a \in A$ let $c_i(a)$ be the number of cycles of a of length i. Then the map $\chi_{\alpha} : H \to \mathbb{C}$ with

$$\chi_{\alpha}(h) = \frac{1}{|A|} \sum_{a \in A} \alpha(a) \prod_{i=1}^{n} \chi(h^i)^{c_i(a)}$$

for $h \in H$ is a character or the zero map.

Proof. See [3, Theorem 7.7.7 and Eq. (7.7.9)].

We assume the notation of Theorem 3 and choose a cyclic subgroup $A \leq S_n$ generated by a cycle of length n. Let $\alpha \in \operatorname{Irr}(A)$ be a faithful character. For $B \leq A$ of order d, $\sum_{b \in [B]} \alpha(b)$ is the sum of the primitive roots of unity of order d. A simple Möbius inversion shows that this sum equals $\mu(d)$. Moreover, every $b \in [B]$ is a product of n/d disjoint cycles of length d. Thus, $c_d(b) = n/d$ and $c_i(b) = 0$ for $i \neq d$.

We apply Theorem 6 with $\chi = \lambda_G$. For $h \in H$ we compute

$$\chi_{\alpha}(h) = \frac{1}{n} \sum_{\substack{d \mid n \\ |\langle a \rangle| = d}} \alpha(a) \lambda_G(h^d)^{\frac{n}{d}} = \frac{1}{n} \sum_{\substack{d \mid n }} \mu(d) \lambda_G(h^d)^{\frac{n}{d}}.$$

Taking the scalar product of χ_{α} and the trivial character of H, shows that

$$\beta_G(H) := \frac{1}{n^2} \sum_{h \in H} \sum_{d \mid n} \mu(d) \lambda_G(h^d)^{\frac{n}{d}}$$

is a non-negative integer. This confirms the first part of Theorem 3.

If $H \subseteq G$, then $\lambda_G(h) = 1$ for all $h \in H$ and it follows that $\beta_G(H) = 0$ unless H = 1 (where $\beta_G(H) = 1$). Now assume that H is not normal in G. In particular, n > 1. Let $t := |\operatorname{Hall}_{\pi}(G)|$. If t = 2, then $|G : \operatorname{N}_G(H)| = 2$ and $\operatorname{N}_G(H) \subseteq G$. But this would imply that $H^g = \operatorname{O}_{\pi}(\operatorname{N}_G(H)) = H$ for every $g \in G$. Hence, $t \geq 3$.

Next we investigate the contribution of d=1 to $\beta_G(H)$. Note that $\lambda_G(h)^n$ is the number of fixed points of h on $\operatorname{Hall}_{\pi}(G)^n$, acting diagonally. The number of orbits of H on $\operatorname{Hall}_{\pi}(G)$ is at most t^n/n . Using Burnside's lemma and the trivial estimate $\lambda_G(h^d) \leq t$ for $d \neq 1$ and $h \in H$, we obtain

$$n\beta_G(H) \ge \frac{1}{n} \sum_{h \in H} \lambda_G(h)^n - \frac{1}{n} \sum_{h \in H} \sum_{1 \ne d \mid n} t^{\frac{n}{d}} \ge \frac{t^n}{n} - \sum_{1 \ne d \mid n} t^{\frac{n}{d}}.$$

It suffices to show that

$$n \sum_{1 \neq d \mid n} t^{\frac{n}{d}} < t^n.$$

If n is a prime, this reduces to $nt < t^n$ and we are done as $t \ge 3$. If n = 4 and t = 3, the claim can be checked directly. In all other cases, one can verify that $n \le t^{\frac{n}{2}-1}$ and

$$n \sum_{1 \neq d \mid n} t^{\frac{n}{d}} \le \sum_{k=0}^{n-1} t^k = \frac{t^n - 1}{t - 1} < t^n.$$

This finishes the proof.

We remark that the degree $\chi_{\alpha}(1) = \frac{1}{n} \sum_{d|n} \mu(d) t^{n/d}$ has several interesting interpretations. For instance, if t is a prime power, then $\chi_{\alpha}(1)$ is the number of irreducible polynomials of degree n over the finite field \mathbb{F}_t (see [6, Corollary 10.2.3]). In general, $\chi_{\alpha}(1)$ is the rank of the n-th quotient of the lower central series of a free group of rank t (see [4, Theorem 5.11 and Corollary 5.12]).

We now give an interpretation of $\beta_G(H)$ in a special case. Suppose that H is nilpotent with regular Sylow subgroups (for all primes). Then the d-powers form a subgroup H^d , and for every $h \in H^d$ there exist exactly $|H:H^d|$ elements $x \in H$ with $x^d = h$ (see [2, Hauptsatz III.10.5 and Satz III.10.6]). Burnside's lemma applied to H^d acting on $\operatorname{Hall}_{\pi}(G)^{n/d}$ yields

$$\beta_G(H) = \frac{1}{n} \sum_{d \mid n} \mu(d) f_{n/d}(H^d),$$

where $f_{n/d}(H^d)$ is the number of orbits of H^d on $\operatorname{Hall}_{\pi}(G)^{n/d}$.

Finally, we comment on a curiosity. In order to produce similar quantities as $\beta_G(H)$, we may replace λ_G by any character of any finite group G. For instance, let τ be the conjugation character of $G = A_5$ on $\mathrm{Syl}_3(G)$. We compute

Similar curious numbers arise from $G \in \{S_5, PSL(2,9), PGL(2,9)\}$. This can be explained by the presents of large powers of $\tau(1) = 10$.

References

- [1] B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman character correspondence, J. Reine Angew. Math. **451** (1994), 175–219.
- [2] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-Verlag, Berlin, 1967.
- [3] A. Kerber, Applied finite group actions, Algorithms and Combinatorics, Vol. 19, Springer-Verlag, Berlin, 1999.
- [4] W. Magnus, A. Karrass and D. Solitar, *Combinatorial group theory*, Dover Publications, Inc., Mineola, NY, 2004.
- [5] G. Navarro and N. Rizo, A Brauer-Wielandt formula (with an application to character tables), Proc. Amer. Math. Soc. 144 (2016), 4199–4204.
- [6] S. Roman, Field theory, Graduate Texts in Mathematics, Vol. 158, Springer, New York, 2006.
- [7] B. Sambale, Endliche Permutationsgruppen, Springer Spektrum, Wiesbaden, 2017.
- [8] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer eindlichen Gruppe, Math. Z. 73 (1960), 146–158.