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Abstract

This paper continues [27]. We show that the methods developed there also work for odd primes. In particular
we prove Brauer’s k(B)-conjecture for defect groups which contain a central, cyclic subgroup of index at
most 9. As a consequence, the k(B)-conjecture holds for 3-blocks of defect at most 3. In the second part of
the paper we illustrate the limits of our methods by considering an example. Then we use the work of Kessar,
Koshitani and Linckelmann [13] (and thus the classification) to show that the k(B)-conjecture is satisfied
for 2-blocks of defect 5 except for the extraspecial defect group D8 ∗ D8. As a byproduct we also obtain
the block invariants of 2-blocks with minimal nonmetacyclic defect groups. Some proofs rely on computer
computations with GAP [10].
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1 Introduction

Let G be a finite group and let B be a p-block of G for a prime number p. We denote the number of ordinary
irreducible characters by k(B), and the number of irreducible Brauer characters by l(B). In [27] we showed that
for a 2-block B the number k(B) can be bounded by the Cartan invariants of major subsections (see Lemma 3
in [27]). Our first aim here is to generalize this for all primes p.

Lemma 1. Let (u, b) be a major subsection associated with the block B. Let Cb = (cij) be the Cartan matrix of b
up to equivalence. Then for every positive definite, integral quadratic form q(x1, . . . , xl(b)) =

∑
1≤i≤j≤l(b) qijxixj

we have
k(B) ≤

∑
1≤i≤j≤l(b)

qijcij .

In particular

k(B) ≤
l(b)∑
i=1

cii −
l(b)−1∑
i=1

ci,i+1. (1)

Proof. Let us consider the generalized decomposition numbers duij associated with the subsection (u, b). We
write di := (dui1, d

u
i2, . . . , d

u
i,l(b)) for i = 1, . . . , k(B). Since (u, b) is major, none of the rows di vanishes (see (4C)

in [4]). Let Q = (q̃ij)
l(b)
i,j=1 with

q̃ij :=

{
qij if i = j,

qij/2 if i 6= j
.
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Then we have ∑
1≤i≤j≤l(b)

qijcij =
∑

1≤i≤j≤l(b)

k(B)∑
r=1

qijd
u
rid

u
rj =

k(B)∑
r=1

drQdr
T
,

and it suffices to show
k(B)∑
r=1

drQdr
T ≥ k(B). (2)

For this, let pn be the order of u. Then duij lies in the ring of integers Z[ζ] of the pn-th cyclotomic field Q(ζ)

for ζ := e2πi/p
n

. Since Q is positive definite, αr := drQdr
T
is positive algebraic integer for r = 1, . . . , k(B). Let

G be the Galois group of Q(ζ) over Q. Then it is known that G permutes the set {αr : 1 ≤ r ≤ k(B)}. Hence,∏k(B)
r=1 αr ∈ Z[ζ] is rational and thus integral. Since all αr are positive, we get

∏k(B)
r=1 αr ≥ 1. Now (2) follows

from the inequality of the arithmetic and geometric means. For the second claim we take the quadratic form
corresponding to the Dynkin diagram of type Al(b) for q.

2 3-Blocks of defect 3

Let D be a defect group of B, and let bD be a Brauer correspondent of B in DCG(D). Then NG(D, bD) is the
inertial group of bD in NG(D), and the number e(B) := |NG(D, bD)/DCG(D)| is called inertial index of B.
It is well known that e(B) is a p′-divisor of the order of the automorphism group of D. As an application of
Lemma 1 we show the following generalization of Theorem 3 in [27].

Theorem 1. Brauer’s k(B)-conjecture holds for defect groups which contain a central, cyclic subgroup of index
at most 9.

Proof. If p /∈ {2, 3}, then the defect groups in the hypothesis are abelian of rank at most 2. In this case it is
known that the k(B)-conjecture holds. The case p = 2 was done in [27]. Thus, it suffices to consider blocks
B with elementary abelian defect groups D of order 9. For this, we use the work [14] by Kiyota. We have
e(B) ∈ {1, 2, 4, 8, 16}. As usual, we may assume e(B) > 1. We denote the Cartan matrix of B by C.

Case 1: e(B) = 2.
By [29] we may assume that G = D o C2 (observe that there are two essentially different actions of C2 on D).
It is easy to show that C is given by (

5 4
4 5

)
or
(

6 3
3 6

)
.

Hence, the claim follows from Inequality (1).

Case 2: e(B) = 4.
If the inertial group I(B) is cyclic, we obtain C up to equivalence as follows

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3


from [24]. If I(B) is noncyclic, we have to deal with twisted group algebras of D o C2

2 as in [23]. Let γ be
the corresponding 2-cocycle. Then there are just two possibilities for γ. In particular there are at most two
equivalence classes for C. If γ is trivial, the C is equivalent to

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

 .
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Here we can use Lemma 1 with the quadratic form q corresponding to the positive definite matrix

1

2


2 −1 1 −1
−1 2 −1 .
1 −1 2 −1
−1 . −1 2

 .

In the other case Kiyota gives the following example: Let Q8 act onD with kernel Z(Q8) (this action is essentially
unique). Then we can take the nonprincipal block of D oQ8 for B. In this case l(B) = 1, so the claim follows.

Case 3: I(B) ∼= C8.
Then I(B) acts regularly on D \ {1}. Thus, there are just two B-subsections (1, B) and (u, b) with l(b) = 1
up to conjugation. Kiyota did not obtain the block invariants in this case. Hence, we have to consider some
possibilities. By Lemma (1D) in [14] we have k(B) ∈ {3, 6, 9}. Since u is conjugate to u−1 in I(B), the generalized
decomposition numbers duij are integers. Suppose k(B) = 3. Then the column corresponding to (u, b) in the
generalized decomposition matrix has the form (±2,±2,±1)T. Hence, C is equivalent to(

5 1
1 2

)
.

In the case k(B) = 6 the column corresponding to (u, b) is given by (±2,±1,±1,±1,±1,±1)T, and C is
equivalent to 

2 1 1 1 .
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
. 1 1 1 3

 .

Finally in the case k(B) = 9 we get the following Cartan matrix:

2 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1
1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2


.

As before, the claim follows from Inequality 1 in all cases.

Case 4: I(B) ∼= D8.
By Proposition (2F) in [14] there are two possibilities: (k(B), l(B)) ∈ {(9, 5), (6, 2)}. In both cases there are
three subsections (1, B), (u1, b1) and (u2, b2) with l(b1) = l(b2) = 2 up to conjugation. The Cartan matrix of
b1 and b2 is given by

(
6 3
3 6

)
. In the case k(B) = 9 and l(B) = 5 the numbers du1

ij and du2
ij are integers (see

Subcase (a) on page 39 in [14]). Thus, we may assume that the numbers du1
ij form the two columns(

1 1 1 1 1 1 . . .
. . . 1 1 1 1 1 1

)T

.

Now we use a GAP program to enumerate the possibilities for the columns (du2
1j , d

u2
2j , . . . , d

u2
9j ) (j = 1, 2). It turns

out that C is equivalent to 
3 . 1 . 1
. 3 1 . 1
1 1 3 1 .
. . 1 3 1
1 1 . 1 3


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in all cases. Here we can take the positive definite quadratic form q corresponding to the matrix

1

2


2 . −1 . −1
. 2 −1 1 −1
−1 −1 2 −1 1
. 1 −1 2 −1
−1 −1 1 −1 2


in Lemma 1.

In the case k(B) = 6 and l(B) = 2 the columns d1 := (du1
11 , d

u1
21 , . . . , d

u1
61) and d2 := (du1

12 , d
u1
22 , . . . , d

u1
62) do not

consist of integers only. We write d1 = a+bζ with a, b ∈ Z6 and ζ := e2πi/3. Then d2 = a+bζ. The orthogonality
relations show that

6 = (d1 | d1) = (a | a) + (b | b)− (a | b),
3 = (d1 | d2) = (a | a) + 2(a | b)ζ + (b | b)ζ = (a | a)− (b | b) + (2(a | b)− (b | b))ζ.

This shows (a | a) = 5, (b | b) = 2 and (a | b) = 1. Hence, we can arrange d1 in the following way:

(1, 1, 1, 1, 1 + ζ, 1 + ζ = −ζ)T.

It is easy to see that there are essentially two possibilities for the column (du2
11 , d

u2
21 , . . . , d

u2
61)T:

(1 + ζ,−ζ,−1,−1, 1, 1)T or (1 + ζ,−ζ,−1, 1,−1,−1)T.

The second possibility is impossible, since then C would have determinant 81. Thus, the first possibility occurs,
and C is (

5 1
1 2

)
up to equivalence.

Case 5: I(B) ∼= Q8.
Then I(B) acts regularly on D \ {1}. Hence, the result follows as in the case I(B) ∼= C8.

Case 6: e(B) = 16.
Then there are two B-subsections (1, B) and (u, b) up to conjugation. This time we have l(b) = 2. By [31] we
have k(B) = 9 and l(B) = 7. The Cartan matrix of b is given by

(
6 3
3 6

)
. By way of contradiction, we assume

that the columns d1 := (du11, d
u
21, . . . , d

u
91) and d2 := (du12, d

u
22, . . . , d

u
92) are 3-conjugate. Then an argument as in

Case 4 shows the contradiction k(B) ≤ 6. Hence, the columns d1 and d2 have the form(
1 1 1 1 1 1 . . .
. . . 1 1 1 1 1 1

)T

.

Thus, we obtain C as follows: 

2 1 . . . . 1
1 2 . . . . 1
. . 2 1 . . 1
. . 1 2 . . 1
. . . . 2 1 1
. . . . 1 2 1
1 1 1 1 1 1 3


.

In this case we can take the positive definite quadratic form q corresponding to the matrix

1

2



2 −1 . . . . −1
−1 2 . . . . .
. . 2 −1 . . −1
. . −1 2 . 1 .
. . . . 2 −1 −1
. . . 1 −1 2 .
−1 . −1 . −1 . 2


in Lemma 1.
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We deduce an important consequence.

Corollary 1. Brauer’s k(B)-conjecture holds for 3-blocks of defect at most 3.

Hendren obtained some results about blocks with nonabelian defect groups of order p3 (see [12, 11]). In particular
he showed that Brauer’s k(B)-conjecture is satisfied in the exponent p2 case. However, he was not able to prove
this in the exponent p case, even for p = 3 (see Section 6.1 in [12]).

We add a similar result in the same spirit for p = 2 which will be needed later.

Theorem 2. Brauer’s k(B)-conjecture holds for all 2-blocks with minimal nonabelian defect groups. Moreover,
let Q be a minimal nonabelian 2-group, but not of type 〈x, y | x2r = y2

r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉
with r ≥ 3, [x, y] := xyx−1y−1 and [x, x, y] := [x, [x, y]] (these groups have order 22r+1 ≥ 128). Then Brauer’s
k(B)-conjecture holds for defect groups which are central extensions of Q by a cyclic group.

Proof. This follows from a part of the author’s PhD thesis (see [26]).

3 A counterexample

Külshammer and Wada [16] have shown that there is not always a positive definite quadratic form q such that
we have equality in Lemma 1 (for u = 1). However, it is not clear if there is always a quadratic form q such
that ∑

1≤i≤j≤l(B)

qijcij ≤ pd, (3)

where d is the defect of the block B. (Of course, this would imply the k(B)-conjecture in general.)

We consider an example. Let D ∼= C4
2 , A ∈ Syl3(Aut(D)), G = D o A and B = B0(G). Then k(B) = 16,

l(B) = 9, and the decomposition matrix Q and the Cartan matrix C of B are

Q =



1 . . . . . . . .
. 1 . . . . . . .
. . 1 . . . . . .
. . . 1 . . . . .
. . . . 1 . . . .
. . . . . 1 . . .
. . . . . . 1 . .
. . . . . . . 1 .
. . . . . . . . 1
1 1 1 . . . . . .
1 . . . . 1 1 . .
. . . 1 . 1 . 1 .
. . . . 1 . 1 . 1
. 1 . . 1 . . 1 .
. . 1 1 . . . . 1
1 1 1 1 1 1 1 1 1



, C =



4 2 2 1 1 2 2 1 1
2 4 2 1 2 1 1 2 1
2 2 4 2 1 1 1 1 2
1 1 2 4 1 2 1 2 2
1 2 1 1 4 1 2 2 2
2 1 1 2 1 4 2 2 1
2 1 1 1 2 2 4 1 2
1 2 1 2 2 2 1 4 1
1 1 2 2 2 1 2 1 4


.

We will see that in this case there is no positive definite quadratic form q such that Inequality (3) is satisfied.
In order to do so, we assume that q is given by the matrix 1

2A with A = (aij) ∈ Z9×9. Since A is symmetric, we
only consider the upper triangular half of A. Then the rows of Q are 1-roots of q, i. e. rArT = 2 for every row
r of Q (see Corollary B in [16]). If we take the first nine rows of Q, it follows that aii = 2 for i = 1, . . . , 9. Now
assume |a12| ≥ 2. Then

(1,− sgn a12, 0, . . . , 0)A(1,− sgn a12, 0, . . . , 0)T ≤ 0,

and q is not positive definite. The same argument shows aij ∈ {−1, 0, 1} for i 6= j. In particular there are only
finitely many possibilities for q. Now the next row of Q shows

(a12, a13, a23) ∈ {(−1,−1, 0), (−1, 0,−1), (0,−1,−1)}.
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The same holds for the following triples

(a16, a17, a67), (a46, a48, a68), (a57, a59, a79), (a25, a28, a58), (a34, a39, a49).

Finally the last row of Q shows that the remaining entries add up to 4:

a14 + a15 + a18 + a19 + a24 + a26 + a27 + a29 + a35 + a36 + a37 + a38 + a45 + a47 + a56 + a69 + a78 + a89 = 4.

These are too many possibilities to check by hand. So we try to find a positive definite form q with GAP. To
decrease the computational effort, we enumerate all positive definite 7×7 left upper submatrices of A first. There
are 140428 of them, but none can be completed to a positive definite 9× 9 matrix with the given constraints.

Nevertheless, we show that there is no corresponding decomposition matrix for C with more than 16 rows. For
this let B be a block with Cartan matrix equivalent to C. (By [27] the k(B)-conjecture already holds for B. We
give an independent argument for this.) We enumerate the possible decomposition matrices Q and count their
rows. Since Q ∈ Zk(B)×9, every column of Q has the form (±1,±1,±1,±1, 0, . . . , 0)T for a suitable arrangement.
Let us assume that the first two columns of Q have the form(

1 1 1 1 . · · · .
1 1 1 −1 . · · · .

)T

.

Then the entries of C show that there is no possibility for the fifth column of Q. Thus, we may assume that the
first two columns of Q are (

1 1 1 1 . . . · · · .
. . 1 1 1 1 . · · · .

)T

.

Now we use a backtracking algorithm with GAP to show that Q has at most 16 rows (and at least 9).

Unfortunately, this method does not carry over to major subsections. For if we multiply C by a 2-power (namely
the order of a 2-element), the corresponding (generalized) decomposition matrices can be entirely different.

4 2-Blocks with defect 5

In order to prove Brauer’s k(B)-conjecture for 2-blocks of defect 5, we discuss central extensions of groups
of order 16 by cyclic groups. We start with the abelian (and nonmetacyclic) groups of order 16. In the next
proposition we have to exclude one case, as the last section has shown. Moreover, we use the work of Kessar,
Koshitani and Linckelmann [13] (and thus the classification) in the proof. We have not checked if it is possible
to avoid the classification by considering more (virtually impossible) cases. For this reason, we will also freely
use the method of Usami and Puig (see [29, 30, 24]), although there is no explicit proof in the case p = 2 and
e(B) = 3.

Proposition 1. Let B be a block with a defect group which is a central extension of an elementary abelian
group of order 16 by a cyclic group. If 9 - e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. Let D be the defect group of B. We choose u ∈ Z(D) such that D/〈u〉 is elementary abelian of order
16. Let (u, b) be a B-subsection. Then it is easy to see that e(b) is a divisor of e(B). By hypothesis e(b) ∈
{1, 3, 5, 7, 15, 21}. As in the proof of Theorem 1, we replace b by B for simplicity. In order to prove the proposition,
we determine the Cartan matrix C of B up to equivalence. If this is done, it will be immediately clear that a
suitable inequality as in Lemma 1 is satisfied.

The case e(B) = 1 is clear. We consider the remaining cases separately.

Case 1: e(B) = 3.
In this case we may use the method of Usami and Puig (see [29, 30, 24]). Thus, we can replace G by DoC3 via
a perfect isometry (observe that there are two essentially different actions of C3 on D). Then C has the form8 4 4

4 8 4
4 4 8

 or

6 5 5
5 6 5
5 5 6


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up to equivalence.

Case 2: e(B) = 5.
Then there are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) with l(b1) = l(b2) = l(b3) = 1 up to
conjugation. According to the fact that |D| = 16 is a sum of k(B) squares, we have six possibilities:

(i) k(B) = k0(B) = 16 and l(B) = 13,

(ii) k(B) = k0(B) = 8 and l(B) = 5,

(iii) k(B) = 13, k0(B) = 12, k1(B) = 1 and l(B) = 10,

(iv) k(B) = 10, k0(B) = 8, k1(B) = 2 and l(B) = 7,

(v) k(B) = 7, k0(B) = 4, k1(B) = 3 and l(B) = 4,

(vi) k(B) = 5, k0(B) = 4, k1(B) = 1 and l(B) = 2.

(Brauer’s height zero conjecture would contradict the last four possibilities.) In case (i) we have

C =



4 3 3 3 1 1 1 1 1 1 −1 −1 −1
3 4 3 3 1 1 1 1 1 1 −1 −1 −1
3 3 4 3 1 1 1 1 1 1 −1 −1 −1
3 3 3 4 1 1 1 1 1 1 −1 −1 −1
1 1 1 1 2 1 1 . . . . . .
1 1 1 1 1 2 1 . . . . . .
1 1 1 1 1 1 2 . . . . . .
1 1 1 1 . . . 2 1 1 . . .
1 1 1 1 . . . 1 2 1 . . .
1 1 1 1 . . . 1 1 2 . . .
−1 −1 −1 −1 . . . . . . 2 1 1
−1 −1 −1 −1 . . . . . . 1 2 1
−1 −1 −1 −1 . . . . . . 1 1 2


up to equivalence. In particular detC = 256. However, this contradicts Corollary 1 in [9]. Now we assume that
case (ii) occurs. Then there are several ways to arrange the generalized decomposition numbers corresponding
to bi for i = 1, 2, 3: 

1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 3
1 3 −1
3 1 1


,



1 −1 1
1 −1 1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 3
1 3 1
3 1 −1


,



1 1 1
1 1 1
1 1 1
1 −1 −1
1 −1 −1
1 −1 3
1 3 −1
3 −1 −1


.

In the last two cases the determinant of C would be 64. Thus, only the first case can occur. Then we have

C =


4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4


up to equivalence. Hence, we can consider the case (iii). Then the generalized decomposition numbers corre-
sponding to bi for i = 1, 2, 3 can be arranged in the form 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 2
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 2

T

.
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However, in this case C would have determinant 256. In the same manner we see that also the case (iv) is not
possible. Thus, assume case (v). Then the generalized decomposition numbers corresponding to bi for i = 1, 2, 3
have the form  1 1 1 1 2 2 2

−1 −1 −1 −1 2 2 −2
1 1 1 1 2 −2 −2

T

.

This gives

C =


5 4 4 5
4 5 4 5
4 4 5 5
5 5 5 7

 ,

and the claim follows. Finally let case (vi) occur. Then the generalized decomposition numbers corresponding
to bi for i = 1, 2, 3 have the form 1 1 1 3 2

1 1 −3 −1 2
1 −3 1 −1 2

T

.

It follows that
C =

(
4 6
6 13

)
.

Case 3: e(B) = 7.
There are again four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) up to conjugation. But in this case l(b1) =
l(b2) = 1 and l(b3) = 7 by the Kessar-Koshitani-Linckelmann paper. Moreover, 2 appears six times as elementary
divisor of the Cartan matrix of b3. Using the theory of lower defect groups it follows that 2 occurs at least six
times as elementary divisor of C. By [27] we have k(B) ≤ 16. This gives k(B) = k0(B) = 16, l(B) = 7. The
generalized decomposition matrix (without the ordinary part) can be arranged in the form

1 1 1 1 . . . . . . . . . . . .
. . 1 1 1 1 . . . . . . . . . .
. . . . 1 1 1 1 . . . . . . . .
. . . . . . 1 1 1 1 . . . . . .
. . . . . . . . 1 1 1 1 . . . .
. . . . . . . . . . 1 1 1 1 . .
. . . . . . . . . . . . 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1



T

.

Hence, C has the form 

4 2 2 2 2 2 2
2 4 2 2 2 2 2
2 2 4 2 2 2 2
2 2 2 4 2 2 2
2 2 2 2 4 2 2
2 2 2 2 2 4 2
2 2 2 2 2 2 4


up to equivalence (notice that this is also the Cartan matrix of b3).

Case 4: e(B) = 15.
There are just two subsections (1, B) and (u, b) with l(b) = 1 up to conjugation. It is easy to prove the claim
using a similar case decision as in Case 2. We skip the details.

Case 5: e(B) = 21.
There are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) up to conjugation. We have l(b1) = l(b2) = 3 and
l(b3) = 5 by the Kessar-Koshitani-Linckelmann paper. With the notations of [15], B is a centrally controlled
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block. In particular l(B) ≥ l(b3) = 5 (see Theorem 1.1 in [15]). Since the k(B)-conjecture holds for B, we have
k(B) = 16 and l(B) = 5. The Cartan matrix of b3 is given by

2


2 . . . 1
. 2 . . 1
. . 2 . 1
. . . 2 1
1 1 1 1 4


(see the proof of Theorem 3 in [27]). Using this, it is easy to deduce that the generalized decomposition numbers
corresponding to (u3, b3) can be arranged in the form

1 1 1 1 . . . . . . . . . . . .
. . . . 1 1 1 1 . . . . . . . .
. . . . . . . . 1 1 1 1 . . . .
. . . . . . . . . . . . 1 1 1 1
. . 1 1 . . 1 1 . . 1 1 . . 1 1


T

.

It is also easy to see that the columns of generalized decomposition numbers corresponding to b1 and b2 consist
of eight entries ±1 and eight entries 0. The theory of lower defect groups shows that 2 occurs as elementary
divisor of C. Now we use GAP to enumerate all possible arrangements of these columns. It turns out that C is
equivalent to the Cartan matrix of b3.

Proposition 2. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of C4 ×C2
2 by a

cyclic group.

Proof. Let B be a block with defect group D ∼= C4×C2
2 . We may assume e(B) = 3. Then we can use the method

of Usami and Puig (see [29, 30, 24]). This means it suffices to consider the case G = D o C3 and B = B0(G).
An easy calculation shows that the Cartan matrix of B is equivalent to8 4 4

4 8 4
4 4 8

 .

Hence, the result follows from Lemma 1 as before.

Now we turn to the nonabelian (and nonmetacyclic) groups of order 16.

Proposition 3. Let B be a nonnilpotent block with defect group D8 × C2. Then k(B) = 10, k0(B) = 8 and
k1(B) = 2. The ordinary irreducible characters are 2-rational. Moreover, l(B) ∈ {2, 3} and the Cartan matrix
of B is equivalent to (

6 2
2 6

)
or

6 2 2
2 4 0
2 0 4

 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of D8 × C2 by a cyclic
group.

Proof. First we remark that the proof and the result is very similar to the case where the defect group is D8

(see [5]). Let D := 〈x, y, z | x4 = y2 = z2 = [x, z] = [y, z] = 1, yxy = x−1〉 ∼= D8 × C2 and let (D, bD) a Sylow
subpair. It is easy to see that Aut(D) is a 2-group. Thus, e(B) = 1. We use the theory developed in [22]. One
can show, that all self-centralizing proper subgroups of D are maximal and there are precisely three of them:

M1 := 〈x2, y, z〉 ∼= C3
2 ,

M2 := 〈x2, xy, z〉 ∼= C3
2 ,

M3 := 〈x, z〉 ∼= C4 × C2.
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Now Lemma 1.7 in [20] yields A0(D, bD) = {M1,M2,M3, D}. Assume that M1 and M2 are conjugate in G.
Then also the B-subpairs (M1, bM1

) and (M2, bM2
) are conjugate. By Alperin’s fusion theorem they are already

conjugate in NG(D, bD). Since e(B) = 1, this is impossible.

Now we determine a system of representatives for the conjugacy classes of B-subsections using (6C) in [6]. As
usual, one gets four major subsections (1, B), (x2, bx2), (z, bz), (x2z, bx2z). Then bx2 dominates a block with
defect group D/〈x2〉 ∼= C3

2 . Since e(B) = 1, we get l(bx2) = 1. On the other hand, bz and bx2z dominate blocks
with defect group D8.

Since Aut(M3) is a 2-group, we have NG(M3, bM3) = DCG(M3). This gives two subsections (x, bx) and (xz, bxy).
Again we have l(bx) = l(bxz) = 1.

If NG(M1, bM1) = DCG(M1) and NG(M2, bM2) = DCG(M2), then B would be nilpotent. Thus, we may assume
NG(M1, bM1

)/CG(M1) ∼= S3. Then the elements {y, x2y, yz, x2yz} are conjugate to elements of Z(D) under
NG(M1, bM1

). Hence, there are no subsections corresponding to the subpair (M1, bM1
) (cf. Lemma 2.10 in [21]).

We distinguish two cases.

Case 1: NG(M2, bM2
) = DCG(M2).

Then the action of NG(M2, bM2
) gives the subsections (xy, bxy) and (xyz, bxyz). Moreover, l(bxy) = l(bxyz) = 1

holds. Since NG(M1, bM1
) fixes exactly one element of {z, x2z}, we get l(bz) + l(bx2z) = 3 (see Theorem 2 in [5])

Collecting all the subsections, we deduce k(B) = l(B) + 8. We may assume that l(bz) = 2 (otherwise replace bz
with bx2z). Then the Cartan matrix of bz is equivalent to

(
6 2
2 6

)
(see pages 294/5 in [8]). This gives k(B) ≤ 10.

Since 16 is not the sum of 9 positive squares, we must have k(B) = 10. Then k0(B) = 8, k1(B) = 2 and l(B) = 2.
In order to determine the Cartan matrix, we investigate the generalized decomposition numbers duχϕ first. For
u ∈ D with l(bu) = 1 we write IBr(bu) = {ϕu}. Then the numbers {dx2

χϕx2
: χ ∈ Irr(B)} can be arranged in the

form
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2)T,

where the last two characters have height 1. It is easy to see that the subsections (x, bx) and (x−1, bx) are
conjugate by y. This shows that the numbers dxχϕx

are integral. The same holds for dxzχϕxz
. Hence, all irreducible

characters are 2-rational. For every character χ of height 0 we have dxχϕx
6= 0 6= dxzχϕxz

. Hence, we get three
columns of the generalized decomposition matrix:1 1 1 1 1 1 1 1 2 2

1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .

T

.

Adding the columns {dxyχϕxy
: χ ∈ Irr(B)} and {dxyzχϕxyz

: χ ∈ Irr(B)} gives:
1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .


T

(To achieve this form, one may have to interchange the third row with the fifth and the fourth with the sixth
as well as the second column with the third.) Since (x2z, bx2z) is a major subsection, the column {dx2z

χϕx2z
: χ ∈

Irr(B)} consists of eight entries ±1 and two entries ±2. However, there are three essentially different ways to
add this column to the previous ones:

1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 1 1 1 1 1 1 1 −2 −2



T

10



or 
1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 −1 −1 1 1 −1 −1 1 2 −2



T

or 
1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 −1 −1 1 −1 1 1 −1 2 −2



T

.

We use GAP to enumerate the remaining columns corresponding to the subsection (z, bz). In all cases the Cartan
matrix of B is equivalent to (

6 2
2 6

)
.

Case 2: NG(M2, bM2
)/CG(M2) ∼= S3.

Then one can see by the same argument as for (M1, bM1
) that there are no subsections corresponding to the

subpair (M2, bM2
). Since NG(M1, bM1

) and NG(M2, bM2
) fix exactly one element of {z, x2z} (not necessarily the

same), we have l(bz) + l(bx2z) = 4 (the cases l(bz) = l(bx2z) = 2, l(bz) = 3, l(bx2z) = 1 and l(bz) = 1, l(bx2z) = 3
are possible). We deduce k(B) = l(B) + 7. If l(bz) = 2, then we get k(B) ≤ 10 as in Case 1. Assume l(bz) = 3.
Then the Cartan matrix of bz is equivalent to

2

2 1 0
1 3 1
0 1 2

 .

Thus, also in this case we have k(B) ≤ 10. A consideration of the lower defect groups shows that 2 occurs as
elementary divisor of the Cartan matrix C of B. In particular l(B) ≥ 2 and k(B) ≥ 9. Since 16 is not the sum
of 9 positive squares, it follows that k(B) = 10, k0(B) = 8, k1(B) = 2 and l(B) = 3. An investigation of the
generalized decomposition numbers similar as in the first case reveals that C is equivalent to4 2 0

2 6 2
0 2 4

 .

This proves the proposition.

It is easy to see that both cases (l(B) ∈ {2, 3}) in Proposition 3 occur for the principal blocks of S4 × C2 and
GL(3, 2)× C2 respectively.

Proposition 4. Let B be a nonnilpotent block with defect group Q8×C2. Then k(B) = 14, k0(B) = 8, k1(B) = 6
and l(B) = 3. The ordinary irreducible characters are 2-rational. The Cartan matrix of B is equivalent to8 4 4

4 8 4
4 4 8

 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of Q8 × C2 by a cyclic
group.
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Proof. Let D := 〈x, y, z | x2 = y2, xyx−1 = y−1, z2 = [x, z] = [y, z] = 1〉 ∼= Q8 × C2 and let (D, bD) a Sylow
subpair. Since |Z(D) : Φ(D)| = 2, we have e(B) ∈ {1, 3}. As in the proof of Proposition 3 there are precisely
three self-centralizing proper subgroups of D:

M1 := 〈x, z〉 ∼= C4 × C2,

M2 := 〈y, z〉 ∼= C4 × C2,

M3 := 〈xy, z〉 ∼= C4 × C2.

It follows from Lemma 1.7 in [20] that A0(D, bD) = {M1,M2,M3, D}. Since Aut(Mi) is a 2-group for i = 1, 2, 3,
B would be nilpotent if e(B) = 1. Thus, we may assume that e(B) = 3. Then M1, M2 and M3 are conjugate in
G. We describe a system of representatives for the conjugacy classes of B-subsections. As usual, there are four
major subsections (1, B), (x2, bx2), (z, bz) and (x2z, bx2z). Moreover, the subpair (M, bM ) gives the subsections
(x, bx) and (xz, bxz). The blocks bz and bx2z dominate blocks with defect group D/〈z〉 ∼= D/〈x2z〉 ∼= Q8. Since
NG(D, bD) centralizes Z(D), these blocks with defect group Q8 have inertial index 3. Now Theorem 3.17 in [20]
gives l(bz) = l(bx2z) = 3. The block bx2 covers a block with defect group D/〈x2〉 ∼= C3

2 and inertial index 3.
Thus, we also have l(bx2) = 3. Finally the blocks bx and bxz have defect group M1. Hence, they are nilpotent,
and we have l(bx) = l(bxz) = 1. This yields k(B) = 11 + l(B). Since B is a centrally controlled block, we get
l(B) ≥ l(bz) = 3 and k(B) ≥ 14. The Cartan matrix of bx2 , bx2z and bz is equivalent to8 4 4

4 8 4
4 4 8


(see page 305 in [8]). Let Q ∈ Zk(B)×3 be the part of the generalized decomposition matrix corresponding to
bz. Then the columns of Q have one of the following forms: (±2,±2, 0, . . . , 0), (±2,±1,±1,±1,±1, 0, . . . , 0) or
(±1, . . . ,±1, 0, . . . , 0). Since k(B) ≥ 14, at least one column has the last form. A similar argument shows that
no column has the first form. It follows that at least two columns have the form (±1, . . . ,±1, 0, . . . , 0). Hence,
there are four possibilities for Q:



1 . .
1 . .
1 . .
1 . .
1 1 2
1 1 1
1 1 1
1 1 .
. 1 .
. 1 .
. 1 .
. 1 .
. . 1
. . 1





1 . .
1 . .
1 . .
1 . .
1 1 1
1 1 1
1 1 1
1 1 1
. 1 1
. 1 −1
. 1 .
. 1 .
. . 1
. . 1





1 . .
1 . .
1 . 1
1 . 1
1 1 1
1 1 1
1 1 .
1 1 .
. 1 1
. 1 1
. 1 .
. 1 .
. . 1
. . 1





1 . .
1 . .
1 . .
1 . .
1 1 1
1 1 1
1 1 1
1 1 1
. 1 .
. 1 .
. 1 .
. 1 .
. . 1
. . 1
. . 1
. . 1


(a) (b) (c) (d)

In particular k(B) ∈ {14, 16} and l(B) ∈ {3, 5}.

By way of contradiction, we assume k(B) = 16. Then Q is given as in case (d). LetMz = (m
(z,bz)
χψ ) be the matrix

of contributions corresponding to (z, bz). We denote the three irreducible Brauer characters of bz by ϕ1, ϕ2 and
ϕ3. Then for χ ∈ Irr(B) we have

16m(z,bz)
χχ = 3

(
(dzχϕ1

)2 + (dzχϕ2
)2 + (dzχϕ3

)2
)
− 2dzχϕ1

dzχϕ2
− 2dzχϕ1

dzχϕ3
− 2dzχϕ2

dzχϕ3

≡ dzχϕ1
+ dzχϕ2

+ dzχϕ3
(mod 2).

In particular the numbers 16m
(z,bz)
χχ are odd for all χ ∈ Irr(B). Now (5G) in [4] implies k(B) = k0(B). By

Proposition 1 in [7] we get dxχϕx
6= 0 for all χ ∈ Irr(B). However,

∑
χ∈Irr(B) |dxχϕx

|2 = |M1| = 8.
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This contradiction yields k(B) = 14 and l(B) = 3. The last argument gives also k0(B) ≤ 8. Now a similar
analysis of the contributions reveals that Q has the form (c) (see above) and k0(B) = 8. Again (5G) in [4]
implies k1(B) = 6 (this follows also from Corollary 1.4 in [17]). Since the subsections (x, bx) and (x−1, bx) are
conjugate in G, the generalized decomposition numbers dxχϕx

and dxzχϕxz
are integral. Thus, they must consist

of eight entries ±1 (for the characters of height 0) and six entries 0. In particular all characters are 2-rational.
Now we enumerate all possible decomposition matrices with GAP. In all cases the Cartan matrix of B has the
stated form.

The principal block of SL(2, 3)× C2 gives an example for the last proposition.

Proposition 5. Let B be a nonnilpotent block with defect group D8 ∗ C4 (central product). Then k(B) = 14,
k0(B) = 8, k1(B) = 6 and l(B) = 3. Moreover, the irreducible characters of height 0 are 2-rational and the
characters of height 1 consist of three pairs of 2-conjugate characters. The Cartan matrix of B is equivalent to8 4 4

4 8 4
4 4 8

 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of D8 ∗ C4 by a cyclic
group.

Proof. The proof (and the result) is very similar to that of Proposition 4. Let D := 〈x, y, z | x4 = y2 = [x, z] =
[y, z] = 1, yxy = x−1, x2 = z2〉 ∼= D8 ∗ C4. We have e(B) ∈ {1, 3} and A0(D, bD) = {M1,M2,M3, D} with

M1 := 〈x, z〉 ∼= C4 × C2,

M2 := 〈y, z〉 ∼= C4 × C2,

M3 := 〈xy, z〉 ∼= C4 × C2.

Hence, we may assume e(B) = 3. Then M1, M2 and M3 are conjugate in G. There are four major subsections
(1, B), (z, bz), (z−1, bz−1) and (x2, bx2). The subpair (M1, bM1

) gives two nonmajor subsections (x, bx) and
(xz, bxz) up to conjugation. As usual, we have l(bx) = l(bxz) = 1. The blocks bz and bz−1 dominate blocks with
defect groups D/〈z〉 ∼= C2

2 and inertial index 3. Hence, we have l(bz) = l(bz−1) = 3. The block bx2 dominates a
block with defect group C3

2 and inertial index 3. Thus, again we have l(bx2) = 3. Collecting these numbers gives
k(B) = 11 + l(B). The Cartan matrix of the blocks bz, bz−1 and bx2 is8 4 4

4 8 4
4 4 8


up to equivalence. Now an analysis of the generalized decomposition numbers dx

2

χϕ as in the proof of Proposition 4
reveals k(B) = 14, k0(B) = 8, k1(B) = 6 and l(B) = 3. Next we study the other generalized decomposition
numbers. Again as in the proof of Proposition 4 the numbers dxχϕ and dxzχϕ are integral. Thus, they consist of
eight entries ±1 and six entries 0. However, in contrast to Proposition 4 the numbers dzχϕ and dz

−1

χϕ are not
always real (see (6B) in [4]). Let Q be the part of the generalized decomposition matrix corresponding to (z, bz).
By Brauer’s Permutation Lemma, eight of the ordinary irreducible characters are 2-rational. The remaining ones
split in three pairs of 2-conjugate characters (see Theorem 11 in [3]). This shows that Q has exactly eight real-
valued rows. Let qj be the j-th column of Q for j = 1, 2, 3. Then we can write qj = aj + bji with i :=

√
−1 and

aj , bj ∈ Z14. The orthogonality relations show that aj has four entries ±1 and ten entries 0 (for j = 1, 2, 3). The
same holds for bj . Moreover, we have 4 = (q1 | q2) = (a1 | a2) + (b1 | b2) and 0 = (q1 | q2) = (a1 | a2)− (b1 | b2),
where (. | .) denotes the standard scalar product of C14. This shows (a1 | a2) = (b1 | b2) = 2 and similarly
(a1 | a3) = (a2 | a3) = (b1 | b3) = (b2 | b3) = 2. Using this, we see that Q has the form

Q =

 1 1 1 1 . . . . i −i i −i . .
1 1 . . 1 1 . . i −i . . i −i
1 1 . . . . 1 1 . . i −i i −i

T

.

The theory of contributions reveals that the eight characters of height 0 are 2-rational. As in the proof of the
previous propositions we enumerate the possible generalized decomposition matrices with GAP, and obtain the
Cartan matrix of B.
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We collect the previous propositions in the next theorem.

Theorem 3. Let B be a block with a defect group which is a central extension of a group Q of order 16 by a
cyclic group. If Q 6∼= C4

2 or 9 - e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. For convenience of the reader, we list the 14 groups of order 16:

• the metacyclic groups: C16, C8 × C2, C2
4 , C4 o C4, D16, Q16, SD16 (semidihedral), M16 (modular),

• the minimal nonabelian group: 〈x, y | x4 = y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉,

• the nonmetacyclic abelian groups: C4 × C2
2 , C4

2 ,

• D8 × C2,

• Q8 × C2,

• D8 ∗ C4.

Corollary 2. Let B be a block with defect group D of order 32. If D is not extraspecial of type D8 ∗D8 or if
9 - e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. By Theorem 3 we may assume that 9 | e(B). In particular 9 | Aut(D). Now one can show (for example
with GAP) that there are just three possibilities for D, namely C5

2 , Q8×C2
2 and the extraspecial group D8 ∗D8.

In the case D ∼= Q8 × C2
2 we can choose a major subsection (u, b) such that D/〈u〉 ∼= Q8 × C2.

Hence, by hypothesis we may assume that D is elementary abelian. By Corollary 1.2(ii) in [25] we may also
assume that the inertial group I(B) of B is nonabelian. In particular 9 is a proper divisor of e(B). In general
e(B) is a divisor of 32 · 5 · 7 · 31 (this is the odd part of |Aut(D)| = |GL(5, 2)|).

Assume that e(B) is also divisible by 31. Since the normalizer of a Sylow 31-subgroup of Aut(D) ∼= GL(5, 2)
has order 5 · 31, I(B) does not contain a normal Sylow 31-subgroup. Thus, by Sylow’s theorem we also have
7 | e(B). However, all groups of order 32 · 7 · 31 and 32 · 5 · 7 · 31 have a normal Sylow 31-subgroup. This shows
31 - e(B).

Now suppose that 5 · 7 | e(B). Since the normalizer of a Sylow 7-subgroup of GL(5, 2) has order 2 · 32 · 7,
I(B) does not contain a normal Sylow 7-subgroup. However, all groups of order 32 · 5 · 7 have a normal Sylow
7-subgroup. Hence, 5 · 7 - e(B).

Next we consider the case e(B) = 32 · 7. Then the action of I(B) on D induces an orbit of length 21. If we
choose the major subsection (u, b) such that u lies in this orbit, then the inertial index of b is 3. Thus, the claim
follows in this case.

Finally in the case e(B) = 32 · 5, the inertial group I(B) would be abelian. Hence, the proof is complete.

5 2-Blocks with minimal nonmetacyclic defect groups

Since the block invariants of 2-blocks with metacyclic defect groups are known (see [28]), it seems natural to
consider minimal nonmetacyclic defect groups. The groups C3

2 , Q8×C2 and D8 ∗C4 are minimal nonmetacyclic.
Apart from these there is only one more minimal nonmetacyclic 2-group (see Theorem 66.1 in [2]). We consider
this defect group. The next proposition shows that the corresponding blocks are nilpotent. We use the notion
of fusion systems (see [18] for definitions and results).

Proposition 6. Every fusion system on P := 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = x2, zxz−1 = xy2, zyz−1 =
x2y〉 is nilpotent.
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Proof. Let F be a fusion system on P , and let Q < P be an F-essential subgroup. Since Q is metacyclic
and Aut(Q) is not a 2-group, we have Q ∼= Q8 or Q ∼= C2

2r for some r ∈ N (see Lemma 1 in [19]). By
Proposition 10.17 and Proposition 1.8 in [1] it follows that Q ∼= C2

4 . Now Theorem 66.1 in [2] implies Q = 〈x, y〉.
As usual, AutF (Q) ∼= S3 acts nontrivially on Ω1(Q). However, P acts trivially on Ω1(Q) = Z(P ). This is not
possible, since P/Q is a Sylow 2-subgroup of AutF (Q). Thus, we have shown that P does not contain F-
essential subgroups. By Alperin’s fusion theorem, P controls F . Finally one can show (with GAP) that Aut(P )
is a 2-group.

The group in the last proposition has order 32. As a byproduct of the last section we deduce the following
corollary.

Corollary 3. Let B be a 2-block with minimal nonmetacyclic defect group D. Then one of the following holds:

(i) B is nilpotent. Then ki(B) is the number of ordinary characters of D of degree 2i. In particular k(B) is
the number of conjugacy classes of D and k0(B) = |D : D′|. Moreover, l(B) = 1.

(ii) D ∼= C3
2 . Then k(B) = k0(B) = 8 and l(B) ∈ {3, 5, 7} (all cases occur).

(iii) D ∼= Q8 × C2 or D ∼= D8 ∗ C4. Then k(B) = 14, k0(B) = 8, k1(B) = 6 and l(B) = 3.
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