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Abstract

Let B be a p-block of a finite group with abelian defect group D. Suppose that D has no elementary abelian
direct summand of order p4. Then we show that B satisfies Brauer’s k(B)-Conjecture (i. e. k(B) ≤ |D|).
Together with former results, it follows that Brauer’s k(B)-Conjecture holds for all blocks of defect at most
3. We also obtain some related results.
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1 Introduction

Let B be a p-block of a finite group G with abelian defect group D. Using the classification of the finite simple
groups, it has been shown by Kessar and Malle [12] that all irreducible characters of B have height 0. This
confirms one direction of Brauer’s Height Zero Conjecture. As a consequence of this strong result, we concluded
in [23] (see also [22, Chapter 14]) that k(B) ≤ |D| 32 where k(B) denotes the number of irreducible characters
in B. This improves the famous Brauer-Feit [2] bound which states that k(B) ≤ |D|2 without any hypotheses
on D. Both inequalities are motivated by Brauer’s k(B)-Conjecture asserting k(B) ≤ |D|.

For p-solvable groups G, Brauer’s k(B)-Conjecture has been reduced to the so-called k(GV )-problem by Na-
gao [15]. Eventually, the k(GV )-problem has been solved again by relying on the classification (see [28]). Nev-
ertheless, Brauer’s Conjecture remains open for arbitrary groups G. The aim of the present paper is to carry
over some arguments from the k(GV )-problem to the general case.

In a recent paper [26, Theorem 20] by the present author, it became clear that the bounds on k(B) depend more
on the rank of the (abelian) defect group D than on just the order |D|. In particular, we verified k(B) ≤ |D|
under the condition that D has no elementary abelian direct summand of order p3. The proof relies on the
existence of certain regular orbits of coprime linear groups. Since such regular orbits do not always exist, the
methods used in that paper were limited. In particular, we could not deal with the case |D| = 73. Now in the
present paper we settle this special case and show that (surprisingly) the larger primes do not cause such trouble.
This is related to the fact that linear groups over “large” fields usually have regular orbits. This observation has
already been used in [20, Theorem 2.1(iii)]. Eventually, we show the following.

Theorem A. Let B be a p-block with abelian defect group D. Suppose that D has no elementary abelian direct
summand of order p4. Then k(B) ≤ |D|.

This applies of course whenever D is abelian of rank at most 3. In this case, Brauer [1, (7D)] has obtained that
k(B) ≤ |D| 53 and this was subsequently improved to k(B) ≤ |D| 43 in [23, Proposition 2]. Note that Brauer [1,
(7D)] has already shown his conjecture provided D is abelian of rank 2 (see also [6, Theorem VII.10.13]).
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For the proof of Theorem A, we make use of a result by Köhler-Pahlings [14] about large orbits of linear
quasisimple groups. As another ingredient, we use computer calculations with GAP [7] to identify linear groups
of small dimensions over finite fields and to enumerate certain configurations of generalized decomposition
matrices. These computations are easy to implement, but cannot be replaced by reasonable hand calculations.
Since we are using the result by Kessar-Malle mentioned in the beginning, our proofs implicitly rely on the
classification of the finite simple groups. Many of our arguments also depend on the fact that the rank 3 is
a prime number. One should point out that the general situation seems to be much harder than the k(GV )-
problem. For instance, there is not even a reduction to the case where the inertial quotient of B acts irreducibly
on D (see e. g. [26, Remark before Proposition 22], cf. [28, Proposition 3.1a]).

Since Brauer’s k(B)-Conjecture for the non-abelian defect groups of order p3 has been settled in [26, Theorem 5],
we obtain the following corollary.

Theorem B. Every p-block B of defect at most 3 satisfies k(B) ≤ p3.

Previously, this has been known only for blocks of defect at most 2 (see [6, Theorem VII.10.14]). Finally, we
also improve the general bound k(B) ≤ |D| 32 obtained in [23] (see Theorem 6).

In addition to the notation already introduced, we use the following. The number of irreducible Brauer characters
of B is denoted by l(B). Let bD be a Brauer correspondent of B in CG(D). Then I(B) := NG(D, bD)/CG(D)
is the inertial quotient (recall that D is abelian). It is known that I(B) is a p′-group and we will often regard
it as a subgroup of Aut(D). A subsection for B is a pair (u, bu) where u ∈ D and bu is a Brauer correspondent
of B in CG(u). A cyclic group of order n is denoted by Cn. For convenience: Cmn = Cn× . . .×Cn (m copies).

2 Results

We first deal with a special case.

Lemma 1. Let B be a block of a finite group with defect group D ∼= C2
7 and I(B) ∼= SL(2, 3) such that

D o I(B) ∼= SmallGroup(1176,214). Then there exists a basic set for B such that the Cartan matrix C of B
satisfies tr(C) ≤ 49.

Proof. We will construct C with the algorithm described in [22, Section 4.2]. There is a set of representatives
for the I(B)-conjugacy classes of D of the form 1, x, x2, x4, y. The corresponding orbit lengths are 1, 8, 8, 8, 24.
It follows that y is I(B)-conjugate to all its non-trivial powers, since otherwise there would be a second reg-
ular orbit. If (y, by) is a corresponding B-subsection, then I(by) = CI(B)(y) = 1 = l(by) and the generalized
decomposition numbers dyχψ contribute one integral column in the generalized decomposition matrix Q.

Now we investigate the generalized decomposition numbers with respect to the subsection (x, bx). Since bx
dominates a block bx of CG(x)/〈x〉 with defect 1, it is easy to see that l(bx) = 3 and the Cartan matrix Cx of
bx has the form

Cx = 7

3 2 2
2 3 2
2 2 3

 (2.1)

up to basic sets (see [4, Theorem 8.6]). Let Qx ∈ Ck(B)×3 be the part of the generalized decomposition matrix
such that Cx = QT

xQx. Since x and x−1 are I(B)-conjugate, it may happen that two columns of Qx are
complex conjugates of each other. In this case, NG(〈x〉, bx) interchanges two irreducible Brauer characters of
bx. The same holds for bx. Since bx has defect 1, we have k(bx) = 5. It follows from Dade’s theory of cyclic
defect groups that there are one or two pairs of non-stable irreducible characters in Irr(bx) under the action of
N := NG(〈x〉, bx)/〈x〉. Since |N : CG(x)/〈x〉| = |NG(〈x〉, bx) : CG(x)| = 2, there are seven or four characters in
Irr(N) lying over bx (in the sense of [16, Lemma 5.5.7]). Every block BN of N which covers bx has defect 1 and

therefore k(BN ) ∈ {5, 7}. Consequently, BN = bx
N

is the only block covering bx and k(BN ) = 7. Then however
l(BN ) 6= 3, but we should have l(BN ) = 3. This contradiction shows that Qx is a real matrix.

Let ζ ∈ C be a primitive 7-th root of unity, and let τi := ζi + ζ−i for i = 2, 3. The columns of Qx have the form
qi = ai + biτ2 + ciτ3 with ai, bi, ci ∈ Zk(B) for i = 1, 2, 3. We are interested in the pairwise scalar products of
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the ai, bi and ci. Let γ be the Galois automorphism of Q(ζ) such that γ(ζ) = ζ2. Then γ(Qx) = Qx2 . By the
orthogonality relation, we have QT

xQx2 = 0. Let A1 be the matrix with columns a1, b1 and c1. Then

(1, τ2, τ3)AT
1A1

 1
τ2
τ3

 = 21.

This can be rephrased as a linear system of the form

((1, τ2, τ3)⊗ (1, τ2, τ3))X = 21

where X is the vectorization of AT
1A1 and ⊗ denotes the Kronecker product. Together with the other orthogo-

nality relations we obtain

AT
1A1 = 3

3 1 1
1 2 1
1 1 2

 .

Moreover, if A is the matrix with columns a1, b1, . . . , c3, then it follows that

ATA =

3 2 2
2 3 2
2 2 3

⊗
3 1 1

1 2 1
1 1 2

 =



9 3 3 6 2 2 6 2 2
3 6 3 2 4 2 2 4 2
3 3 6 2 2 4 2 2 4
6 2 2 9 3 3 6 2 2
2 4 2 3 6 3 2 4 2
2 2 4 3 3 6 2 2 4
6 2 2 6 2 2 9 3 3
2 4 2 2 4 2 3 6 3
2 2 4 2 2 4 3 3 6


.

Since it is too difficult to compute A from this information alone, we consider the situation more closely. By
Brauer’s permutation lemma ([6, Lemma IV.6.10]), there are three triples of algebraic conjugate characters in
Irr(B). The remaining characters are all p-rational (p = 7). It follows that the columns (bi, ci) contain blocks of
the form  α β

−β α− β
β − α −α

 .

If one of these entries is ±2, then (bi, ci) contains only one block of this type. But then there is no possibility
such that (bi, bj) = 4. Hence, α, β ∈ {0,±1} and there are exactly three such blocks in (bi, ci). These blocks
account for all nine non-p-rational characters. We may assume that the three blocks in (b1, c1) fulfill α = β = 1.
We may also assume that the same holds for the first block of (b2, c2). Similar arguments eventually show that
the nine blocks have the following form

1 1 1 1 1 .
−1 . −1 . . 1
. −1 . −1 −1 −1
1 1 1 . 1 1
−1 . . 1 −1 .
. −1 −1 −1 . −1
1 1 . 1 . 1
−1 . −1 −1 −1 −1
. −1 1 . 1 .


.

In particular, the columns bi and ci are essentially unique. These information suffice in order to enumerate the
possible matrices A by using Plesken’s algorithm [17] in GAP [7]. It turns out that 11 ≤ k(B) ≤ 18 (Alperin’s
Conjecture would imply k(B) = 17). For each choice of A we have to add one integral column for (y, by) in such
a way that the orthogonality relations are satisfied. In order to reduce the possibilities for this column, we use
the Broué-Puig ∗-construction [3]. Observe that there is an I(B)-stable generalized character λ of D such that
λ(1) = 0, λ(x) = λ(x2) = λ(x4) = 21 and λ(y) = 28. Let Mx := Qx49C−1x QT

x be the contribution matrix with
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respect to (x, bx). Similarly, we define Mu for every u ∈ D. Then 21(Mx +Mx2 +Mx4) + 28My ≡ 0 (mod 49)
and

My ≡Mx +Mx2 +Mx4 (mod 7)

(cf. [24, Section 2.5]). Moreover, there are restrictions on the p-adic valuation of the entries ofMx (see [22, Propo-
sition 1.36]). This reduces the choices for A down to 23 possibilities. In particular, k(B) ∈ {13, 14, 16, 17, 18}.
Now one can obtain the Cartan matrix C of B up to basic sets by computing the integral orthogonal space
of the columns we have found (cf. [22, Section 4.2]). After one applies the LLL reduction algorithm the claim
follows easily.

In the proof above, it is interesting to see that ATA has elementary divisors 1, 1, 1, 1, 7, 7, 7, 7, 49. In contrast
to that the matrices Cx, Cx2 and Cx4 give (in total) elementary divisors 7, 7, 7, 7, 7, 7, 49, 49, 49. Moreover, the
elementary divisors of C in the local case are 1, 1, 1, 1, 7, 7, 49.

Now we prove our main theorem which generalizes [26, Proposition 22].

Theorem 2. Let B be a p-block with abelian defect group D. Suppose that D has no elementary abelian direct
summand of order p4. Then k(B) ≤ |D|.

Proof. We decompose D = D1 ⊕ . . . ⊕ Dk into I(B)-invariant indecomposable summands. Then each Di is
a homocyclic group, i. e. a direct product of isomorphic cyclic groups (see [8, Theorem 5.2.2]). If Di is not
elementary abelian, then by [26, Proposition 19] we find an element xi ∈ Di such that CI(B)(xi) = CI(B)(Di).
The same is true if |Di| = p. If Di is elementary abelian of order p2, then there exists an element x ∈ Di

such that [Di,CI(B)(xi)] has order at most p. In this case also |[D,CI(B)(x)]| ≤ p for x := x1 . . . xk. Then the
claim follows from [26, Proposition 11]. Thus, we may assume that D1 is elementary abelian of order p3. In
the first part of the proof we will assume that p 6= 7. By [22, Lemma 14.5] it suffices to find x ∈ D1 such that
CI(B)(x)/CI(B)(D1) ≤ S3. In order to do so, we may assume that D = D1.

As we have seen, I(B) acts irreducibly on D. Assume first that I(B) is non-solvable. Then I(B) is in fact
absolutely irreducible, since otherwise the representation I(B) → GL(3,Fp) where Fp is the algebraic clo-
sure of Fp would decompose completely into representations of degree 1 and I(B) would be abelian (see [11,
Corollary 9.23]). Let E(I(B)) be the layer of I(B). Then E(I(B)) is a central product of components E(I(B)) =
K1∗. . .∗Kr. Each Ki is a quasisimple group. By Clifford’s Theorem (see [11, Theorem 6.5]), E(I(B)) and K1 are
also (absolutely) irreducible. Thus, Schur’s Lemma (see [11, Theorem 9.2]) implies CGL(3,p)(K1) = Z(GL(3, p)).
Hence r = 1, i. e. E(I(B)) is quasisimple. Now, by [14, Theorems 2.1 and 2.2], there is always an element x ∈ D
such that |CI(B)(x)| ≤ 2.

Now assume that I(B) is solvable. In order to find an element x as above, we may assume that I(B) is a maximal
solvable subgroup of GL(3, p). Then there are three cases for I(B) given in [30, Theorem 21.6]. In the first case
I(B) is imprimitive on D. In particular, I(B) contains an abelian normal subgroup A such that I(B)/A ∼= S3.
It is well known that A has a regular orbit on D. Thus, we may choose x ∈ D such that CA(x) = 1. Then
CI(B)(x) ≤ S3 and we are done. In the second case, I(B) is the normalizer of a Singer cycle of order p3−1. Then
I(B) ∼= Cp3−1 o C3 and we find x ∈ D such that CI(B)(x) ≤ C3. Finally, in the third case |I(B)| = 63(p − 1)
and p ≡ 1 (mod 3). More precisely, the structure of I(B) is given as follows (see [5, Lemma 2.1(7)]):

A := Z(I(B)) ∼= Cp−1, N := F(I(B)) ∼= E ∗A, I(B)/N ∼= SL(2, 3).

Here A acts freely on D, E is extraspecial of order 27 and exponent 3, and I(B)/N acts naturally on N/A ∼= C2
3 .

Let 1 6= x ∈ D, and let α ∈ CI(B)(x). Then we may assume that α has prime order q. Since α /∈ A, we have
q ∈ {2, 3}. Now the idea is to count the elements α and consider D \

⋃
α CD(α). Suppose first that q = 2. Then

〈αN〉 = Z(I(B)/N). We may multiply each α by the unique involution z in A. Since α acts by inversion on N/A,
there are 2 · 9 = 18 choices for α. For each α we have |CD(α)| ≤ p2. Suppose that |CD(α)| = |CD(αz)| = p2.
Then we get the contradiction 1 6= CD(α) ∩ CD(αz) ≤ CD(z) = 1. Hence, |CD(α) ∪ CD(αz)| ≤ p2 + p− 1.

Next suppose that q = 3. Obviously, I(B) has four Sylow 3-subgroups. Suppose that α ∈ I(B) \ N has
order 3. Then we may choose generators a and b of N/A such that α =

(
1 1
0 1

)
with respect to a and b. Then

(αb)3 = αbα−1 · α2bα−2 · b = aba2b2 6= 1, since E is non-abelian. Hence, the group E〈α〉 contains at most
26 + 2 · 9 elements of order 3. Excluding the elements in A, 24 + 2 · 9 are remaining. Taking the three other
Sylow 3-subgroups into account, we get 24 + 8 · 9 = 96 choices for α (of order 3). However, CD(α) = CD(α−1).
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Therefore, it suffices to take only 48 of those. By [5, Lemma 2.4], the elements in α ∈ N satisfy |CD(α)| ≤ p. If
α ∈ I(B) \ N and 1 6= z ∈ Z(E), then |CD(α) ∪ CD(αz) ∪ CD(αz−1)| ≤ p2 + 2p − 2 as above. Altogether we
obtain ∣∣∣∣ ⋃

g∈I(B)

CD(g)

∣∣∣∣ ≤ p2 + 8(p2 − p) + 9(p− 1) + 12(p2 − p) + 36(p− 1) = 21p2 + 25p− 45.

Hence if p ≥ 23 we find a regular orbit for I(B). Since p ≡ 1 (mod 3), it remains to handle the cases p ∈
{7, 13, 19}. If p ∈ {13, 19}, one can show with GAP that there is always an element x ∈ D such that CI(B)(x) ≤
S3.

Finally for the remainder of the proof we deal with the case p = 7. Here a GAP computation shows that only the
maximal solvable group I(B)/CI(B)(D1) of order 64 considered above causes problems. As in the beginning of
the proof, we choose x ∈ D such that [D,CI(B)(x)] ∼= C2

p . More precisely, we find an element x1 ∈ D1 such that
CI(B)(x) ∼= SL(2, 3). Let (x, bx) be a B-subsection. Then I(bx) ∼= CI(B)(x). Let Z := CD(I(bx)), and let βZ be a
Brauer correspondent of bx in CG(Z) (⊆ CG(x)). By [32, Theorem 1], k(βZ) = k(bx) and l(βZ) = l(bx). Moreover,
βZ dominates a block βZ of CG(Z)/Z with defect group D/Z ∼= C2

p and I(βZ) ∼= I(βZ) ∼= I(bx) ∼= SL(2, 3). It
turns out that βZ is the block considered in Lemma 1. Let CZ be the Cartan matrix of βZ . Then the Cartan
matrix of βZ is given by CZ = |Z|CZ . In order to get from CZ to the Cartan matrix Cx of bx we use an
argument from [26, proof of Proposition 16]. Let Qx be the decomposition matrix of bx. Then by the Broué-
Puig ∗-construction, every row of Qx appears |Z| times (see [26, Lemma 10]). Hence, the algorithm from [22,
Section 4.2] applied to bx is essentially same as the application to βZ . In particular, we get the same matrices
for Cx as we have computed in Lemma 1 (multiplied by |Z|). Thus, tr(Cx) ≤ |Z| tr(CZ) ≤ 49|Z| = |D| by
Lemma 1. Now the claim follows from [22, Theorem 4.2].

Corollary 3. Let B be a block of a finite group with abelian defect group D of rank at most 3. Then k(B) ≤ |D|.

We mention that there is a stronger result for p = 2 (see [26, Proposition 21]). On the other hand, we have
already pointed out in [23, p. 794] that the elementary abelian defect group of order 34 is more difficult to
handle (and still open).

The next result generalizes [26, Theorem 5].

Theorem 4. Let B be a block of a finite group with defect group D such that D/〈z〉 is abelian of rank at most
2 for some z ∈ Z(D). Then k(B) ≤ |D|.

Proof. By Corollary 3, we may assume that D is non-abelian. Then the rank of D/〈z〉 must be 2 and the claim
follows from [26, Theorems 5].

Corollary 5. Brauer’s k(B)-Conjecture holds for the blocks of defect at most 3.

Now we give a minor improvement on the bound obtained in [23, Theorem 1].

Theorem 6. Let B be a p-block with abelian defect group D of order pd. Suppose that the largest elementary
abelian direct summand of D has rank r ≥ 1. Then k(B) ≤ pd+ r−1

2 .

Proof. We may decompose D = D1 ⊕ D2 with I(B)-invariant summands such that D1 is elementary abelian
of rank r. By [26, Proposition 19] there is an element x2 ∈ D2 such that CI(B)(x2) = CI(B)(D2). By [9,
Corollary 1.2] there are elements x1, y ∈ D1 such that CI(B)(x1) ∩ CI(B)(y) = CI(B)(D1). Let x := x1x2. Then
Q := [D,CI(B)(x)] ≤ D1 has rank at most r − 1. Let (x, bx) be a subsection for B. By [32, Theorem 1], there
exists a block bx with defect group Q and l(bx) = l(bx). We may assume that y ∈ Q (otherwise Q = 1 and
k(B) ≤ pd). Let (y, βy) be a subsection for bx. Then βy has inertial index 1. Hence, βy is nilpotent and l(βy) = 1.
By a result of Robinson (see [22, Proposition 4.7]), it follows that k(bx) ≤ |Q| = pr−1. Therefore, l(bx) ≤ pr−1.
Finally, [22, Proposition 4.12] yields k(B) ≤ |D|

√
l(bx) ≤ pd+ r−1

2 .

In the worst case of Theorem 6, D is elementary abelian. Then the bound coincides with [23, Theorem 1]. Using
[30] we are able to deal with a special case for p = 2.
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Proposition 7. Let B be a 2-block of a finite group with elementary abelian defect group D of rank r. Suppose
that r is a prime and I(B) acts irreducibly on D. Then k(B) ≤ |D|.

Proof. By the Feit-Thompson Theorem, I(B) is solvable. By [26, Proposition 11], it suffices to find an element
x ∈ D such that CI(B)(x) has prime order (or is trivial). In order to do so, we may assume that I(B) is a maximal
solvable irreducible subgroup of GL(r, 2). By [30, Theorem 21.6 and the following remarks], I(B) ∼= C2r−1oCr.
Hence, there exists x ∈ D such that CI(B)(x) ≤ Cr, and we are done.

Our last result concerns the sharpness of Brauer’s k(B)-Conjecture. This is motivated by corresponding results
in the local case (see [21, 27, 29]).

Proposition 8. Let B be a p-block of a finite group with defect group D of order p2 such that k(B) = |D|.
Then one of the following holds

(i) B is nilpotent, i. e. I(B) = 1.

(ii) |CD(I(B))| = p and I(B) ∼= Cp−1.

(iii) D o I(B) ∼= (Cp o Cp−1)2.

(iv) I(B) acts regularly on D \ {1}. Moreover, I(B) ≤ ΓL(1, p2) ∼= Cp2−1 o C2 provided p > 59.

(v) p = 3 and I(B) ∼= D8 or I(B) ∼= SD16.

(vi) p = 5 and I(B) ∼= SL(2, 3) o C4.

Proof. We may assume that B is non-nilpotent, i. e. I(B) 6= 1. Let (x, bx) be a non-trivial B-subsection. Then
I(bx) ∼= CI(B)(x) acts faithfully on D/〈x〉. In particular, CI(B)(x) is cyclic of order dx | p − 1. Moreover, the
Cartan matrix Cx of bx is given by p(m + δij) with m := p−1

dx
(see [22, Theorem 8.6]). Now [22, Theorem 4.2]

implies p2 = k(B) ≤ p
(
m+ dx) ≤ p2. This forces dx ∈ {1, p− 1} for all x ∈ D \ {1}. If x ∈ CD(I(B)) \ {1}, then

clearly I(B) = CI(B)(x) ∼= Cp−1. Hence, we may assume that CD(I(B)) = 1 in the following. Similarly, we may
assume that I(B) acts irreducibly on D, because otherwise (iii) holds.

Suppose that I(B) acts freely on D \ {1}, i. e. dx = 1 for all x. Then the Cartan matrix C of B has determinant
p2 (see [22, Proposition 1.46]). Hence, [25, Theorem 5] implies p2 = k(B) ≤ p2−1

l(B) + l(B) ≤ p2. It follows that
l(B) ∈ {1, p2 − 1}. The case l(B) = 1 contradicts [22, Theorem 1.35] (cf. [19]). Hence, l(B) = p2 − 1 and I(B)
must act regularly on D \ {1}. Suppose that p > 59. Then, by work of Hering (see e. g. [22, Theorem 15.1]),
I(B) lies in the semilinear group ΓL(1, p2) ∼= Cp2−1 o C2.

Thus, in the following we may assume that there is at least one x ∈ D \ {1} such that dx = p − 1. Suppose
first that I(B) is non-solvable. Similarly as in the proof of Theorem 2, the layer E(I(B)) is quasisimple. Let
Z := Z(GL(2, p)). By a result of Dickson (see [10, Hauptsatz II.8.27]), we have 5 | p2−1 and E(I(B))Z/Z ∼= A5.
Moreover by Schur’s Lemma, CI(B)(E(I(B))) ≤ Z. This implies I(B)Z/Z ≤ S5. Since CZ(x) = 1, we have
CI(B)(x) ∼= CI(B)(x)Z/Z ≤ S5. Hence, we conclude that p ≤ 7. But then 5 - p2 − 1.

Finally, suppose that I(B) is solvable. Then I(B) lies in a maximal irreducible solvable subgroup S ≤ GL(2, p)
given in [30, Theorem 21.6]. Assume first that S acts imprimitively, interchanging the subgroups 〈x〉 and 〈y〉 of
D. Let A ≤ I(B) be the subgroup which normalizes 〈x〉 and 〈y〉. If A acts freely on D, then there must be an
element z ∈ D such that dz = |I(B)/A| = 2. Hence, p = 3, but it is easy to see that this is impossible. Thus, A
does not act freely and we may assume that |CA(x)| = p− 1. Since I(B) acts irreducibly, there is an element in
I(B) which interchanges 〈x〉 and 〈y〉. This yields |CA(y)| = p− 1 and I(B) = S. It follows that dxy = 2, p = 3
and I(B) ∼= D8 (dihedral group of order 8).

In the next case S is the semilinear group S ∼= Cp2−1 o C2. Since the Singer cycle acts regularly on D \ {1},
there is an element x ∈ D such that dx = 2. This leads to p = 3 and I(B) ∼= SD16 (semidihedral group of order
16). Finally, assume that S has a normal subgroup Z ∼= Cp−1 such that S/Z ∼= S4. By [5, Lemma 2.4], Z acts
freely on D \{1}. Hence, CI(B)(x) ∼= CI(B)(x)Z/Z ≤ S4. Therefore, p ∈ {3, 5}. A computation with GAP shows
that p = 5 and I(B) ∼= SL(2, 3) oC4 where C4 acts faithfully on SL(2, 3) (the action is essentially unique).
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Case (i) of Proposition 8 is well understood by a theorem of Puig [18]. Also case (ii) is well understood by
results of Watanabe [32, 31]. In both cases the converse is also true. It is clear that there are examples for case
(iii). Now assume that case (iv) occurs. Then the Sylow subgroups of I(B) are cyclic or quaternion groups.
In particular, the Schur multiplier of I(B) is trivial. Hence, in view of Alperin’s Conjecture, I(B) should by
abelian and thus cyclic. Therefore, the hypothesis p > 59 seems to be superfluous. However, this is not even
clear if p = 3 and I(B) ∼= Q8 (see [13]). On the other hand, case (v) actually occurs (see [13, 33]). Finally, case
(vi) would contradict Alperin’s Conjecture.

Acknowledgment

This work is supported by the German Research Foundation (project SA 2864/1-1) and the Daimler and Benz
Foundation (project 32-08/13).

References

[1] R. Brauer, On blocks and sections in finite groups. II, Amer. J. Math. 90 (1968), 895–925.

[2] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat.
Acad. Sci. U.S.A. 45 (1959), 361–365.

[3] M. Broué and L. Puig, Characters and local structure in G-algebras, J. Algebra 63 (1980), 306–317.

[4] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48.

[5] S. Dolfi, Large orbits in coprime actions of solvable groups, Trans. Amer. Math. Soc. 360 (2008), 135–152.

[6] W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, Vol. 25, North-
Holland Publishing Co., Amsterdam, 1982.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.8 ; 2015, (http://www.
gap-system.org).

[8] D. Gorenstein, Finite groups, Harper & Row Publishers, New York, 1968.

[9] Z. Halasi and K. Podoski, Every coprime linear group admits a base of size two, Trans. Amer. Math. Soc.
368 (2016), 5857–5887.

[10] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-
Verlag, Berlin, 1967.

[11] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.

[12] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2) 178
(2013), 321–384.

[13] M. Kiyota, On 3-blocks with an elementary abelian defect group of order 9, J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 31 (1984), 33–58.

[14] C. Köhler and H. Pahlings, Regular orbits and the k(GV )-problem, in: Groups and computation, III (Colum-
bus, OH, 1999), 209–228, Ohio State Univ. Math. Res. Inst. Publ., Vol. 8, de Gruyter, Berlin, 2001.

[15] H. Nagao, On a conjecture of Brauer for p-solvable groups, J. Math. Osaka City Univ. 13 (1962), 35–38.

[16] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989.

[17] W. Plesken, Solving XXtr = A over the integers, Linear Algebra Appl. 226/228 (1995), 331–344.

[18] L. Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.

[19] L. Puig and A. Watanabe, On Blocks with One Simple Module in Any Brauer Correspondent, J. Algebra
163 (1994), 135–138.

7

http://www.gap-system.org
http://www.gap-system.org


[20] G. R. Robinson, On Brauer’s k(B) problem, J. Algebra 147 (1992), 450–455.

[21] G. R. Robinson, On Brauer’s k(B)-problem for blocks of p-solvable groups with non-Abelian defect groups,
J. Algebra 280 (2004), 738–742.

[22] B. Sambale, Blocks of finite groups and their invariants, Springer Lecture Notes in Math., Vol. 2127,
Springer-Verlag, Berlin, 2014.

[23] B. Sambale, On the Brauer-Feit bound for abelian defect groups, Math. Z. 276 (2014), 785–797.

[24] B. Sambale, Broué’s isotypy conjecture for the sporadic groups and their covers and automorphism groups,
Internat. J. Algebra Comput. 25 (2015), 951–976.

[25] B. Sambale, Cartan matrices and Brauer’s k(B)-Conjecture III, Manuscripta Math. 146 (2015), 505–518.

[26] B. Sambale, Cartan matrices and Brauer’s k(B)-Conjecture IV, J. Math. Soc. Japan (to appear).

[27] P. Schmid, Some remarks on the k(GV ) theorem, J. Group Theory 8 (2005), 589–604.

[28] P. Schmid, The solution of the k(GV ) problem, ICP Advanced Texts in Mathematics, Vol. 4, Imperial
College Press, London, 2007.

[29] P. Schmid, Signed permutation modules, Singer cycles and class numbers, J. Group Theory 14 (2011),
175–199.

[30] D. A. Suprunenko, Matrix groups, American Mathematical Society, Providence, RI, 1976.

[31] A. Watanabe, Note on a p-block of a finite group with abelian defect group, Osaka J. Math. 26 (1989),
829–836.

[32] A. Watanabe, Notes on p-blocks of characters of finite groups, J. Algebra 136 (1991), 109–116.

[33] A. Watanabe, Appendix on blocks with elementary abelian defect group of order 9, in: Representation Theory
of Finite Groups and Algebras, and Related Topics (Kyoto, 2008), 9–17, Kyoto University Research Institute
for Mathematical Sciences, Kyoto, 2010.

8


	Introduction
	Results

