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Abstract

It is well known that the Cartan matrix of a block of a finite group cannot be arranged as a direct sum
of smaller matrices. In this paper we address the question if this remains true for equivalent matrices. The
motivation for this question comes from the work [10], which contains certain bounds for the number of
ordinary characters in terms of Cartan invariants. As an application we prove such a bound in the special
case, where the determinant of the Cartan matrix coincides with the order of the defect group. In the second
part of the paper we show that Brauer’s k(B)-conjecture holds for 2-blocks under some restrictions on the
defect group. For example, the k(B)-conjecture holds for 2-blocks if the corresponding defect group is a
central extension of a metacyclic group by a cyclic group. The same is true if the defect group contains a
central cyclic subgroup of index 8. In particular the k(B)-conjecture holds for 2-blocks with defect at most
4. The paper is a part of the author’s PhD thesis.
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Let G be a finite group and let B be a p-block of G. We denote the number of ordinary irreducible characters
of B by k(B). Similarly, l(B) is the number of irreducible Brauer characters of B. Moreover, let d be the defect
of B.

It is well known that the Cartan matrix C of B is indecomposable as integer matrix, i. e. there is no arrangement
of the indecomposable projective modules such that C splits into a direct sum of smaller matrices (recall that
C is symmetric).

We call two matrices A,B ∈ Zl×l equivalent if there exists a matrix S ∈ GL(l,Z) with A = STBS, where ST

denotes the transpose of S. Every symmetric matrix gives rise to a quadratic form. In this sense equivalent
matrices describe equivalent quadratic forms. Richard Brauer describes equivalence of Cartan matrices via so
called “basic sets”. He also studied Cartan matrices by applying the theory of quadratic forms (see [2]). In
general the property “being indecomposable” is not shared among equivalent matrices. For example A =

(
1 1
1 2

)
is indecomposable, but

(
1 −1
0 1

)T
A
(
1 −1
0 1

)
=
(
1 0
0 1

)
is not. However, we were not able to find a Cartan matrix of

a block which provides an equivalent decomposable matrix. So we raise the question:

Question. Do there exist a Cartan matrix C of a block B and a matrix S ∈ GL(l(B),Z) such that STCS is
decomposable?

The motivation for this question comes from the fact that k(B) can be bounded in terms of Cartan invariants
(see [10]). These bounds are usually invariant under equivalence of matrices. The point is that the inequalities
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are significantly sharper for indecomposable matrices. We illustrate this fact with an example. Let l(B) = 2 and
assume that the elementary divisors of C are 2 and 16. Then C has the form(

2 0
0 16

)
or
(
6 2
2 6

)
up to equivalence. In the first case one can deduce k(B) ≤ 18, while in the second case k(B) ≤ 10 holds.

We give an affirmative answer to the question in two special cases.

Lemma 1. Let G be p-solvable and l := l(B) ≥ 2. Then there is no matrix S ∈ GL(l,Z) such that STCS =(
pd 0
0 C1

)
with C1 ∈ Z(l−1)×(l−1). In particular C is not equivalent to a diagonal matrix.

Proof. Assume the contrary, i. e. there is a matrix S = (sij) ∈ GL(l,Z) such that

C = (cij) = ST
(
pd 0
0 C1

)
S

with C1 ∈ Z(l−1)×(l−1). Let si := (s2i, s3i, . . . , sli) for i = 1, . . . , l. By Theorem (3H) in [6] we have

pds2i1 + siC1s
T
i = cii ≤ pd

for i = 1, . . . , l. Since S is invertible, there exists i such that s1i 6= 0. We may assume s11 6= 0. Then s11 = ±1
and s1 = (0, . . . , 0), because C1 is positive definite. Now all other columns of S are linearly independent of the
first column. This gives s1i = 0 for i = 2, . . . , l. Hence, S has the form S =

(±1 0
0 S1

)
with S1 ∈ GL(l− 1,Z). But

then C also has the form
(
pd 0
0 C2

)
with C2 ∈ Z(l−1)×(l−1), a contradiction. The second claim follows at once,

since pd is always an elementary divisor of C.

Unfortunately the bound for the Cartan invariants used in the proof does not hold for arbitrary groups (see
[11]).

Lemma 2. If detC = pd, then for every S ∈ GL(l(B),Z) the matrix STCS is indecomposable.

Proof. Again assume the contrary, i. e. there is a matrix S ∈ GL(l(B),Z) such that

C = ST
(
C1 0
0 C2

)
S

with C1 ∈ Zm×m and C2 ∈ Z(l−m)×(l−m), where l := l(B) and 1 ≤ m < l. In particular l < k(B) =: k, because
l ≥ 2. Since detC = pd, the elementary divisors of C are 1 and pd, where pd occurs with multiplicity one.
W. l. o. g. we may assume detC1 = 1. Let Q = (qij) be the corresponding part of the decomposition matrix, i. e.
QTQ = C1. By the Binet-Cauchy formula we have

1 = detC1 =
∑

V⊆{1,...,k},
|V |=m

detQT
VQV ,

where QV is the m×m submatrix consisting of the entries {qij : i ∈ V, j ∈ {1, . . . ,m}}. Since detQT
VQV ≥ 0,

one summand is 1 while the others are all 0. Thus we may assume, that the first m rows q1, . . . , qm of Q are
linearly independent. Now consider a row qi for i ∈ {m+ 1, . . . , k}. Then qi is a rational linear combination of
q2, . . . , qm, because q2, . . . , qm, qi are linearly dependent. By the same argument, qi is also a linear combination
of q1, . . . , qj−1, qj+1, . . . , qm for j = 2, . . . ,m. This forces qi = (0, . . . , 0). Hence, all the rows qm+1, . . . , qk vanish.
Now consider a column d(u) of generalized decomposition numbers, where u is a nontrivial element of a defect
group of B. By the orthogonality relations the scalar product of d(u) and an arbitrary column of Q vanishes.
This means the first m entries of d(u) must be zero. Since this holds for all columns d(u) with u 6= 1, there
exists an irreducible character of B which vanishes on the p-singular elements of G. It is well-known that this
is equivalent to d = 0. But this contradicts l ≥ 2.
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As an application, we prove an upper bound for k(B) in the case detC = pd. In the proof we will use the
reduction theory of quadratic forms.

Theorem 1. If l(B) ≤ 4 and detC = pd, then

k(B) ≤ pd − 1

l(B)
+ l(B).

Moreover, this bound is sharp.

Proof. For l := l(B) = 1 the assertion is clear (see e. g. Corollary 5 in [13]). So let l ≥ 2. Let A = (aij) be
a reduced matrix in the sense of Minkowski which is equivalent to C (see e. g. [15]). In particular we have
2|aij | ≤ min{aii, ajj} and 1 ≤ a11 ≤ a22 ≤ . . . ≤ all. For convenience we write α := a11, β := a22 and so on.

We are going to apply equation (∗∗) in [10]. In order to do so, we will bound the trace of A from above and the
sum a12 + a23 + . . .+ al−1,l from below.

Let l(B) = 2. By Lemma 2 we have a12 6= 0 and a12 > 0 after a suitable change of signs (i e. replacing A by an
equivalent matrix). By [1] we have 4αβ − α2 ≤ 4pd, so that

α+ β ≤ 5

4
α+

pd

α
=: f(α). (1)

Since 2|aij | ≤ min{aii, ajj}, we have 2 ≤ α, and α ≤ β yields α ≤ 2
√
pd/3. The convex function f(α)

takes its maximal value in the interval [2, 2
√
pd/3] on one of the two borders. An easy calculation shows

(pd+5)/2 = f(2) > f(2
√
pd/3) for pd ≥ 9. In case pd ≤ 6 only α = 2 is possible. In the remaining cases we have

α + β ≤ f(2) for all feasible pairs (α, β) (we call a pair (α, β) feasible if it satisfies inequality (1)). Equation
(∗∗) in [10] yields

k(B) ≤ α+ β − a12 ≤ f(2)− 1 =
pd − 1

l(B)
+ l(B).

Let l(B) = 3. The same discussion leads to a12 + a23 ≥ 2 after a suitable (simultaneous) permutation of rows
and columns (i. e. replacing A by PTAP with a permutation matrix P ). It is not always possible to achieve
α ≤ β ≤ γ additionally. But since the trace of A is symmetric in α, β and γ, we may assume 2 ≤ α ≤ β ≤ γ
nevertheless. The inequality in [1] reads

4αβγ − αβ2 − α2γ = 2αβγ + αβ(γ − β) + αγ(β − α) ≤ 4pd,

so that

α+ β + γ ≤ α+ β +
4pd + αβ2

4αβ − α2
=: f(α, β).

We describe a set which contains all feasible points. Since 2α3 ≤ 2αβγ + αβ(γ − β) + αγ(β − α) ≤ 4pd we get
2 ≤ α ≤ 3

√
2pd. Similarly 4β2 ≤ 4pd and α ≤ β ≤

√
pd. Thus all feasible points are contained in the convex

polygon
F :=

{
(α, β) : 2 ≤ α ≤ 3

√
2pd, α ≤ β ≤

√
pd
}
.

It can be shown (maybe with the help of a computer) that f is convex on F . Hence, the maximal value of f on
F will be attained on one of the 3 vertices:

V1 = (2, 2),

V2 = (2,
√
pd),

V3 = ( 3
√

2pd, 3
√

2pd).

One can check that (pd + 14)/3 = f(V1) ≥ f(V2) for pd ≥ 10 and f(V1) ≥ f(V3) for pd ≥ 12. If pd ≤ 10, then
V1 is the only feasible point. In the remaining case pd = 11 there is only one more feasible pair (α, β) = (2, 3).
Then γ = 3 and α+ β + γ ≤ f(V1). Now (∗∗) in [10] takes the form

k(B) ≤ α+ β + γ − a12 − a23 ≤ f(V1)− 2 =
pd − 1

l(B)
+ l(B).
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Finally, let l(B) = 4. By permuting rows and columns and changing signs, we can reach (using Lemma 2) at
least one of the two arrangements

(i) a12 + a23 + a34 ≥ 3,

(ii) a12 + a13 + a14 ≥ 3.

In case (i) we can use equation (∗∗) as before. Since the matrix
2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2


is positive definite, we can use Theorem A in [10] for case (ii). Thus, for the rest of the proof we will assume
that case (i) occurs. As before, we will also assume 2 ≤ α ≤ β ≤ γ ≤ δ and

4αβγδ − α2γδ − αβ2δ − αβγ2 + 1

4
α2(γ − β)2

= αβγδ + αγδ(β − α) + αβδ(γ − β) + αβγ(δ − γ) + 1

4
α2(γ − β)2 ≤ 4pd

(2)

by [1]. We search for the maximum of the function

f(α, β, γ) := α+ β + γ +
4pd + αβγ2 − 1

4α
2(γ − β)2

4αβγ − α2γ − αβ2

on a suitable convex polyhedron. Since α4 ≤ 4pd we have 2 ≤ α ≤ 4
√
4pd. In a similar way, we obtain the set

F := {(α, β, γ) : 2 ≤ α ≤ 4
√

4pd, α ≤ β ≤ 3
√
2pd, β ≤ γ ≤

√
pd},

which contains all feasible points. It can be shown that f is in fact convex on F . The vertices of F are

V1 := (2, 2, 2),

V2 := (2, 2,
√
pd),

V3 := (2, 3
√
2pd, 3

√
2pd),

V4 := ( 4
√

4pd, 4
√

4pd, 4
√

4pd).

We fix the value m := (pd + 27)/4. A calculation shows f(V2) ≤ m for pd ≥ 22, f(V3) ≤ m for pd ≥ 20, and
f(V4) ≤ m for pd ≥ 23. If pd ≤ 12, then V1 is the only feasible point. If pd ≤ 17, there is only one other feasible
point (α, β, γ) = (2, 2, 3) beside V1. In this case f(2, 2, 3) ≤ m for pd ≥ 14. For pd = 13 we have

α+ β + γ + δ − a13 − a14 − a34 ≤ 7 =
13− 1

4
+ 4.

For pd ≤ 20 there is one additional point (α, β, γ) = (2, 3, 3), which satisfies f(2, 3, 3) ≤ m. In the remaining
cases there is another additional point (α, β, γ) = (3, 3, 3). For this we get f(3, 3, 3) ≤ m if pd ≥ 22. Since 21 is
no prime power, we can consider f(V1) = pd/4 + 7 now. If p > 2, then pd/4 is no integer. In this case

α+ β + γ + δ − a13 − a14 − a34 ≤ [f(V1)]− 3 =
pd − 1

4
+ 4,

where [f(V1)] is the largest integer below f(V1). Thus, let us assume δ = pd/4 + 1 (and p = 2). With the help
of a computer one can show that up to equivalence only the possibility

A =


2 1 0 −1
1 2 1 0
0 1 2 1
−1 0 1 δ

 (3)
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has the right determinant (see also the remark following the proof). By considering the corresponding decom-
position matrix, one can easily deduce:

k(B) ≤ δ + 2 ≤ pd − 1

l(B)
+ l(B).

Now it remains to check, that f does not exceed m on other points of F (this is necessary, since f(V1) > m). For
that, we exclude V1 from F and form a smaller polyhedron. Since only integral values for α, β, γ are allowed,
we get three new vertices:

V5 := (2, 2, 3),

V6 := (2, 3, 3),

V7 := (3, 3, 3)

But these points were already considered. This finishes the first part of the proof. The second part follows easily,
since for blocks with cyclic defect groups equality holds.

In the case l(B) = 5 there is no inequality like (2). However, one can use the so called “fundamental inequality”
of quadratic forms

αβγδε ≤ 8pd

(see [1]). Of course, the complexity increases rapidly with l(B). For example, the matrix

A =


2 1 0 1 −1
1 2 1 1 1
0 1 2 1 −1
1 1 1 2 1
−1 1 −1 1 ε


with ε = pd/4 + 9 (p = 2) has to be considered. We will demonstrate that such matrices cannot occur. For this
let l := l(B) arbitrary, aii = 2, and ai,i+1 = 1 for i = 1, . . . , l − 1. In the following we will speak of Cartan
matrices and decomposition matrices always with respect to an arbitrary basic set.

The first two columns of the decomposition matrix Q can be arranged in the form

1 .
1 1
. 1
. .
...

...
. .


.

By the orthogonality relations, the first three columns cannot have the form

1 . ±1
1 1 .
. 1 1
. . .
...

...
...

. . .


or



1 . −1
1 1 1
. 1 .
. . .
...

...
...

. . .


.

That means they have the form 

1 . .
1 1 .
. 1 1
. . 1
. . .
...

...
...

. . .


or



1 . .
1 1 1
. 1 .
. . 1
. . .
...

...
...

. . .


.
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However, both forms give rise to equivalent matrices A. Similarly, we may assume that the first l − 1 columns
of Q have the form 

1 . · · · .

1 1
. . .

...

. 1
. . . .

. .
. . . 1

. . . 1

. . . .

...
...

...
...

. . . .


.

(Now one can see that the 5 × 5 matrix above cannot occur.) If we add suitable multiples of the first l − 1
columns to the last column, Q becomes 

1 . · · · · · · .

1 1
. . .

...

. 1
. . . . . .

...

. .
. . . 1 .

. . . 1 ∗

. . . . ∗

...
...

...
...

...
. . . . ∗


.

Thus, up to equivalence A has the form 

2 1 . . . . .

1
. . . . . . . . .

...

.
. . . . . . 1 .

...
. . . 1 2 a

. · · · . a ε


with a ≥ 1 (notice that this matrix does not have to be reduced). This yields

ε =
pd + a2(l − 1)

l
and k(B) ≤ l + ε− a2 =

pd − a2

l
+ l ≤ pd − 1

l
+ l.

It seems likely that this configuration allows the largest value for k(B) in general.

Fujii gives some sufficient conditions for detC = pd in [7]. We remark that detC can be determined locally with
the notion of lower defect groups.

The knowledge of the Cartan matrix implies that l(B) is already known. Since k(B)− l(B) is determined locally,
it might seems absurd to bound k(B) in terms of Cartan invariants. Instead, it would be more useful if one
can apply these bounds to blocks of subsections. In this sense the next lemma is an extension of Theorem A in
[10].

Lemma 3. Let (u, b) be a major subsection associated with the 2-block B. Let Cb = (cij) be the Cartan matrix
of b up to equivalence. Then for every positive definite integer quadratic form

q(x1, . . . , xl(b)) =
∑

1≤i≤j≤l(b)

qijxixj

we have
k(B) ≤

∑
1≤i≤j≤l(b)

qijcij .
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Proof. Let us consider the generalized decomposition numbers duij associated with the subsection (u, b). If 2n is
the order of u, then duij is an integer of the 2n-th cyclotomic field Q2n . It is known that 1, ζ := e2πi/2

n

, ζ2, . . . , ζd

with d = 2n−1 − 1 form a basis for the ring of integers of Q2n . For i = 1, . . . , k(B) we write (duij)
l(b)
j=1 = di =

a0i +a
1
i ζ+ . . .+a

d
i ζ
d with a0i , . . . , adi ∈ Zl(b). Since (u, b) is major, for every i at least one row ari does not vanish.

Let Q = (q̃ij)
l(b)
i,j=1 with

q̃ij :=

{
qij if i = j,

qij/2 if i 6= j
.

Then ∑
1≤i≤j≤l(b)

qijcij =
∑

1≤i≤j≤l(b)

k(B)∑
r=1

qijd
u
rid

u
rj =

k(B)∑
r=1

drQdr
T

=

k(B)∑
r=1

d∑
s=0

( ∑
i−j=s

airQ(ajr)
T −

∑
i−j=s−2n−1

airQ(ajr)
T
)
ζs =

k(B)∑
r=1

d∑
i=0

airQ(air)
T ≥ k(B).

Landrock has shown that Brauer’s k(B)-conjecture holds for 2-blocks with defect 3 (see [12]). The next theorem
will generalize this.

Theorem 2. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of metacyclic 2-
groups by cyclic 2-groups. In particular the k(B)-conjecture holds for abelian defect 2-groups of rank at most
3.

Proof. By Lemma 3 it suffices to show

l(B)∑
i=1

cii −
l(B)−1∑
i=1

ci,i+1 ≤ |D|

for every 2-block B with metacyclic defect groups D and Cartan matrix C = (cij). If D is dihedral, then
detC = |D| and l(B) ≤ 3 (see [4]). Thus, in this case the claim follows from the proof of Theorem 1. If D
is a semidihedral or quaternion group, one can use the tables in [5] to show the claim (this case can also be
done by the method of the proof of Theorem 1 and the fact that the elementary divisors of C are contained in
{1, 2, |D|}). The author has shown (using the methods of Usami and Puig) that detC = |D| and l(B) ∈ {1, 3}
also holds for D ∼= C2s × C2s with s ∈ N. By the result of [14], we are done.

We note that Brauer has proved the k(B)-conjecture for abelian defect groups of rank 2 and arbitrary primes
p (see (7D) in [3]). The smallest 2-group which does not satisfy the hypothesis of Theorem 2 is the elementary
abelian group of order 16. However, this group can be handled as well.

Theorem 3. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of the elementary
abelian group of order 8 by a cyclic group. In particular the k(B)-conjecture holds for every defect group with a
central cyclic subgroup of index 8.

Proof. Let B be a block with elementary abelian defect group of order 8 and Cartan matrix C = (cij). It suffices
to show

l(B)∑
i=1

cii −
l(B)−1∑
i=1

ci,i+1 ≤ 8. (4)

If the inertial index e(B) is 1, then also l(B) = 1, and the claim follows.

Now let e(B) = 3. It is easy to show that there are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3)
associated with B. Moreover, we may assume l(b1) = 3 and l(b2) = l(b3) = 1. As usual, b1 dominates a block of
CG(u1)/〈u1〉 with Klein four defect group. It follows that the Cartan matrix of b1 is equivalent to4 2 2

2 4 2
2 2 4

 .
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Using this, is it easy to see that there is a basic set such that the generalized decomposition numbers associated
with ui (i = 1, 2, 3) have form 

1 . . 1 1
1 . . 1 −1
1 1 . −1 1
1 1 . −1 −1
. 1 1 1 1
. 1 1 1 −1
. . 1 −1 1
. . 1 −1 −1


.

By the orthogonality relations of generalized decomposition numbers there exists a matrix S ∈ GL(3,Q) such
that the ordinary decomposition matrix Q satisfies

Q =



1 . .
−1 . .
. 1 .
. −1 .
. . 1
. . −1
−1 −1 −1
1 1 1


S

Moreover, it is easy to see that all entries of S are integral. It is well-known that there exists a matrix Q̃ ∈ Z3×8

such that Q̃Q = 13. This shows S ∈ GL(3,Z). Hence C has the form S−TQTQS−1 up to equivalence. Thus, the
claim follows in this case.

Let e(B) = 7. Then there are two subsections (1, B) and (u, b) with k(B)− l(B) = l(b) = 1. Since 8 is the sum
of k(B) integer squares, we must have k(B) ∈ {5, 8}. By Corollary 1 in [7], we have detC = 8. Thus in the case
l(B) = 4, the claim follows from the proof of Theorem 1 (notice that this case contradicts Brauer’s height zero
conjecture). So we may assume l(B) = 7. Then the generalized decomposition numbers corresponding to u can
be arranged in the form (1, . . . , 1)T. Hence the ordinary decomposition matrix has the form

1 . . . . . .
−1 −1 . . . . .
. 1 1 . . . .
. . −1 −1 . . .
. . . 1 1 . .
. . . . −1 −1 .
. . . . . 1 1
. . . . . . −1


,

and the claim follows.

Let e(B) = 21. Then there are two subsections (1, B) and (u, b) with k(B) − l(B) = l(b) = 3. In particular
l(B) ≤ 5 (using Theorem 2). The theory of lower defect groups reveals that 2 occurs at least twice as elementary
divisor of C. This gives l(B) ≥ 3. The case l(B) = 3 contradicts Corollary 1.3 in [12]. Now let l(B) = 4 (again
this case contradicts the height zero conjecture). Then the generalized decomposition numbers corresponding
to u have the form 

1 . 1
1 . .
1 1 1
1 1 .
. 1 1
. 1 .
. . 1


.
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That means the ordinary decomposition matrix becomes

1 . . .
−1 −1 . .
. . −1 .
. 1 1 .
. . . −1
. −1 . 1
−1 . 1 1


,

and the Cartan matrix has the form

C =


3 1 −1 −1
1 3 1 −1
−1 1 3 1
−1 −1 1 3

 .

Unfortunately, this matrix does not satisfy inequality (4). However, we can use Lemma 3 with the quadratic
form q corresponding to the positive definite matrix

1

2


2 −1 1 .
−1 2 −1 .
1 −1 2 −1
. . −1 2

 .

Finally let l(B) = 5. Then the generalized decomposition numbers corresponding to u have the form

1 . .
1 . .
1 1 .
1 1 .
. 1 1
. 1 1
. . 1
. . 1


and the ordinary decomposition matrix becomes

1 . . . .
−1 . . . −1
. 1 . . 1
. −1 . . .
. . −1 . −1
. . 1 . .
. . . 1 1
. . . −1 .


.

Thus, the Cartan matrix is 
2 . . . 1
. 2 . . 1
. . 2 . 1
. . . 2 1
1 1 1 1 4

 .

In this case we can use Lemma 3 with the quadratic form q corresponding to the positive definite matrix

1

2


2 1 . . −1
1 2 . . −1
. . 2 . −1
. . . 2 −1
−1 −1 −1 −1 2

 .

In connection with Theorem 2 the second assertion is also clear.

9



Recently, Kessar, Koshitani and Linckelmann have proven that the cases k(B) = 5 and k(B) = 7 in the proof
above cannot occur (see [8]). However, their proof uses the classification of finite simple groups. By [9] one can
replace the elementary abelian group of order 8 by C4 o C2 in Theorem 3.

We deduce a corollary.

Theorem 4. Brauer’s k(B)-conjecture holds for 2-blocks of defect at most 4.

For odd primes it is only known that the k(B)-conjecture holds for blocks of defect at most 2.
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