On a fixed point formula of Navarro-Rizo

Benjamin Sambale*

January 10, 2024

Abstract

Let G be a π-separable group with a Hall π-subgroup H or order n. For $x \in H$ let $\lambda(x)$ be the number of Hall π-subgroups of G containing x. We show that $\prod_{d \mid n} \prod_{x \in H} \lambda\left(x^{d}\right)^{\frac{n}{d} \mu(d)}=1$, where μ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro-Rizo. We further investigate an additive version of this formula.

Keywords: fixed points, coprime action, Sylow subgroups, p-solvable groups, π-separable groups
AMS classification: 20D10, 20D20

1 Introduction

Navarro and Rizo [5] proved the following fixed point equation related to formulas of Brauer and Wielandt.

Theorem 1 (Navarro-Rizo). Let P be a finite p-group acting on a p^{\prime}-group N. Then

$$
\begin{equation*}
\left|\mathrm{C}_{N}(P)\right|=\left(\prod_{x \in P} \frac{\left|\mathrm{C}_{N}(x)\right|}{\left|\mathrm{C}_{N}\left(x^{p}\right)\right|^{1 / p}}\right)^{\frac{p}{|P|(p-1)}} \tag{1.1}
\end{equation*}
$$

For a finite group G and $x \in P \in \operatorname{Syl}_{p}(G)$ let $\lambda_{G}(x)$ be the number of Sylow p-subgroups of G containing x. In the situation of Theorem 1, the Sylow p-subgroups of $G:=N \rtimes P$ have the form $n P n^{-1}$ for $n \in N$. Note that $\mathrm{N}_{G}(P)=\mathrm{C}_{N}(P) P$. Suppose that $x \in P \cap n P n^{-1}$. Then there exists $y \in P$ such that $x=n y n^{-1}$. Since $[n, y]=x y^{-1} \in P \cap N=1$, it follows that $x=y$ and $n \in \mathrm{C}_{N}(x)$. Hence, $\lambda_{G}(x)=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(P)\right|$ for all $x \in P$. Now (1.1) turns into the more elegant formula:

$$
\begin{equation*}
\prod_{x \in P} \lambda_{G}\left(x^{p}\right)=\prod_{x \in P} \lambda_{G}(x)^{p} \tag{1.2}
\end{equation*}
$$

We show that this holds more generally for all p-solvable groups. In fact, our main theorem applies to π-separable groups, where π is any set of primes. Recall that a π-separable group G has a unique conjugacy class of Hall π-subgroups. For a π-element $x \in G$ let $\lambda_{G}(x)$ be the number of Hall π-subgroups of G containing x.

[^0]Theorem 2. Let G be a π-separable group with a Hall π-subgroup H of order n. Then

$$
\begin{equation*}
\prod_{d \mid n}\left(\prod_{x \in H} \lambda_{G}\left(x^{d}\right)^{\frac{n}{d}}\right)^{\mu(d)}=1, \tag{1.3}
\end{equation*}
$$

where μ is the Möbius function.
For $\pi=\{p\}$, 1.3) becomes 1.2. We will show in Proposition 4 that 1.3) holds for arbitrary groups whenever they have a cyclic Hall π-subgroup (by a result of Wielandt, the Hall π-subgroups are conjugate in this situation too, see [2, Satz III.5.8]). In general, the left hand side of (1.2) can be larger or smaller than the right hand side (consider $G=A_{5}$ and $G=\mathrm{GL}(3,2)$ for $p=2$). We did not find a non-solvable group fulfilling (1.2) for $p=2$.
In the last section we obtain the following additive version of (1.3).
Theorem 3. Let G be a finite group with a Hall subgroup H of order n. Then

$$
\frac{1}{n^{2}} \sum_{d \mid n} \mu(d) \sum_{h \in H} \lambda_{G}\left(h^{d}\right)^{\frac{n}{d}}
$$

is a non-negative integer, which is zero if and only if $1 \neq H \unlhd G$.

2 The proof of Theorem 2

In the first step we reduce Theorem 2 to π-nilpotent groups. Let $\alpha(G)$ be the left hand side of (1.3). Since

$$
\alpha(G)=\left(\prod_{d \mid n} \prod_{x \in H} \lambda_{G}\left(x^{d}\right)^{\mu(d) / d}\right)^{n},
$$

we may replace n by the product of the prime divisors of $|H|$. Suppose that $p \in \pi$ does not divide n. Then $\left\langle x^{d}\right\rangle=\left\langle x^{d p}\right\rangle$ for all $x \in H$ and $d \mid n$. Since $\lambda_{G}\left(x^{d}\right)$ only depends on $\left\langle x^{d}\right\rangle$, it follows that

$$
\prod_{d \mid n p} \prod_{x \in H} \lambda_{G}\left(x^{d}\right)^{\frac{n p}{d} \mu(d)}=\prod_{d \mid n x \in H} \prod_{G \in} \lambda_{G}\left(x^{d}\right)^{\frac{n p}{d} \mu(d)} \lambda_{G}\left(x^{d}\right)^{-\frac{n}{d} \mu(d)}=\alpha(G)^{p-1} .
$$

Hence, we can assume that $n=\prod_{p \in \pi} p$.
Suppose that $N:=\mathrm{O}_{\pi}(G) \neq 1$. Since N lies in every Hall π-subgroup of G, we have $\lambda_{G}(x y)=\lambda_{G}(x)$ for all $x \in H$ and $y \in N$. Moreover, $\lambda_{G}(x)=\lambda_{G / N}(x N)$. By induction on $|G|$, we obtain

$$
\alpha(G)=\prod_{x \in H} \prod_{d \mid n} \lambda_{G}\left(x^{d}\right)^{\frac{n}{d} \mu(d)}=\prod_{x N \in H / N}\left(\prod_{d \mid n} \lambda_{G / N}\left(x^{d} N\right)^{\frac{n}{d} \mu(d)}\right)^{|N|}=\alpha(G / N)^{|N|}=1 .
$$

Thus, we may assume that $\mathrm{O}_{\pi}(G)=1$. Then $N:=\mathrm{O}_{\pi^{\prime}}(G) \neq 1$. By the argument from the introduction, we have $\lambda_{H N}(x)=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(H)\right|$ for $x \in H$. If x lies in another Hall π-subgroup K, then

$$
\lambda_{H N}(x)=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(H)\right|=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(K)\right|=\lambda_{K N}(x),
$$

because H and K are conjugate in G. It follows that $\lambda_{G}(x)=\lambda_{H N}(x) \lambda_{G / N}(x N)$. Hence, by the same argument as before, $\alpha(G)=\alpha(H N) \alpha(G / N)$. By induction on $|G|$, we may assume that $G=H N$, i. e. G is a π-nilpotent group.
Next, we reduce to the case where H is cyclic. Under this assumption, the result holds for arbitrary groups.

Proposition 4. Let G be a group with a cyclic Hall subgroup H. Then (1.3) holds.
Proof. For every generator h of H we have $\lambda_{G}(h)=1$. Now let $h \in H$ be of order $\frac{n}{e}<n$. Then for every $d \mid e$ there exist exactly d elements $x \in H$ such that $x^{d}=h$. Hence, the exponent of $\lambda_{G}(h)$ in (1.3) is

$$
\sum_{d \mid e} d \frac{n}{d} \mu(d)=n \sum_{d \mid e} \mu(d)=0 .
$$

For the general case, let \mathcal{Z} be the set of cyclic subgroups of H. Instead of running over all elements of H, we run over $Z \in \mathcal{Z}$ and then over $z \in Z$. In order to track multiplicity, we use the Möbius function μ of the lattice \mathcal{Z}. Since the subgroups of a cyclic group of order d are in bijection to the divisors of d, we have $\mu(Z, W)=\mu(|W / Z|)$ whenever $Z \leq W$ and $\mu(Z, W)=0$ otherwise. We define $f(Z):=\sum_{W \in \mathcal{Z}} \mu(Z, W)$. Recall the inversion formula for Euler's totient function:

$$
\begin{equation*}
\varphi(n)=\sum_{d \backslash n} \frac{n}{d} \mu(d) . \tag{2.1}
\end{equation*}
$$

For $W \in \mathcal{Z}$, let $[W]$ be the set of generators of W. For any function $\gamma: G \rightarrow \mathbb{Z}$, we have

$$
\prod_{w \in W} \gamma(w)=\prod_{Z \leq W} \prod_{z \in[Z]} \gamma(z)
$$

By Möbius inversion, it follows that $\prod_{w \in[W]} \gamma(w)=\prod_{Z \leq W} \prod_{z \in Z} \gamma(z)^{\mu(Z, W)}$ and

$$
\begin{equation*}
\prod_{x \in H} \gamma(x)=\prod_{W \in \mathcal{Z}} \prod_{w \in[W]} \gamma(w)=\prod_{W \in \mathcal{Z}} \prod_{Z \leq W} \prod_{z \in Z} \gamma(z)^{\mu(Z, W)}=\prod_{Z \in \mathcal{Z}}\left(\prod_{z \in Z} \gamma(z)\right)^{f(Z)} . \tag{2.2}
\end{equation*}
$$

Counting the number of factors on both sides also reveals that

$$
\begin{equation*}
|H|=\sum_{Z \in \mathcal{Z}}|Z| f(Z) . \tag{2.3}
\end{equation*}
$$

Assuming $G=N H$, we have

$$
\begin{equation*}
\lambda_{G}(x)=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(H)\right|=\left|\mathrm{C}_{N}(x): \mathrm{C}_{N}(Z)\right|\left|\mathrm{C}_{N}(Z): \mathrm{C}_{N}(H)\right|=\lambda_{Z N}(x)\left|\mathrm{C}_{N}(Z): \mathrm{C}_{N}(H)\right| \tag{2.4}
\end{equation*}
$$

for $x \in Z \in \mathcal{Z}$. Now we can put everything together and apply Proposition 4.

$$
\begin{aligned}
& \alpha(G) \stackrel{2.2}{=} \prod_{Z \in \mathcal{Z}}\left(\prod_{z \in Z} \prod_{d \mid n} \lambda_{G}\left(z^{d}\right)^{\frac{n}{d} \mu(d)}\right)^{f(Z)} \stackrel{2.4}{=} \prod_{Z \in \mathcal{Z}}\left(\alpha(N Z) \prod_{d \mid n}\left|\mathrm{C}_{N}(Z): \mathrm{C}_{N}(H)\right|^{|Z| \frac{n}{d} \mu(d)}\right)^{f(Z)} \\
& \stackrel{2.1 \mid}{=} \prod_{Z \in \mathcal{Z}}\left|\mathrm{C}_{N}(Z): \mathrm{C}_{N}(H)\right|^{\varphi(n)|Z| f(Z)} \stackrel{2.3 \mid}{=}\left(\left|\mathrm{C}_{N}(H)\right|^{-|H|} \prod_{Z \in \mathcal{Z}}\left|\mathrm{C}_{N}(Z)\right|^{|Z| f(Z)}\right)^{\varphi(n)}
\end{aligned}
$$

At this point, the claim follows from Wielandt's formula [8, Satz 2.3], which we prove for sake of self-containment.

Theorem 5 (Wielandt). Let H be a group acting coprimely on a group N. Then

$$
\left|\mathrm{C}_{N}(H)\right|^{|H|}=\sum_{Z \in \mathcal{Z}}\left|\mathrm{C}_{N}(Z)\right|^{|Z| f(Z)} .
$$

Proof. Since Wielandt's paper is hard to follow (even for a German native speaker), we use some modern ingredients. We consider N as a H-set via conjugation. By a theorem of Hartley-Turull [1, Lemma 2.6.2] (see also [7, Satz 9.20]), there exist a direct product A of elementary abelian groups and an isomorphism of H-sets $\varphi: N \rightarrow A$, i. e. $\varphi\left(n^{h}\right)=\varphi(n)^{h}$ for $n \in N$ and $h \in H$. It follows that $\varphi\left(\mathrm{C}_{N}(Z)\right)=\mathrm{C}_{A}(Z)$ for $Z \in \mathcal{Z}$. Thus, we may replace N by A. Then N decomposes into its (characteristic) Sylow subgroups $N=N_{1} \times \ldots \times N_{k}$. Since $\mathrm{C}_{N}(Z)=\mathrm{C}_{N_{1}}(Z) \times \ldots \times \mathrm{C}_{N_{k}}(Z)$, we may assume further that $N=N_{1}$ is elementary abelian. Thus, N is an $\mathbb{F}_{p} H$-module for some prime p not dividing $|H|$. The corresponding Brauer character $\chi: H \rightarrow \mathbb{C}$ can be regarded as an ordinary character since $|H|$ is coprime to p. We further extend χ to the complex group algebra $\mathbb{C} H$. For $S \subseteq H$ let $S^{+}:=\sum_{s \in S} s \in \mathbb{C} H$. The additive version of 2.2 reads

$$
H^{+}=\sum_{Z \in \mathcal{Z}} f(Z) Z^{+}
$$

By the first orthogonality relation, $\chi\left(Z^{+}\right)=|Z|\left[\chi_{Z}, 1_{Z}\right]$, where $\left[\chi_{Z}, 1_{Z}\right]$ is the multiplicity of the trivial character 1_{Z} as a constituent of the restriction χ_{Z}. On the other hand, we have $\left|\mathrm{C}_{N}(Z)\right|=p^{\left[\chi_{Z}, 1_{Z}\right]}$. It follows that

$$
\left|\mathrm{C}_{N}(H)\right|^{|H|}=p^{|H|\left[\chi, 1_{H}\right]}=p^{\chi\left(H^{+}\right)}=p^{\sum_{Z \in \mathcal{Z}}|Z|\left[\chi Z, 1_{Z}\right] f(Z)}=\prod_{Z \in \mathcal{Z}}\left|\mathrm{C}_{N}(Z)\right|^{|Z| f(Z)}
$$

The proof of Theorem 5 relies on the Feit-Thompson theorem to guarantee that H or N is solvable. In comparison, the proof of Theorem 1 does not require representation theory, but uses the fact that Sylow subgroups are nilpotent.

3 The proof of Theorem 3

A π-element $x \in G$ lies in a Hall π-subgroup H if and only if $x \in \mathrm{~N}_{G}(H)$. Hence, the map $\lambda_{G}: H \rightarrow \mathbb{Z}$ is the permutation character of the conjugation action of H on the set $\operatorname{Hall}_{\pi}(G)$ of all Hall π-subgroups of G (we do not assume that these subgroups are conjugate in G). We use the following recipe to construct a related character.

Theorem 6. Let χ be a character of a finite group H and let α be a character of a permutation group $A \leq S_{n}$. For $a \in A$ let $c_{i}(a)$ be the number of cycles of a of length i. Then the map $\chi_{\alpha}: H \rightarrow \mathbb{C}$ with

$$
\chi_{\alpha}(h)=\frac{1}{|A|} \sum_{a \in A} \alpha(a) \prod_{i=1}^{n} \chi\left(h^{i}\right)^{c_{i}(a)}
$$

for $h \in H$ is a character or the zero map.

Proof. See [3, Theorem 7.7.7 and Eq. (7.7.9)].

We assume the notation of Theorem 3 and choose a cyclic subgroup $A \leq S_{n}$ generated by a cycle of length n. Let $\alpha \in \operatorname{Irr}(A)$ be a faithful character. For $B \leq A$ of order $d, \sum_{b \in[B]} \alpha(b)$ is the sum of the primitive roots of unity of order d. A simple Möbius inversion shows that this sum equals $\mu(d)$. Moreover, every $b \in[B]$ is a product of n / d disjoint cycles of length d. Thus, $c_{d}(b)=n / d$ and $c_{i}(b)=0$ for $i \neq d$.

We apply Theorem 6 with $\chi=\lambda_{G}$. For $h \in H$ we compute

$$
\chi_{\alpha}(h)=\frac{1}{n} \sum_{d \mid n} \sum_{\substack{a \in A \\|\langle a\rangle|=d}} \alpha(a) \lambda_{G}\left(h^{d}\right)^{\frac{n}{d}}=\frac{1}{n} \sum_{d \mid n} \mu(d) \lambda_{G}\left(h^{d}\right)^{\frac{n}{d}} .
$$

Taking the scalar product of χ_{α} and the trivial character of H, shows that

$$
\beta_{G}(H):=\frac{1}{n^{2}} \sum_{h \in H} \sum_{d \mid n} \mu(d) \lambda_{G}\left(h^{d}\right)^{\frac{n}{d}}
$$

is a non-negative integer. This confirms the first part of Theorem 3.
If $H \unlhd G$, then $\lambda_{G}(h)=1$ for all $h \in H$ and it follows that $\beta_{G}(H)=0$ unless $H=1$ (where $\left.\beta_{G}(H)=1\right)$. Now assume that H is not normal in G. In particular, $n>1$. Let $t:=\left|\operatorname{Hall}_{\pi}(G)\right|$. If $t=2$, then $\left|G: \mathrm{N}_{G}(H)\right|=2$ and $\mathrm{N}_{G}(H) \unlhd G$. But this would imply that $H^{g}=\mathrm{O}_{\pi}\left(\mathrm{N}_{G}(H)\right)=H$ for every $g \in G$. Hence, $t \geq 3$.

Next we investigate the contribution of $d=1$ to $\beta_{G}(H)$. Note that $\lambda_{G}(h)^{n}$ is the number of fixed points of h on $\operatorname{Hall}_{\pi}(G)^{n}$, acting diagonally. The number of orbits of H on $\operatorname{Hall}_{\pi}(G)$ is at most t^{n} / n. Using Burnside's lemma and the trivial estimate $\lambda_{G}\left(h^{d}\right) \leq t$ for $d \neq 1$ and $h \in H$, we obtain

$$
n \beta_{G}(H) \geq \frac{1}{n} \sum_{h \in H} \lambda_{G}(h)^{n}-\frac{1}{n} \sum_{h \in H} \sum_{1 \neq d \mid n} t^{\frac{n}{d}} \geq \frac{t^{n}}{n}-\sum_{1 \neq d \mid n} t^{\frac{n}{d}}
$$

It suffices to show that

$$
n \sum_{1 \neq d \mid n} t^{\frac{n}{d}}<t^{n}
$$

If n is a prime, this reduces to $n t<t^{n}$ and we are done as $t \geq 3$. If $n=4$ and $t=3$, the claim can be checked directly. In all other cases, one can verify that $n \leq t^{\frac{n}{2}-1}$ and

$$
n \sum_{1 \neq d \mid n} t^{\frac{n}{d}} \leq \sum_{k=0}^{n-1} t^{k}=\frac{t^{n}-1}{t-1}<t^{n}
$$

This finishes the proof.
We remark that the degree $\chi_{\alpha}(1)=\frac{1}{n} \sum_{d \mid n} \mu(d) t^{n / d}$ has several interesting interpretations. For instance, if t is a prime power, then $\chi_{\alpha}(1)$ is the number of irreducible polynomials of degree n over the finite field \mathbb{F}_{t} (see [6, Corollary 10.2.3]). In general, $\chi_{\alpha}(1)$ is the rank of the n-th quotient of the lower central series of a free group of rank t (see [4, Theorem 5.11 and Corollary 5.12]).

We now give an interpretation of $\beta_{G}(H)$ in a special case. Suppose that H is nilpotent with regular Sylow subgroups (for all primes). Then the d-powers form a subgroup H^{d}, and for every $h \in H^{d}$ there exist exactly $\left|H: H^{d}\right|$ elements $x \in H$ with $x^{d}=h$ (see [2, Hauptsatz III.10.5 and Satz III.10.6]). Burnside's lemma applied to H^{d} acting on $\operatorname{Hall}_{\pi}(G)^{n / d}$ yields

$$
\beta_{G}(H)=\frac{1}{n} \sum_{d \mid n} \mu(d) f_{n / d}\left(H^{d}\right)
$$

where $f_{n / d}\left(H^{d}\right)$ is the number of orbits of H^{d} on $\operatorname{Hall}_{\pi}(G)^{n / d}$.

Finally, we comment on a curiosity. In order to produce similar quantities as $\beta_{G}(H)$, we may replace λ_{G} by any character of any finite group G. For instance, let τ be the conjugation character of $G=A_{5}$ on $\mathrm{Syl}_{3}(G)$. We compute

$$
\frac{1}{60^{2}} \sum_{d \mid 60} \mu(d) \sum_{g \in G} \tau\left(g^{d}\right)^{\frac{n}{d}}=277777777777777777777777777773333333332754803832758090933
$$

Similar curious numbers arise from $G \in\left\{S_{5}, \operatorname{PSL}(2,9), \operatorname{PGL}(2,9)\right\}$. This can be explained by the presents of large powers of $\tau(1)=10$.

References

[1] B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman character correspondence, J. Reine Angew. Math. 451 (1994), 175-219.
[2] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-Verlag, Berlin, 1967.
[3] A. Kerber, Applied finite group actions, Algorithms and Combinatorics, Vol. 19, Springer-Verlag, Berlin, 1999.
[4] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Dover Publications, Inc., Mineola, NY, 2004.
[5] G. Navarro and N. Rizo, A Brauer-Wielandt formula (with an application to character tables), Proc. Amer. Math. Soc. 144 (2016), 4199-4204.
[6] S. Roman, Field theory, Graduate Texts in Mathematics, Vol. 158, Springer, New York, 2006.
[7] B. Sambale, Endliche Permutationsgruppen, Springer Spektrum, Wiesbaden, 2017.
[8] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer eindlichen Gruppe, Math. Z. 73 (1960), 146-158.

[^0]: *Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

