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Abstract

Let G be a m-separable group with a Hall 7-subgroup H or order n. For € H let A(z) be the
number of Hall m-subgroups of G containing . We show that [ [, [1.cx Mz®) @D =1, where p is
the Mobius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt
and Navarro-Rizo. We further investigate an additive version of this formula.
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1 Introduction

Navarro and Rizo [5] proved the following fixed point equation related to formulas of Brauer and
Wielandt.

Theorem 1 (Navarro-Rizo). Let P be a finite p-group acting on a p'-group N. Then
Cn(z)| \Po—n
o= (I ey o)™ (1)

For a finite group G and x € P € Syl,(G) let Ag(x) be the number of Sylow p-subgroups of G
containing . In the situation of the Sylow p-subgroups of G := N x P have the form
nPn~! for n € N. Note that Ng(P) = Cy(P)P. Suppose that z € P N nPn~!. Then there exists
y € P such that z = nyn~!. Since [n,y] = zy~! € PN N = 1, it follows that # = 3 and n € Cy(z).
Hence, Ag(z) = |Cn(z) : Cy(P)] for all z € P. Now turns into the more elegant formula:

I 2c@) =[] rel2). (1.2)

zeP zeP

We show that this holds more generally for all p-solvable groups. In fact, our main theorem applies
to m-separable groups, where 7 is any set of primes. Recall that a m-separable group G has a unique
conjugacy class of Hall w-subgroups. For a m-element = € G let Ag(z) be the number of Hall 7-subgroups
of G containing z.
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Theorem 2. Let G be a m-separable group with a Hall w-subgroup H of order n. Then
n\ p(d)
[T(TT rale”) )™ =1, (1.3)
dln z€H
where p 1s the Mdbius function.

For m = {p}, (1.3) becomes (1.2)). We will show in [Proposition 4] that (|1.3) holds for arbitrary groups

whenever they have a cyclic Hall m-subgroup (by a result of Wielandt, the Hall m-subgroups are
conjugate in this situation too, see [2, Satz II1.5.8]). In general, the left hand side of can be larger
or smaller than the right hand side (consider G = A5 and G = GL(3,2) for p = 2). We did not find a
non-solvable group fulfilling for p = 2.

In the last section we obtain the following additive version of ((1.3)).

Theorem 3. Let G be a finite group with a Hall subgroup H of order n. Then
1 n
= > uld) Y Aa(h?)i
d|ln heH

s a non-negative integer, which is zero if and only if 1 2 H < @G.

2 The proof of [Theorem 2|

In the first step we reduce to m-nilpotent groups. Let a(G) be the left hand side of (1.3)).

Since
o(G) = (T] IT Aty /)",

d|nzeH

we may replace n by the product of the prime divisors of |H|. Suppose that p € m does not divide n.
Then (x?) = (29) for all x € H and d | n. Since Ag(x?) only depends on (z?), it follows that

IT II de@h @@ =TT IT Acta®) T4 Dag ()21 D = a(Gyr~".
d|npxreH d|nzeH
Hence, we can assume that n =[] p.

Suppose that N := O;(G) # 1. Since N lies in every Hall m-subgroup of G, we have A\g(zy) = Ag(x)
for all z € H and y € N. Moreover, A\g(z) = Ag/n(zN). By induction on |G|, we obtain

a(G) = H HAg(gjd)%N(d) = H <H )\G/N(de)%#(d)>|N‘ — CY(G/N)'N‘ -1
z€H d|n sNeH/N d|n

Thus, we may assume that O, (G) = 1. Then N := O,/(G) # 1. By the argument from the introduction,
we have Agn(z) = |Cn(x) : Cy(H)| for x € H. If x lies in another Hall m-subgroup K, then

Aan(z) = [Cn(z) : Cn(H)| = |Cn(z) : CN(K)| = Axn(z),

because H and K are conjugate in G. It follows that A\g(x) = Agn(7)A\g/n(N). Hence, by the same
argument as before, a(G) = a(HN)a(G/N). By induction on |G|, we may assume that G = HN, i.e.
G is a m-nilpotent group.

Next, we reduce to the case where H is cyclic. Under this assumption, the result holds for arbitrary
groups.



Proposition 4. Let G be a group with a cyclic Hall subgroup H. Then (1.3)) holds.

Proof. For every generator h of H we have A\g(h) = 1. Now let h € H be of order 2 < n. Then for
every d | e there exist exactly d elements x € H such that ¢ = h. Hence, the exponent of A\g(h) in

is .
Zdau(d) =nY u(d)=0. O

dle dle

For the general case, let Z be the set of cyclic subgroups of H. Instead of running over all elements
of H, we run over Z € Z and then over z € Z. In order to track multiplicity, we use the Mobius
function p of the lattice Z. Since the subgroups of a cyclic group of order d are in bijection to the
divisors of d, we have u(Z, W) = pu(|W/Z|) whenever Z < W and p(Z, W) = 0 otherwise. We define
f(Z) = ez u(Z,W). Recall the inversion formula for Euler’s totient function:

o(n) = > =p(d). (2.1)

d|n

For W € Z, let [W] be the set of generators of W. For any function v : G — Z, we have

I =1 II~®

wew Z<W z€[Z)

By Mobius inversion, it follows that Hwe[W} y(w) = HZSW [Tes 7 (2)MZW) and

[I@=11 I =11 II =11 (I1)"" e

x€H WeZ we[W] WeZ Z<W zeZ ZeZ zeZ

Counting the number of factors on both sides also reveals that

H| =" |Z|f(2). (2.3)

ZeZ

Assuming G = N H, we have
A(x) = [Cn(z) : Cy(H)| = [Cn(z) : Cn(Z)[|CNn(Z) : Cn(H)| = Azn(2)|Cn(Z) : Cy(H)|  (2.4)

for x € Z € Z. Now we can put everything together and apply [Proposition 4}

& & H<H [ “(d) e H( (N2)[]Icn(2) CN(H)||ZI%u(d)>f(Z)

Z€Z z2€Zd|n d|n
() n e3) o(n)
I] ICn(2) : Cn () )1217(2) B3 ( )T Ion(z))20 ) .
Zez Zez

At this point, the claim follows from Wielandt’s formula [8, Satz 2.3], which we prove for sake of
self-containment.

Theorem 5 (Wielandt). Let H be a group acting coprimely on a group N. Then

|C v (H)[H = Z |Cn(2)]12172)
Zez



Proof. Since Wielandt’s paper is hard to follow (even for a German native speaker), we use some
modern ingredients. We consider N as a H-set via conjugation. By a theorem of Hartley—Turull [I,
Lemma 2.6.2| (see also [7, Satz 9.20]), there exist a direct product A of elementary abelian groups
and an isomorphism of H-sets ¢ : N — A, i.e. ¢(n") = @(n)" for n € N and h € H. It follows
that ¢(Cn(Z)) = Ca(Z) for Z € Z. Thus, we may replace N by A. Then N decomposes into its
(characteristic) Sylow subgroups N = Nj X ... x N. Since Cy(Z) = Cn,(Z) x ... x Cn,(Z), we may
assume further that N = N is elementary abelian. Thus, N is an F,H-module for some prime p not
dividing |H|. The corresponding Brauer character x : H — C can be regarded as an ordinary character
since |H| is coprime to p. We further extend x to the complex group algebra CH. For S C H let
St =3 cgs € CH. The additive version of reads

H =Y f(2)Z".

VA4

By the first orthogonality relation, x(Z) = |Z|[xz, 12|, where [xz, 17] is the multiplicity of the trivial
character 17 as a constituent of the restriction xz. On the other hand, we have |Cx(Z)| = pxz:12]. Tt
follows that

|QN(H)|IH\ :p|H|[x,1H] :px(m) :pZZ€Z|ZI[xZ,1Z]f(z) _ H !CN(Z)UZ‘f(Z). -
ZeZ

The proof of relies on the Feit-Thompson theorem to guarantee that H or N is solvable.
In comparison, the proof of does not require representation theory, but uses the fact that
Sylow subgroups are nilpotent.

3 The proof of [Theorem 3|

A m-element z € G lies in a Hall m-subgroup H if and only if # € Ng(H). Hence, the map A\¢ : H — Z is
the permutation character of the conjugation action of H on the set Hall;(G) of all Hall w-subgroups
of G (we do not assume that these subgroups are conjugate in G). We use the following recipe to
construct a related character.

Theorem 6. Let x be a character of a finite group H and let o be a character of a permutation group
A< S,. Fora € A let ¢i(a) be the number of cycles of a of length i. Then the map xo : H — C with

n

Xa(h) _ |jl| Z a(a) HX(hi)ci(a)

a€A i=1

for h € H is a character or the zero map.
Proof. See |3, Theorem 7.7.7 and Eq. (7.7.9)]. O

We assume the notation of and choose a cyclic subgroup A < S,, generated by a cycle of
length n. Let a € Irr(A) be a faithful character. For B < A of order d, 3¢5 (b) is the sum of
the primitive roots of unity of order d. A simple Mébius inversion shows that this sum equals p(d).
Moreover, every b € [B] is a product of n/d disjoint cycles of length d. Thus, ¢4(b) = n/d and ¢;(b) = 0
for i # d.



We apply with x = A\g. For h € H we compute

ZZ (a)Ag(hh)i = = ZM JAa(hh)d.
d\n

d|n acA
[(a)|=d

Taking the scalar product of x, and the trivial character of H, shows that

D) WO

heH d|n
is a non-negative integer. This confirms the first part of
If H <G, then Ag(h) = 1 for all h € H and it follows that Sg(H) = 0 unless H = 1 (where

Ba(H) = 1). Now assume that H is not normal in G. In particular, n > 1. Let ¢ := | Hall(G)|. If
t =2, then |G : Ng(H)| = 2 and Ng(H) < G. But this would imply that HY = O,(Ng(H)) = H for
every g € G. Hence, t > 3.

Next we investigate the contribution of d = 1 to Sg(H). Note that Ag(h)"™ is the number of fixed
points of h on Hall;(G)", acting diagonally. The number of orbits of H on Hall,(G) is at most t"/n.
Using Burnside’s lemma and the trivial estimate Ag(h%) <t for d # 1 and h € H, we obtain

I EEDNEOEED I W EE DD

heH heH1#d|n 1#d|n

noYy i<t

1#d|n

It suffices to show that

If n is a prime, this reduces to nt < t" and we are done as t > 3. If n =4 and t = 3, the claim can be
checked directly. In all other cases, one can verify that n < ¢z~ and

This finishes the proof.

We remark that the degree x,(1) = %de 1(d)t™¢ has several interesting interpretations. For in-
stance, if ¢ is a prime power, then y,(1) is the number of irreducible polynomials of degree n over the
finite field F; (see [0, Corollary 10.2.3]). In general, x,(1) is the rank of the n-th quotient of the lower
central series of a free group of rank ¢ (see [4, Theorem 5.11 and Corollary 5.12]).

We now give an interpretation of Bz (H) in a special case. Suppose that H is nilpotent with regular
Sylow subgroups (for all primes). Then the d-powers form a subgroup H?, and for every h € H? there
exist exactly |H : H? elements x € H with 2¢ = h (see [2, Hauptsatz 111.10.5 and Satz 111.10.6]).
Burnside’s lemma applied to H? acting on Hall,(G)™? yields

= % Z /’L(d)fn/d(Hd)a

d|n

where fn/d(Hd) is the number of orbits of H? on Hall,(G)™/.



Finally, we comment on a curiosity. In order to produce similar quantities as Sg(H), we may replace
Ag by any character of any finite group G. For instance, let 7 be the conjugation character of G = As
on Syls(G). We compute

1 0
o > uld)> (gt T = 0TTTTITTTTITTTITITTITITTTTT73333333332754803832758090933.
d|60 geG

Similar curious numbers arise from G € {S5,PSL(2,9),PGL(2,9)}. This can be explained by the
presents of large powers of 7(1) = 10.
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