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We prove Brauer’s k(B)-Conjecture for the 3-blocks with abelian defect groups of rank at
most 5 and for all 3-blocks of defect at most 4. For this purpose we develop a computer
algorithm to construct isotypies based on a method of Usami and Puig. This leads further to
some previously unknown perfect isometries for the 5-blocks of defect 2. We also investigate
basic sets which are compatible under the action of the inertial group.
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1 Introduction

This work continues a series of articles the last one being [27]. Before stating the main theorems we
briefly explain the strategy behind all papers in this series.

Let B be a block of a finite group G with respect to an algebraically closed field F of characteristic
p > 0. Let D be a defect group B, and let k(B) := |Irr(B)| and l(B) := |IBr(B)|. To prove Brauer’s
k(B)-Conjecture, that k(B) ≤ |D|, we investigate Brauer correspondents of B in local subgroups.
More precisely, let z ∈ Z(D) and let bz be a Brauer correspondent of B in CG(z). If we can determine
the Cartan matrix Cz of bz up to basic sets (i. e. up to transformations Cz → SCzS

t where S ∈
GL(l(bz),Z)), then Brauer’s Conjecture usually follows from [26, Theorem 4.2] or from the much
stronger result [31, Theorem A]. Now bz dominates a unique block bz of CG(z)/⟨z⟩ with Cartan matrix
Cz =

1
|⟨z⟩|Cz. Hence, it suffices to consider bz. By [27, Lemma 3], bz has defect group D := D/⟨z⟩ and

the fusion system of bz is uniquely determined by the fusion system of B. This means that we have full
information on bz on the local level. The inertial quotient of B is denoted by I(B) in the following.

In the present paper we deal mostly with situations where D is abelian. Then the fusion system of
bz is essentially determined by the inertial quotient I(bz) = I(bz) ∼= CI(B)(z) and by the action of
I(bz) on D. In the next section we will revisit a method developed by Usami and Puig to construct
perfect isometries between bz and its Brauer first main theorem correspondent in certain situations.
Since perfect isometries preserve Cartan matrices (up to basic sets), it suffices to determine the Cartan
matrix of a block βz with normal defect group D and I(βz) = I(bz). By a theorem of Külshammer [17],
we may even assume that βz is a twisted group algebra of L := D ⋊ I(bz). Finally, we can regard βz
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as a faithful block of a certain central extension L̂ of L by a cyclic p′-group. It is then straight-forward
to compute the desired Cartan matrix.

In the third section we apply a novel computer implementation of the Usami–Puig method to construct
many new isotypies for 5-blocks of defect 2. This verifies Broué’s Abelian Defect Group Conjecture [4]
on the level of characters in those cases. When this approach fails, it is often still possible to determine
a short list of all potential Cartan matrices of bz. To do so, we improve the Cartan method introduced
in [26, Section 4.2]. As a new ingredient we investigate in Proposition 7 the existence of basic sets which
are compatible with the action of the inertial group. Eventually, we combine both methods to verify
Brauer’s k(B)-Conjecture for all 3-blocks with abelian defect groups of rank at most 5. This extends
the corresponding results from [27, Proposition 21] and [28, Corollary 3] for p-blocks with abelian defect
groups of rank at most 3 (respectively 7 if p = 2). Afterwards we turn the focus to non-abelian defect
groups. In the last section we prove Brauer’s Conjecture under the hypothesis that D is metacyclic.
This result relies on a recent paper by Tasaka–Watanabe [35]. Finally, a careful analysis shows that
Brauer’s Conjecture holds for all defect groups of order 34. We remark that Brauer’s Conjecture for
p-blocks of defect 3 has been verified previously in [28, Theorem B] for arbitrary p.

Although our methods are of elementary nature they crucially rely on one direction of Brauer’s Height
Zero Conjecture proven by Kessar–Malle [13] via the classification of finite simple groups.

2 A method of Usami and Puig

In addition to the notation already introduced we follow mostly [26]. To distinguish cyclic groups from
Cartan matrices and centralizers we denote them by Zn. The symmetric and alternating groups of
degree n as well as the dihedral, semidihedral and quaternion groups of order n are denoted by Sn,
An, Dn, SDn and Qn respectively. Moreover, we make use of the Mathieu group M9

∼= Z2
3 ⋊ Q8 (a

sharply 2-transitive group of degree 9). A central product of groups G and H is denoted by G ∗ H.
The Kronecker δij (being 1 if i = j and 0 otherwise) is often used to write matrices in a concise form.
Finally, a basic set of a block B is a Z-basis of the Grothendieck group ZIBr(B) of generalized Brauer
characters of B.

In this section we assume that B is a block with abelian defect groupD. Let b be a Brauer correspondent
of B in CG(D). We regard the inertial quotient E := I(B) = NG(D, b)/CG(D) as a subgroup of Aut(D).
Let L := D⋊E. It is well-known that b is nilpotent and IBr(b) = {φ}. Now φ gives rise to a projective
representation Γ of the inertial group NG(D, b) (see [20, Theorem 8.14]). Moreover, Γ is associated to
a 2-cocycle γ of E with values in F× (see [20, Theorem 8.15]). Külshammer’s result mentioned above
states that bNG(D) is Morita equivalent to the twisted group algebra FγL (note that bNG(D) and bNG(D,b)

are Morita equivalent by the Fong–Reynolds theorem).

In several papers (starting perhaps with [36]), Usami and Puig developed an inductive method to
establish an isotypy between B and FγL. This is a family of compatible perfect isometries between
bCG(Q) and FγCL(Q) for every Q ≤ D. In particular, for Q = 1 we obtain a perfect isometry between B
and FγL. In the following we introduce the necessary notation. For Q ≤ D and H ≤ NG(Q) we write
H := HQ/Q. Let bQ := bCG(Q) and let bQ be the unique block of CG(Q) dominated by bQ. For any
(twisted) group algebra or block A let ZIrr(A) be the Grothendieck group of generalized characters of
A. Let ZIrr0(A) be the subgroup of ZIrr(A) consisting of the generalized characters which vanish on
the p-regular elements of the corresponding group. For class functions χ and ψ on G we use the usual
scalar product

[χ, ψ] :=
1

|G|
∑
g∈G

χ(g)ψ(g). (2.1)
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We note that NE(Q) acts naturally on ZIrr0(FγCL(Q)) and ZIrr(FγCL(Q)) as well as on ZIrr0(bQ)
and ZIrr(bQ). A map f between any two of these sets is called NE(Q)-equivariant if f(χ)e = f(χe)
for every e ∈ NE(Q) and every generalized character χ in the respective set. By [22, Proposition 3.11
and Section 4.3] (compare with [37, Section 3.4]), it suffices to show that a given NE(Q)-equivariant
bijective isometry (with respect to (2.1))

∆0 : ZIrr0(FγCL(Q)) → ZIrr0(bQ)

extends to an NE(Q)-equivariant isometry

∆ : ZIrr(FγCL(Q)) → ZIrr(bQ) (2.2)

(∆ will automatically be surjective). To prove this, we may replace (G,B,E) by(
NG(Q, bQ), b

NG(Q,bQ)
Q ,NE(Q)

)
in order to argue by induction on |E|. For example, if |NE(Q)| ≤ 4 or NE(Q) ∼= S3, then the claim
holds by the main theorems of [22, 23, 36, 37]. Furthermore, the claim holds for Q = D as shown in
[22, 3.4.2].

In the following we assume that Q < D is given. It is straight-forward to determine from the character
table a Z-basis ρ1, . . . , ρm of ZIrr0(FγCL(Q)). Let χ1, . . . , χk ∈ Irr(FγCL(Q)) and A = (aij) ∈ Zk×m

such that ρi =
∑k

j=1 ajiχj for i = 1, . . . ,m. Let ρ̂i := ∆0(ρi) for i = 1, . . . ,m. Since ∆0 is an isometry,
we have

C∗ := AtA = (ρi, ρj)1≤i,j≤m = (ρ̂i, ρ̂j)1≤i,j≤m

where At denotes the transpose of A. The matrix equation Qt
∗Q∗ = C∗ can be solved with an algorithm

of Plesken [21] which is implemented in GAP [7] (command OrthogonalEmbeddings). We will see that
in many situations there is only one solution up to permutations and signs of the rows of Q∗. This
implies that there exist χ̂1, . . . , χ̂k ∈ ±Irr(bQ) such that ρ̂i =

∑k
j=1 ajiχ̂j for i = 1, . . . ,m. Then the

isometry ∆ defined by ∆(χi) := χ̂i for i = 1, . . . , k clearly extends ∆0. If NE(Q) = CE(Q), then ∆ is
always NE(Q)-equivariant. This holds in particular if Q = 1. In several other cases we can show that
the rows of Q∗ are pairwise linearly independent (i. e. r ̸= ±s for distinct rows r, s). It follows that ∆
is in fact the only extension of ∆0 (note that −∆ does not extend ∆0 since we are assuming Q < D).
Now for every e ∈ NE(Q) the map ∆̃ : ZIrr(FγCL(Q)) → ZIrr(bQ), χ 7→ e−1

(∆(eχ)) is also an isometry
extending ∆0. Therefore, ∆̃ = ∆ and ∆ is NE(Q)-equivariant.

Since the generalized characters ρ̂i vanish on the p-regular elements, these characters are orthogonal
to the projective indecomposable characters of bQ. In other words, the columns of Q∗ are orthogonal
to the columns of the decomposition matrix of bQ. In order to reduce the number of possible solutions
of the equation Qt

∗Q∗ = C∗, we prove the following result.

Lemma 1. Let B be a p-block of a finite group G with abelian defect group D ̸= 1 and decomposition
matrix Q1 ∈ Zk×l. Let Q∗ ∈ Zk×(k−l) be of rank k − l such that Qt

1Q∗ = 0. Let C∗ := Qt
∗Q∗. Then for

every row r of Q∗ we have |D|rC−1
∗ rt ∈ {1, . . . , |D|} \ pZ.

Proof. Let C := Qt
1Q1 be the Cartan matrix of B. Since Q1 and Q∗ have full rank, the matrix

R := (Q1, Q∗) ∈ Zk×k is invertible. We compute

1k = R(RtR)−1Rt = (Q1, Q∗)

(
C−1 0
0 C−1

∗

)(
Qt

1

Qt
∗

)
= Q1C

−1Qt
1 +Q∗C

−1
∗ Qt

∗.
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It is well-known that |D|C−1 and |D|Q1C
−1Qt

1 are integer matrices (see [20, Theorem 3.26]). Hence,
|D|Q∗C

−1
∗ Qt

∗ is also an integer matrix and the (non-negative) diagonal entries are bounded by |D|.
By Kessar–Malle [13], all irreducible characters in B have height 0. By a result of Brauer (see [26,
Proposition 1.36]), it follows that the diagonal entries of |D|Q1C

−1Qt
1 are not divisible by p. Hence,

the same must hold for the diagonal entries of |D|Q∗C
−1
∗ Qt

∗. The claim follows.

Sometimes we know a priori that l(FγCL(Q)) = l(bQ) (for instance, if D is cyclic or |CE(Q)| ≤ 4 by
the results of Usami–Puig cited above). Since ∆0 is an isomorphism, we also have

k(FγCL(Q))− l(FγCL(Q)) = k(bQ)− l(bQ).

Hence, we can restrict Plesken’s algorithm to those Q∗ which have exactly k(FγCL(Q)) rows. In this fa-
vorable situation the Grothendieck groups ZPIM(FγCL(Q)) and ZPIM(bQ) spanned by the projective
indecomposable characters have the same rank. Since ZPIM(.) is the orthogonal complement of ZIrr0(.)
in ZIrr(.), it suffices to construct an NE(Q)-equivariant isometry ZPIM(FγCL(Q)) → ZPIM(bQ) which
can then be combined with ∆0 to obtain ∆. This alternative strategy is pursued in Proposition 2 be-
low.

The entire procedure can be executed by GAP without human intervention. In fact, hand calculations
of this kind become very tedious and are prone to errors. We summarize our algorithm under the
assumption that L := D ⋊ E is given.

(1) Determine the Schur multiplier H := H2(E,C×).

(2) For every cyclic subgroup Z ≤ H do the following

(a) Construct a stem extension L̂ of L such that L̂/Z ∼= L.

(b) Determine a set Q of representatives for the L-conjugacy classes of subgroups Q < D such
that |NE(Q)| > 4 and NE(Q) ̸∼= S3.

(c) For every Q ∈ Q and every faithful block β of Y := C
L̂
(Q)/Q do the following:

(i) Determine the matrix A := (χi(yj))i,j where Irr(β) = {χ1, . . . , χk} and y1, . . . , yl are
representatives for the conjugacy classes of p′-elements of Y .

(ii) Compute a Z-basis u1, . . . , uk−l of the orthogonal space {v :∈ Zk : vA = 0} (using the
Smith normal form for instance).

(iii) Compute C∗ = (uiu
t
j)
k−l
i,j=1.

(iv) Determine the (finite) set R of rows r ∈ Zk−l such that

|D/Q|rC−1
∗ rt ∈ {1, . . . , |D/Q|} \ pZ.

(v) Apply Plesken’s algorithm to solve C∗ = Qt
∗Q∗ such that every row of Q∗ belongs to R.

(vi) If there is a unique solution Q∗ up to permutations and signs of rows, then ∆0 extends
to some isometry ∆.

(vii) If NE(Q) = CE(Q), then ∆ is NE(Q)-equivariant.

(viii) If the rows of Q∗ are pairwise linearly independent, then ∆ is NE(Q)-equivariant.

(ix) Deal with the exceptions.
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In view of the fact that Kessar–Malle’s result was not available to Usami and Puig, it is not surprising
that our approach goes beyond their results. For instance, the isotypies forD ∼= Z2×Z2×Z2 constructed
by Kessar–Koshitani–Linckelmann [10] (also relying on the classification of finite simple groups) can
now be obtained by pressing a button. Our algorithm in combination with [26, Proposition 13.4] also
applies to L ∼= A4 × A4 (p = 2) and therefore simplifies and improves the main result of [18]. In fact,
an extension of this case was recently settled by the first author in [2, Proposition 3.3]. We should
however also mention that the computational complexity of Plesken’s algorithm grows rapidly with
the size of the involved matrices.

3 Blocks of defect 2

One approach to classify blocks B with a given defect group D is to distribute them into families such
that each family corresponds to a Morita equivalence class of the Brauer correspondent BD of B in
NG(D) (there are only finitely many choices for these classes). If D is cyclic, this has been accomplished
by using the Brauer tree. Also the blocks with Klein four defect group D ∼= Z2 × Z2 are completely
classified. The group D ∼= Z3 × Z3 has first been investigated by Kiyota [14] in 1984 and is still not
fully understood today. We will recap the details and further study D ∼= Z5 × Z5 in this section.

We begin by showing that only the subgroup Q = 1 in Usami–Puig’s methods needs to be considered.
This fact is related to the existence of a stable equivalence of Morita type stated in [24, Section 6.2].

Proposition 2. Let B be a block of a finite group G with defect group D ∼= Cp × Cp and cocycle γ
as in the previous section. Let L := D ⋊ I(B). Suppose that every I(B)-equivariant isometry ∆0 :

ZIrr0(FγL) → ZIrr0(B) extends to an I(B)-equivariant isometry ∆ : ZIrr(FγL) → ZIrr(B). Then B
is isotypic to its Brauer correspondent in NG(D).

Proof. Let Q ≤ D be of order p. We need to show the existence of ∆ with respect to Q as in (2.2).
To this end we may assume that G = NG(Q, bQ) and E := I(B) normalizes Q. Let L̂ be a suitable
stem extension such that FγCL(Q) is isomorphic to a block βQ of C

L̂
(Q)/Q. Observe that βQ and

bQ have defect 1 and inertial quotient CE(Q). By Brauer’s theory of blocks of defect 1, we have
l := l(βQ) = |CE(Q)| = l(bQ). Since G/CG(Q) ∼= E/CE(Q) is cyclic, [29, Lemma 3.3] (or Proposition 7
below) implies the existence of a basic set Φ of bQ such that IBr(bQ) and Φ are isomorphic E-sets
and the Cartan matrix of bQ with respect to Φ is C := (m + δij)

l
i,j=1 where m := (p − 1)/l. This is

also the Cartan matrix of βQ (with respect to IBr(βQ)). Let Q = (dχφ) be the decomposition matrix
of bQ with respect to Φ. For φ ∈ Φ we define the projective character φ̂ :=

∑
χ∈Irr(bQ) dχφχ. By

the shape of the matrix C, every bijection between PIM(βQ) and {φ̂ : φ ∈ Φ} induces an isometry
ZPIM(βQ) → ZPIM(bQ). Since ZPIM(βQ) is the orthogonal complement of ZIrr0(βQ), we can extend
∆0 in this way to an isometry ∆ : ZIrr(βQ) → ZIrr(bQ). In order to make ∆ E-equivariant, it suffices
to show that IBr(βQ) and IBr(bQ) are isomorphic E-sets.

By [22, Proposition 3.14] there exists a bijection between the set of blocks of L̂/Q covering βQ and the
set of blocks of G covering bQ. Moreover, this bijection preserves defect groups and inertial quotients.
Since the blocks in both sets (still) have defect 1, the number of irreducible Brauer characters is uniquely
determined by the respective inertial indices. Consequently, the number of Brauer characters of L̂/Q
lying over βQ coincides with the number of Brauer characters of G lying over bQ. We claim that this
number uniquely determines the action of E on IBr(βQ) and on IBr(bQ). Since L̂/C

L̂
(Q) ∼= G/CG(Q) ∼=

E/CE(Q) is cyclic, every φ ∈ IBr(βQ)∪ IBr(bQ) extends to its inertial group (see [20, Theorem 8.12]).
Moreover by [29, Proposition 3.2], E acts 1

2 -transitively on IBr(βQ) and on IBr(bQ). This means that
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all orbits on IBr(βQ) have a common length, say dL, and similarly all orbits on IBr(bQ) have length,
say dG. By Clifford theory, there are exactly l(βQ)|E/CE(Q)|/d2L irreducible Brauer characters in L̂/Q
lying over βQ. Similarly, there are l(bQ)|E/CE(Q)|/d2G Brauer characters in G lying over bQ. Since
l(βQ) = l(bQ) we conclude that dL = dG. Thus, IBr(β) and IBr(bQ) are isomorphic E-sets.

The following result on the case p = 3 is mostly well-known, but hard to find explicitly in the literature.
The column group in Theorem 3 refers to the small group library in GAP. If this group has an easy
structure, then it is described in the comments column. If the comment is non-principal, then the group
is a double cover of the preceding group in the list and the block is the unique non-principal block.
In the remaining cases, the group has only one block (the principal block). Finally the column isotypy
indicates if an isotypy between B and BD is known to exist.

Theorem 3. Let B be a block of a finite group G with defect group D ∼= Z3 × Z3. Then the Brauer
correspondent BD of B in NG(D) is Morita equivalent to exactly one of the following blocks:

no. I(B) group k(BD) l(BD) isotypy comments

1 1 9 : 2 9 1 ✓ D, nilpotent
2 Z2 18 : 3 9 2 ✓ S3 × Z3

3 Z2 18 : 4 6 2 ✓ Frobenius group
4 Z2

2 36 : 10 9 4 ✓ S2
3

5 Z2
2 72 : 23 6 1 ✓ non-principal

6 Z4 36 : 9 6 4 ✓ Frobenius group
7 Z8 72 : 39 9 8 AGL(1, 9)
8 Q8 72 : 41 6 5 M9

9 D8 72 : 40 9 5 ✓ S3 ≀ Z2

10 D8 144 : 117 6 2 ✓ non-principal
11 SD16 144 : 182 9 7 ✓ AΓL(1, 9)

Proof. Since Aut(D) ∼= GL(2, 3) has order 16 · 3, E := I(B) is a subgroup of the semidihedral group
SD16

∼= ΓL(1, 9) ∈ Syl2(GL(2, 3)). As explained above, BD is Morita equivalent to a twisted group
algebra Fγ [D ⋊ E]. If E /∈ {Z2

2 , D8}, then E has trivial Schur multiplier and γ = 1. In this case we
list L := D ⋊ E in the group column and compute k(BD) = k(L) and l(BD) = k(E). If, on the other
hand, E ∈ {Z2

2 , D8}, then the Schur multiplier of E is Z2. Thus, there is exactly one non-trivial twisted
group algebra in each case. Here we compute l(BD) = k(Ê) − k(E) where Ê is a double cover of E.
The isotypies can be obtained with our algorithm from the last section (cf. [32, Proposition 6.3]).

It remains to show that each two different cases in our list are not Morita equivalent. This is clear
from the computed invariants except for the cases 3 and 10. By [5, Corollary 3.5], a Morita equivalence
preserves the isomorphism type of the stable center Z(BD). In case 3, this algebra is symmetric by [11,
Theorem 1.1]. Now we use [11, Theorem 3.1] in order to show that the stable center is not symmetric
in case 10. The group E ∼= D8 has two orbits on D \ {1}. Hence, there exists two non-trivial BD-
subsections (u, βu) and (v, βv) up to conjugation. Brauer’s formula (see [26, Theorem 1.35]) gives
4 = k(BD)− l(BD) = l(βu) + l(βv). Hence, we may assume that l(βu) > 1 and the claim follows from
[11, Theorem 3.1].

The reason why the Usami–Puig method fails for I(B) ∈ {Z8, Q8} is because in both cases one
gets C∗ = (9). For I(B) ∼= Z8, C∗ factors into Q∗ = (±1, . . . ,±1)t and for I(B) ∼= Q8 we have
Q∗ = (±2,±1, . . . ,±1)t. Once we know that k(B) = k(BD), then B and BD must be isotypic. Even
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worse, it seems to be open whether Q∗ = (±2,±2,±1)t can actually occur. Equivalently, does there
exist a block B with defect group D ∼= Z3 × Z3 and k(B) = 3?

We remark that B is usually not Morita equivalent to BD. For principal blocks the possible Morita
equivalence classes for B were obtained by Koshitani [15]. The column type of BD in the following
table refers to the numbering in Theorem 3.

Theorem 4 (Koshitani). Let B be the principal block of a finite group G with defect group D ∼= Z3×Z3

and BD be the principal 3-block of NG(D). Then B is (splendid) Morita equivalent either to one of the
nine principal cases in Theorem 3 or to exactly one of the following principal blocks:

no. type of BD group

12 6 A6

13 6 A7

14 7 PGL(2, 9)
15 8 M10

16 8 PSL(3, 4)
17 9 S6
18 9 S7
19 9 A8

20 11 M11

21 11 HS
22 11 M23

23 11 PSL(3, 4).22

24 11 Aut(S6)

Proof. By [15, 16], B is splendidly Morita equivalent to one of the given blocks. Using the GAP
command TransformingPermutations, one can check that each two of those blocks have essentially
different decomposition matrices. Hence, they cannot be Morita equivalent (splendid or not).

According to Scopes [33, Example 2 on p. 455], every block B of a symmetric group with defect group
D ∼= Z3 × Z3 is Morita equivalent to the principal block of S6, S7, S8, to the “second” block of S8, or
to the third block of S11. The first and second block of S8 are both isomorphic to the principal block
of A8 via restriction of characters (see [3, Théorème 0.1]). The block of S11 is a RoCK block and must
be Morita equivalent to its Brauer correspondent. Hence, B always belongs to one of 24 blocks in the
above theorems.

Nevertheless, we found twelve further Morita equivalence classes among the non-principal blocks while
checking the character library in GAP. For instance, a non-principal block of the double cover 2.A6.
Recall that according to Donovan’s Conjecture the total number of Morita equivalence classes of blocks
with defect group D should be finite.

Now we turn to p = 5. In the table below the examples are always faithful blocks of the given group.
The Morita equivalence class of such a block is indeed uniquely determined as we will see in the
proof. In order to distinguish Morita equivalence classes, we also list the multiplicity c(BD) of 1 as an
elementary divisor of the Cartan matrix of BD and the Loewy length LL(ZBD) of the center of BD
(considered as an F -algebra).

Theorem 5. Let B be a block of a finite group G with defect group D ∼= Z5 × Z5. Then the Brauer
correspondent BD of B in NG(D) is Morita equivalent to exactly one of the following blocks:
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no. I(B) group k(BD) l(BD) c(BD) LL(ZBD) isotypy comments

1 1 25 : 2 25 1 0 9 ✓ D, nilpotent
2 Z2 50 : 3 20 2 0 7 ✓ D10 × Z5

3 Z2 50 : 4 14 2 1 5 ✓ Frobenius group
4 Z3 75 : 2 11 3 2 5 ✓ Frobenius group
5 Z4 100 : 9 25 4 0 6 ✓ (Z5 ⋊ Z4)× Z5

6 Z4 100 : 10 13 4 2 4 ✓
7 Z4 100 : 11 10 4 3 3 ✓ Frobenius group
8 Z4 100 : 12 10 4 3 5 ✓ Frobenius group
9 Z2

2 100 : 13 16 4 1 5 ✓ D2
10

10 Z2
2 200 : 24 13 1 0 5 ✓ non-principal

11 C6 150 : 6 10 6 5 5 Frobenius group
12 S3 150 : 5 13 3 1 5 ✓
13 Z8 200 : 40 11 8 7 3 Frobenius group
14 Z4 × Z2 200 : 41 20 8 3 4 ✓ (Z5 ⋊ Z4)×D10

15 Z4 × Z2 400 : 118 14 2 0 4 ✓ non-principal
16 Z4 × Z2 200 : 42 14 8 5 3
17 Z4 × Z2 400 : 125 8 2 1 3 ✓ non-principal
18 Q8 200 : 44 8 5 4 3 Frobenius group
19 D8 200 : 43 14 5 2 5 ✓ D10 ≀ Z2

20 D8 400 : 131 11 2 1 5 ✓ non-principal
21 Z12 300 : 24 14 12 11 3 Frobenius group
22 D12 300 : 25 14 6 3 5
23 D12 600 : 59 11 3 2 5 ✓ non-principal
24 Z3 ⋊ Z4 300 : 23 8 6 5 2 Frobenius group
25 Z2

4 400 : 205 25 16 9 3 (Z5 ⋊ Z4)
2

26 Z2
4 800 : 957 13 4 1 3 ✓ non-principal

27 Z2
4 1600 : 5606 10 1 0 3 ✓ non-principal

28 D8 ∗ Z4 400 : 207 16 10 6 3
29 D8 ∗ Z4 800 : 968 10 4 2 3 ✓ non-principal
30 M16 400 : 206 13 10 8 3
31 Z24 600 : 149 25 24 23 2 AGL(1, 25)
32 SL2(3) 600 : 150 8 7 6 2
33 Z4 × S3 600 : 151 16 12 9 3
34 Z4 × S3 1200 : 491 10 6 5 3 non-principal
35 Z3 ⋊ Z8 600 : 148 13 12 11 2 Frobenius group
36 Z4 ≀ Z2 800 : 1191 20 14 9 3 (Z5 ⋊ Z4) ≀ Z2

37 Z4 ≀ Z2 1600 : 9791 11 5 3 3 ✓ non-principal
38 SL2(3) ∗ Z4 1200 : 947 16 14 12 3
39 ΓL1(25) 1200 : 946 20 18 16 3 AΓL(1, 25)
40 SL2(3)⋊ Z4 − 20 16 12 3 PrimitiveGroup(25, 19)

Proof. Most of the arguments work as in Theorem 3, but we have to be careful if the Schur multiplier
of E := I(B) is larger than Z2. For E ∼= Z2

4 the Schur multiplier is Z4 by the Künneth formula. A
full cover of L := D ⋊ E is given by L̂ := SmallGroup(1600, 5606). This group has four blocks: the
principal block, two faithful blocks and a non-faithful block. One can show by computer that L̂ has an
automorphism acting as inversion on Z(L̂) ∼= Z4. It follows that the two faithful blocks are isomorphic.
Hence, L̂ has only three types of blocks and they have pairwise distinct invariants. In this way we
obtain the lines 25, 26 and 27 in the table.

For E ∼= D8 ∗Z4 the Schur multiplier is Z2
2 . A full cover of L is given by L̂ := SmallGroup(1600, 5725).

Fortunately, L̂ has an automorphism of order 3 which permutes Z(L̂). Hence, the three non-principal
blocks of L̂ are all isomorphic and the Morita equivalence class of B is uniquely determined in this
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case. This yields lines 28 and 29 in the table. The existence of an isotypy between B and BD is an
outcome of our algorithm.

Finally, we need to verify that all forty blocks are pairwise not Morita equivalent. Comparing the
numerical invariants leads to the blocks no. 4 and 23. These can be distinguished using [11] just as in
Theorem 3.

The cases 1, 10 and 27 on our list confirm a result of Kessar–Linckelmann [12] (for a recent general-
ization see [9]).

An analysis of the Brauer trees mentioned above reveals that the Morita equivalence classes of blocks
with defect group Z5 are represented by the principal blocks of the groups Z5, D10, Z5⋊Z4, A5, S5 or
Sz(8). Now taking direct products of two of these groups already yields 15 Morita equivalence classes
of principal blocks which do not belong to the classes in Theorem 5. For symmetric groups there are
precisely 26 Morita equivalent classes of blocks with defect group Z5 × Z5 (see [30]). We have found
over 100 more classes by checking the character table library in GAP.

4 The Cartan method revisited

As we have seen in the last section, Usami and Puig’s method fails in some situations. We provide an
alternative by improving the Cartan method described in [26, Section 4.2]. This reduces the possible
Cartan matrices of blocks to a handful of choices which can be discussed individually (most cases
contradict Alperin’s Weight Conjecture). As another advantage, the method applies equally well to
non-abelian defect groups. To do so, the inertial quotient I(B) must be replaced by the fusion system
F of B. Nevertheless, the reader will notice many similarities to Usami–Puig’s approach (in fact both
methods can produce perfect isometries, see [32, Theorem 6.1]).

The key idea is the orthogonality between the decomposition matrix Q1 of B and the generalized
decomposition matrices Qu for u ∈ D \ {1} (see [26, Theorem 1.14]). We wish to compute Qu with
Plesken’s algorithm applied to the equation Qt

uQu = Cu where Cu is the Cartan matrix of bu (as before,
we obtain Cu from the dominated block bu). To this end, we first need to “integralize” Qu by expressing
its columns as linear combinations of an integral basis in a suitable cyclotomic field (in our situation
we use the basis 1, ζ = e2πi/3 of Q3). We put these new integral columns in a “fake” generalized
decomposition matrix Q̃u. Although Q̃u has more columns than Qu, both matrices generated the same
orthogonal space. In practice we will remove linearly dependent columns from Q̃u to obtain matrices
with l(bu)|Aut(⟨u⟩) : Nu| columns where Nu := NG(⟨u⟩, bu)/CG(u) (this step is not strictly necessary).
The scalar products between the columns of Q̃u can be computed by studying the action of Nu on
IBr(bu). This gives rise to the “fake” Cartan matrix C̃u := Q̃t

uQ̃u (this was developed in general in
[29, Theorem 2.1], but in our case hand calculations will do). We obtain such a matrix for every F-
conjugacy class of cyclic subgroups of D. Unfortunately, C̃u depends crucially on the chosen basic set
for bu. We introduce the following results to find “good” basic sets.

Lemma 6. Let C = (d+ δij)
n
i,j=1 ∈ Zn×n where d and n are positive integers. Let

Aut(C) := {A ∈ GL(n,Z) : AtCA = C}.

Then there exists a natural isomorphism

Aut(C) ∼=

{
Sn × Z2 if d > 1 or n = 1,

Sn+1 × Z2 if d = 1 < n

9



sending A ∈ Aut(C) to ±P where P is a permutation matrix.

Proof. We may assume that n > 1. We first solve the matrix equation (cij) = C = QtQ where
Q ∈ Z(n+d)×n has non-zero rows. To this end, we define the positive definite matrix

W := (wij) =
1

2


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Qn×n.

For the rows q1, . . . , qn+d of our putative solution Q = (qij) we obtain

n+ d ≤
n+d∑
i=1

qiWqti =

n+d∑
i=1

∑
1≤s,t≤n

wstqisqit =
∑

1≤s,t≤n
wstcst

=
n∑
i=1

cii −
n−1∑
i=1

ci,i+1 = n(d+ 1)− (n− 1)d = n+ d.

It follows that

1

2

(
q2i1 + q2in +

n−1∑
j=1

(qij − qi,j+1)
2
)
=

n∑
j=1

q2ij −
n−1∑
j=1

qijqi,j+1 = qiWqti = 1

for i = 1, . . . , n + d. Hence, every row of Q has the form ±(0, . . . , 0, 1, . . . , 1, 0, . . . , 0). Now it is easy
to see that

Q :=



1 0
. . .

0 1
−1 · · · −1
...

...
−1 · · · −1


∈ Z(n+d)×n

is the only solution of the equation C = QtQ (up to permutations and signs of rows) of size (n+d)×n.
Hence, for A ∈ Aut(C) there exists a signed permutation matrix P such that QA = PQ, since
(QA)t(QA) = AtCA = C. Note that A is just the upper part of PQ. At closer look at line d+1 reveals
that P has in fact a uniform sign, i. e. P or −P is a permutation matrix. The map f : Aut(C) →
Sn+d × Z2, A 7→ P is clearly a monomorphism.

For d = 1 the matrix P has size (n + 1) × (n + 1) and conversely every such permutation matrix P
gives rise to some A ∈ Aut(C) such that PQ = QA, since the upper part of PQ has determinant ±1.
Hence, f is surjective in this case. On the other hand, if d > 1, then P must fix the last d rows of Q
and therefore A or −A itself must be a permutation matrix. Thus, in this case Aut(C) consists of the
permutation matrices and their negatives.

The next proposition generalizes [29, Lemma 3.3].

Proposition 7. Let B be a p-block of a finite group G with abelian defect group D such that E := I(B)
is abelian and D⋊E is a Frobenius group. Suppose that p > 2 or |E| < |D|−1. Suppose further that B
is perfectly isometric to its Brauer correspondent BD in NG(D). Let α ∈ Aut(G) such that α(B) = B.
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Then there exists a basic set Φ of B such that IBr(B) and Φ are isomorphic α-sets and the Cartan
matrix of B with respect to Φ is

C =
( |D| − 1

|E|
+ δij

)|E|

i,j=1
.

Proof. It is well-known that the abelian Frobenius complement E is in fact cyclic. Therefore, E has
trivial Schur multiplier and BD is Morita equivalent to the group algebra of the Frobenius group L :=
D ⋊E. The irreducible characters of L are either inflations from E or induced from D. The inflations
from E can be identified with the irreducible Brauer characters of L. On the other hand, the number of
distinct irreducible characters induced from D is d := |D|−1

|E| . Consequently, the decomposition matrix
of BD is

QD :=



1 0
. . .

0 1
1 · · · 1
...

...
1 · · · 1


and the Cartan matrix is Qt

DQD = C as given in the statement.

Let QB := (dχφ) and CB := Qt
BQB = (cφµ) be the decomposition matrix and the Cartan matrix of B

respectively. Since B is perfectly isometric to BD, there exist S ∈ GL(l(B),Z) and a signed permutation
matrix T ∈ GL(k(B),Z) such that QDS = TQB (see [32, Theorem 4.2]). Note that QD differs from Q
in the proof of Lemma 6 only by the signs of the last rows. We replace T by T ′ accordingly such that

QS = T ′QB.

After rearranging Irr(B), we may assume that T ′ is just an identity matrix with signs.

The action of α on IBr(B) permutes the columns of QB. Let P be the corresponding permutation
matrix. Since

cφα,µα =
∑

χ∈Irr(B)

dχ,φαdχ,µα =
∑

χ∈Irr(B)

d
χα−1 ,φ

d
χα−1 ,µ

= cφµ

for φ, µ ∈ IBr(B), it follows that P commutes with CB. We compute

(S−tP tSt)C(SPS−1) = (S−tP tSt)S−tCBS
−1(SPS−1) = S−tP tCBPS

−1 = S−tCBS
−1 = C,

i. e. A := SPS−1 ∈ Aut(C). By Lemma 6, there exist a permutation matrix PA and a sign ϵ = ±1
such that

QA = ϵPAQ.

Suppose first that PA has no fixed points. Then d = 1 and neither A nor −A is a permutation matrix.
It follows that −ϵ = tr(A) = tr(SPS−1) = tr(P ) ≥ 0 and ϵ = −1. We compute

T ′QBP = QSP = QAS = −PAQS = −PAT ′QB

and QBP = −T ′PAT
′QB. Now QB and QBP are non-negative matrices and −T ′PAT

′ is a signed
permutation matrix. This can only fit together if −T ′PAT

′ = PA. In particular,

detPA = det(−T ′PAT
′) = (−1)|E|+d detPA

and |D| = |E|+ 1 = |E|+ d is even. This contradicts the hypothesis p > 2 (whenever |E| = |D| − 1).
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Now since PA has a fixed point, there exists yet another permutation matrix U such that UPAU−1 fixes
the last coordinate. We regard UPAU

−1 as a permutation matrix P ′ of size n × n. Let AU ∈ Aut(C)
be the preimage of U under the isomorphism in Lemma 6, that is, QAU = UQ. Then

QAUAA
−1
U = UQAA−1

U = ϵUPAQA
−1
U = ϵUPAU

−1Q.

By the shape of Q, it follows that AUAA−1
U = ϵP ′. We may replace S by AUS if we adjust T and

T ′ accordingly. Then we obtain SPS−1 = ϵP ′. By way of contradiction, we assume that ϵ = −1. Let
(a1, . . . , al) be the last row of QB. Since QS = T ′QB, we obtain

(a1, . . . , al)P = ±(1, . . . , 1)SP = ∓(1, . . . , 1)P ′S = ∓(1, . . . , 1)S = −(a1, . . . , al).

This is impossible since a1, . . . , al ≥ 0 and at least one ai > 0. Hence, ϵ = 1. A comparison of the
eigenvalues shows that P and P ′ have the same cycle type. Consequently, P and P ′ are conjugate
inside Sn ≤ Aut(C) as is well-known. Hence, we may change S, T and T ′ again such that SPS−1 = P .

Finally, we define Φ = {φ̂i : i = 1, . . . , l} with φ̂i :=
∑l

j=1 sjiφj where IBr(B) = {φ1, . . . , φl} and
S = (sij). Then

(φ̂α1 , . . . , φ̂
α
l ) = (φα1 , . . . , φ

α
l )S = (φ1, . . . , φl)PS = (φ1, . . . , φl)SP = (φ̂1, . . . , φ̂l)P,

i. e. Φ and IBr(B) are isomorphic α-sets. Moreover, the decomposition matrix of B with respect to Φ
is QBS−1 = Q and the Cartan matrix is QtQ = C.

The proof of Proposition 7 does not go through for p = 2 and |E| = |D| − 1 as one can see from the
possibility

QB =


1 . .
. 1 .
1 . 1
. 1 1

 , S =

1 . 1
. 1 .
. −1 −1


with α being the transposition (1, 2) on IBr(B). In those exceptions D is elementary abelian and E is a
Singer cycle. It has been shown recently by McKernon [19] that in this situation B is Morita equivalent
to the Brauer correspondent BD or to the principal block of SL(2, |D|). From the shape of the Cartan
matrix of SL(2, |D|) (see [1]), it can be deduced that Proposition 7 still holds in those cases. Hence,
the hypothesis p > 2 or |E| < |D| − 1 is actually superfluous.

Now we get back to the explanation of the Cartan method. If D is abelian, then all characters in Irr(B)
have height 0 (by [13]) and therefore every row of Qu (and of Q̃u) is non-zero. In general, the heights
of the characters influence the p-adic valuation of the so-called contribution matrix

Mu := (mu
χψ)χ,ψ∈Irr(B) = |D|QuC−1

u Qt
u ∈ Ck(B)×k(B)

(see [26, Proposition 1.36]). This matrix is also of interest, because it only depends on the order of
Irr(B) and possible signs, but not on the chosen basic set of bu. In particular, there are at most
2k(B)k(B)! choices for Mu, while there are potentially infinitely many choices for Qu (one for every
basic set). Note that

M̃u := |D|Q̃uC̃−1
u Q̃t

u =
∑

γ∈Aut(⟨u⟩)/Nu

Mγ(u) ∈ Zk(B)×k(B),

since there exists an invertible complex matrix U such that (Qγ(u) : γ ∈ Aut(⟨u⟩)/Nu) = Q̃uU .
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Finally, Broué–Puig’s ∗-construction, introduced in [6], gives congruence relations between the Mu

where u runs through D. Specifically, if λ is an F-invariant generalized character of D, then∑
u∈S

λ(u)Mu = |D|(λ ∗ χ, ψ)χ,ψ∈Irr(B)

where S is a set of representatives for the F-conjugacy classes of elements of D. In particular,∑
u∈S M

u = |D|1k(B) and ∑
u∈S

λ(u)Mu ≡ 0 (mod |D|). (4.1)

We summarize the steps of the Cartan method under the assumption that a defect group D and a
fusion system F on D are given:

(1) Determine the F-conjugacy classes of fully F-centralized cyclic subgroups of D. Let R be a set of
representatives of generators of these subgroups.

(2) For u ∈ R \ {1} determine the Cartan matrix Cu (up to E-compatible basic sets) of a Brauer
correspondent bu of B in CG(u) by considering the dominated block bu with defect group CD(u)/⟨u⟩
and fusion system CF (u)/⟨u⟩ (see [27, Lemma 3]).

(3) For every possible action of Nu on IBr(bu) compute the fake Cartan matrix C̃u.

(4) Solve the matrix equation Q̃t
uQ̃u = C̃u with Plesken’s algorithm.

(5) Reduce the number of possibilities for Q̃u by comparing contribution matrices (make use of heights
and the ∗-construction).

(6) Form the matrix Q̃ := (Q̃u : u ∈ R \ {1}) of size k(B)× (k(B)− l(B)).

(7) Compute an orthogonal complement Q ∈ Zk(B)×l(B) of Q̃.

(8) C := QtQ is the Cartan matrix of B up to basic sets.

5 Cartan matrices of local blocks

In this section we compute Cartan matrices of many 3-blocks of defect at most 4. They all occur as
dominated Brauer correspondents of blocks with larger defect in the subsequent sections.

We first apply the Usami–Puig algorithm to the following situations.

Lemma 8. Let B be a block of a finite group G with defect group D ∼= Z3
3 and inertial quotient

I(B) ∼= D8 such that D ⋊ I(B) ∼= SmallGroup(63, 158). Then B is perfectly isometric to its Brauer
correspondent in NG(D). In particular, l(B) ∈ {2, 5} and if l(B) = 5, then the Cartan matrix of B is
given by 

7 5 2 1 6
5 7 1 2 6
2 1 7 5 6
1 2 5 7 6
6 6 6 6 15


up to basic sets.
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Proof. The given group L := D ⋊ I(B) can be represented by D = ⟨x, y, z⟩ and E := I(B) = ⟨a, b, c⟩
such that

ax = x−1, by = y−1, cx = y, cz = z−1, a2 = b2 = c2 = [a, y] = [b, x] = [a, z] = [b, z] = 1.

Since E ∼= D8 has Schur multiplier Z2, there are two possible cocycles γ. For γ ̸= 1 we can consider
the (unique) non-principal block of L̂ = D ⋊ D16

∼= SmallGroup(432, 582). The set Q in Step (b)
of the Usami–Puig algorithm consists only of those subgroups Q < D which are normal in L, since
otherwise |NE(Q)| ≤ 4. In all (three) cases we obtain the existence and uniqueness of the isometry ∆
by Plesken’s algorithm.

Lemma 9. Let B be a block of a finite group G with defect group D ∼= Z3
3 and inertial quotient

I(B) ∼= Z4 × Z2 such that D ⋊ I(B) ∼= SmallGroup(63, 156). Then B is perfectly isometric to its
Brauer correspondent in NG(D). In particular, l(B) ∈ {2, 8} and if l(B) = 8, then the Cartan matrix
of B is given by 

6 2 3 4 2 2 4 4
2 6 4 3 4 4 2 2
3 4 6 2 4 4 2 2
4 3 2 6 2 2 4 4
2 4 4 2 6 4 3 2
2 4 4 2 4 6 2 3
4 2 2 4 3 2 6 4
4 2 2 4 2 3 4 6


up to basic sets.

Proof. As in the previous lemma, E := I(B) = ⟨a⟩×⟨b⟩ ∼= Z4×Z2 acts reducibly on D = ⟨x, y, z⟩ such
that L := D ⋊ I(B) = ⟨x, y, a⟩ × ⟨z, b⟩. Again E has Schur multiplier Z2 and there are two possible
cocycles γ. For γ ̸= 1 we can consider the non-principal block of SmallGroup(432, 568).

The set Q in Step (b) of the Usami–Puig algorithm consists of 1, ⟨z⟩ and ⟨x, y⟩. Our algorithm works
for Q = 1 without intervention, but needs some additional argument for the remaining two cases. We
only deal with Q = ⟨z⟩, since the final case is similar, in fact easier. The arguments go along the
lines of Proposition 2. We may assume that G = NG(Q, bQ). Let βQ be a block of a suitable stem
extension L̂ of L such that βQ is isomorphic to FγCL(Q). Note that βQ and bQ have defect group
⟨x, y⟩ and inertial quotient CE(Q) = ⟨a⟩ ∼= Z4. By Theorem 3 we know that l(βQ) = l(bQ) = 4. Since
E/CE(Q) = ⟨b⟩ is cyclic, Proposition 7 provides us with a basic set Φ of bQ such that Φ and IBr(bQ)
are isomorphic E-sets and the Cartan matrix of bQ with respect to Φ is C = (2+δij)

4
i,j=1. This happens

to be the Cartan matrix of βQ. As in the proof of Proposition 2 we can extend ∆0 by any bijection
PIM(βQ) → {φ̂ : φ ∈ Φ}. It suffices to show that IBr(βQ) and IBr(bQ) are isomorphic E-sets.

Suppose first that γ = 1. Then E acts trivially on Irr(βQ) and L ∼= CL(Q) × ⟨b⟩. Therefore, βQ is
covered by two blocks of L and they both have inertial quotient Z4. By [22, Proposition 3.14], bQ is
covered by two blocks of G with inertial quotient Z4. According to Clifford theory, E must act trivially
on Irr(bQ).

Now suppose that γ ̸= 1. Then βQ is covered by only one block BQ of L̂/Q and I(BQ) ∼= Z2. Hence,
l(BQ) = 2 by Theorem 3. Clifford theory implies that E acts as a double transposition on IBr(βQ).
Again by [22, Proposition 3.14], bQ is covered by a unique block of G and this block has also two
irreducible Brauer characters. Consequently, E also acts as a double transposition on IBr(bQ). Hence,
in any event, IBr(βQ) and IBr(bQ) are isomorphic E-sets.
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In the following lemmas the Usami–Puig method fails basically because one of the two “bad” groups
Z8 and Q8 from Theorem 3 is involved in I(B). We make use of the Cartan method instead.

Lemma 10. Let B be a block of a finite group G with defect group D ∼= Z3
3 and inertial quotient

I(B) ∈ {Z8, Q8} such that D ⋊ I(B) ∼= SmallGroup(63, s) where s ∈ {155, 161}. Then l(B) ∈ {2, 5, 8}
and in the latter two cases the Cartan matrix of B is


5 4 3 3 6
4 5 3 3 6
3 3 5 4 6
3 3 4 5 6
6 6 6 6 15

 or



5 4 3 3 3 3 3 3
4 5 3 3 3 3 3 3
3 3 5 4 3 3 3 3
3 3 4 5 3 3 3 3
3 3 3 3 5 4 3 3
3 3 3 3 4 5 3 3
3 3 3 3 3 3 5 4
3 3 3 3 3 3 4 5


up to basic sets.

Proof. Let D = ⟨x, y, z⟩ and E := I(B). In both cases E acts regularly on ⟨x, y⟩ and inverts z. We
will see that the local analysis does not depend on the isomorphism type of E and we will end up
with exactly the same possibilities for the generalized decomposition matrices. Let L := D ⋊E. Since
the fusion system of B is the fusion system of L and every subgroup of D is fully F-centralized, we
may choose R = {1, x, xz, z} in the algorithm of the Cartan method. Since CE(x) = CE(xz) = 1 and
CE(z) ∼= Z4 we obtain l(bx) = l(bxz) = 1 and l(bz) = 4 by applying Theorem 3 to the dominated
blocks bx and so on. Since x is conjugate to x−1 in L, we have Qx = Q̃x and Cx = C̃x = (27). On the
other hand, xz is not conjugate to (xz)−1. We may write Qxz = (a + bζ) and form Q̃xz = (a, b) with
ζ = e2πi/3 and a, b ∈ Zk(B)×1. Since Cxz = (27), we compute

C̃xz =

(
1 1

ζ ζ

)−t(
27 0
0 27

)(
1 1

ζ ζ

)−1

= 9

(
2 1
1 2

)
.

By Theorem 3, bz is perfectly isometric to its Brauer first main theorem correspondent. Moreover,
D ⋊ I(bz) ∼= Z2

3 ⋊ Z4 is a Frobenius group. Hence by Proposition 7, there exists a basic set Φ of bz
such that

Nz = NG(⟨z⟩, bz)/CG(z) ∼= Z2

acts on Φ and bz has Cartan matrix (2 + δij)
4
i,j=1 with respect to Φ. By [20, Theorem 9.10], we may

regard Φ as a basic set of bz and then Cz = 3(2 + δij)
4
i,j=1. Applying [26, Theorem 4.2] to bz yields

k(B) ≤ 18. Additionally, k(B) is always divisible by 3 (this can be seen fromQx or [26, Proposition 1.31]
in general). On the other hand,

k(B)− l(B) = l(bx) + l(bxz) + l(b(xz)−1) + l(bz) = 7.

Since we may assume that l(B) > 2, we are left with the cases (k(B), l(B)) ∈ {(18, 11), (15, 8), (12, 5)}.

If ρ is the regular character of ⟨x, y⟩, then

λ := (9 · 1⟨x,y⟩ − ρ)× 1⟨z⟩

is an E-invariant generalized character of D such that λ(1) = λ(z) = 0 and λ(x) = λ(xz) = 9. We
obtainMx+M̃xz ≡ 0 (mod 3) from (4.1). Similarly, there exists an E-invariant λ with λ(1) = λ(x) = 0
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and λ(xz) = λ(z) = 3. This implies M̃xz +M z ≡ 0 (mod 9). Additionally, M1 +Mx + M̃xz +M z =
27 · 1k(B). In particular,

2mxz
χχ +mz

χχ ∈ {9, 18} (5.1)

for all χ ∈ Irr(B). We discuss the possible actions of Nz on Φ.

Case 1: Nz acts trivially on Φ.
Here we have Qz = Q̃z and Cz = C̃z. We apply Plesken’s algorithm directly to the block matrix
C̃xz ⊕ Cz with a prescribed set of rows fulfilling (5.1). Solutions exist only if k(B) = 15. Taking also
the congruence M̃xz +M z ≡ 0 (mod 9) into account, there is a unique solution up to basic sets:

(Q̃xy, Qz) =



1 −2 1 1 1 1
−2 1 1 1 1 1
−1 −1 2 2 2 2
1 1 1 . . .
1 1 1 . . .
1 1 1 . . .
1 1 . 1 . .
1 1 . 1 . .
1 1 . 1 . .
1 1 . . 1 .
1 1 . . 1 .
1 1 . . 1 .
1 1 . . . 1
1 1 . . . 1
1 1 . . . 1


Now it is easy to add the column Qx under the condition Mx + M̃xz ≡ 0 (mod 3). In the end, the
Cartan matrix C of B is uniquely determined up to basic sets.

Case 2: Nz interchanges two characters of Φ.
We may assume that the first two characters of Φ are interchanged by Nz. We express the first columns
of Qz with the basis 1, ζ and compute

C̃z =


1 1 . .

ζ ζ . .
. . 1 .
. . . 1


−t

Cz


1 1 . .

ζ ζ . .
. . 1 .
. . . 1


−1

=


8 1 6 6
1 2 0 0
6 0 9 6
6 0 6 9

 .

It is convenient to reduce this matrix with the LLL algorithm to
2 1 1 1
1 5 2 2
1 2 5 2
1 2 2 8


(this amounts a change of basic sets). Plesken’s algorithm applied to C̃xz ⊕ C̃z under the restriction
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(5.1) yields k(B) = 12. As in Case 1, there is in fact a unique solution:

(Q̃xy, Q̃z) =



1 1 1 1 1 1
2 2 . 1 1 1
−2 1 . . . 1
1 −2 . . . 1
−1 −1 1 . . .
−1 −1 . . . 2
−1 −1 . 1 . .
−1 −1 . 1 . .
−1 −1 . 1 . .
−1 −1 . . 1 .
−1 −1 . . 1 .
−1 −1 . . 1 .


Combined with the possibilities for Qx one gets the Cartan matrix of B up to basic sets.

Case 3: Nz has two orbits of length 2 on Φ.
Let (1, 2)(3, 4) be the cycle structure of Nz on Φ. Then

C̃z =


1 1 . .

ζ ζ . .
. . 1 1

. . ζ ζ


−t

Cz


1 1 . .

ζ ζ . .
. . 1 1

. . ζ ζ


−1

=


8 1 6 0
1 2 0 0
6 0 8 1
0 0 1 2

 ∼LLL


2 . 1 1
. 2 1 .
1 1 4 2
1 . 2 8

 .

It turns out that Plesken’s algorithm for C̃xz⊕ C̃z only has solutions if k(B) = 9. This case was already
excluded.

With the notation of the proof above, we note that Case 1 occurs if I(B) ∼= Z8 and Case 2 occurs if
I(B) ∼= Q8. Case 3 contradicts Alperin’s Weight Conjecture (cf. remark after Theorem 3).

We also need an extension of the defect group in Lemma 10.

Lemma 11. Let B be a block of a finite group G with defect group D ∼= Z4
3 and inertial quotient

I(B) ∼= Z8 such that D⋊ I(B) ∼= SmallGroup(63, 155)×Z3. Then the Cartan matrix of B is 3C where
C is one of the possible Cartan matrices in Lemma 10.

Proof. The proof follows along the lines of [27, Proposition 16]. Let E := I(B). We note that D = D1×
D2 with D1 := [D,E] = ⟨x, y, z⟩ ∼= Z3

3 and D2 := CE(D) = ⟨w⟩ ∼= Z3. With the notation of Lemma 10,
a set of representatives for the E-orbits on D is given by R = {wi, xwi, zwi, xzwi : i = 0, 1, 2}. The
character group Irr(D2) acts semiregularly on Irr(B) via the ∗-construction. By [27, Lemma 10], the
generalized decomposition matrix Quwi (where u ∈ {1, x, z, xz}) has the form

Quwi =

 Auwi

ζiAuwi

ζ
i
Auwi

 .

Now the ordinary decomposition matrix Q1 is orthogonal to Qr for all r ∈ R \ {1} if and only if A1

is orthogonal to Ax, Az and Axz. Just as in Lemma 10 we have I(bx) = I(bxz) = 1 and I(bz) ∼= Z4.
Therefore the corresponding Cartan matrices Cx, Cz and Cxz are given by [23]. By the structure of
the matrix above, we obtain 3At

xAx = Cx and similarly for z and xz. Consequently, the matrices Ax,
Az and Axz fulfill the very same relations as the matrices Qx, Qz and Qxz in the proof of Lemma 10.
In particular, we obtain exactly the same possibilities for A1. From that we compute C = 3At

1A1.
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Lemma 12. Let B be a block of a finite group with defect group D ∼= Z3
3 and I(B) ∼= Q8 such that

D ⋊ I(B) ∼=M9 × Z3. Then l(B) ∈ {2, 5, 8} and in the latter two cases the Cartan matrix of B is

3


2 1 1 1 2
1 2 1 1 2
1 1 2 1 2
1 1 1 2 2
2 2 2 2 5

 or 3(1 + δij)
8
i,j=1

up to basic sets.

Proof. Let D := ⟨x, y, z⟩ such that E := I(B) ∼= Q8 acts regularly on ⟨x, y⟩ and CD(E) = ⟨z⟩. The
proof is similar as the previous one. With the notation used there, A1 is just the orthogonal complement
of Ax. Observe that l(bx) = 1 and x is conjugate to x−1 under E. So there are essentially three choices
for Ax:

(2, 2, 1)t, (2, 1, 1, 1, 1)t, (1, . . . , 1)t.

The claim follows as usual.

For our next local block we need to establish E-compatible basic sets of virtually non-existent blocks.

Lemma 13. Let B be a block of finite group G with defect group D ∼= Z2
3 such that D ⋊ I(B) ∼= M9.

Suppose that B is fixed by some automorphism α ∈ Aut(G) of order 2. Then there exists a basic set Φ
such that Φ and IBr(B) are isomorphic α-sets and the Cartan matrix of B with respect to Φ is one of
the following

(
5 4
4 5

)
,


2 1 1 1 2
1 2 1 1 2
1 1 2 1 2
1 1 1 2 2
2 2 2 2 5

 , (1 + δij)
8
i,j=1.

Proof. Since I(B) acts regularly on D, there is only one non-trivial subsection (x, bx) and l(bx) = 1.
As in the previous lemma, the generalized decomposition matrix Qx is one of the following: (2, 2, 1)t,
(2, 1, . . . , 1)t or (1, . . . , 1)t up to signs. From that we obtain the decomposition matrix Q of B up to
basic sets. More precisely, there exists some S ∈ GL(l(B),Z) and an identity matrix with signs T such
that TQS is one of the following

1 .
. 1
2 2

 ,



1 . . . .
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1
1 1 1 1 2

 ,


1 0

. . .
0 1
1 · · · 1

 ∈ Z9×8.

If α acts trivially on IBr(B), then we choose Φ according to S. The Cartan matrix with respect to Φ
is then given by Ĉ := StQtQS as in the statement. Thus, we may assume that α acts non-trivially on
IBr(B). Suppose first that l(B) = 2. Since α interchanges the two Brauer characters of B, the Cartan
matrix of B has the form C = QtQ =

(
s t
t s

)
. Since C has the same elementary divisors as Ĉ =

(
5 4
4 5

)
,
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we conclude that 9 = detC = s2− t2 = (s+ t)(s− t). This easily implies C = Ĉ. Hence, we may choose
Φ = IBr(B).

Suppose next that l(B) = 5. Since α has order 2, we may arrange IBr(B) = {φ1, . . . , φ5} such that α
fixes φ5. Let P be the permutation matrix on the columns of Q induced by α. Then

(StP tS−t)Ĉ(S−1PS) = Ĉ,

i. e. S−1PS ∈ Aut(Ĉ). One can show by computer (or as in Lemma 6) that Aut(Ĉ) ∼= S5 × Z2 where
Z2 is generated by the negative identity matrix and S5 contains the permutation matrices on the first
four coordinates. In particular, P ∈ Aut(Ĉ). Since P and S−1PS have the same rational canonical
form, the computer tells us that P and S−1PS are conjugate inside Aut(Ĉ). Hence, we may assume
that PS = SP . Now the claim follows as in the proof of Proposition 7.

Now let l(B) = 8. Then Aut(Ĉ) was already computed in Lemma 6 and we can repeat the arguments
in Proposition 7 word by word.

Lemma 14. Let B be a block of a finite group with defect group D ∼= Z3
3 and I(B) ∼= Q8 × Z2 such

that D⋊I(B) ∼=M9×S3. Let C be the Cartan matrix of B. Then there exists a matrix W ∈ Rl(B)×l(B)

such that xWxt ≥ 1 for all x ∈ Zl(B) \ {0} and tr(WC) ≤ 27.

Proof. Let D = ⟨x, y, z⟩ and E := I(B) = ⟨a, b, c⟩ such that

L := D ⋊ E = ⟨x, y, a, b⟩ × ⟨z, c⟩ ∼=M9 × S3.

The B-subsections are represented by R = {1, x, z, xz} and all of these elements are conjugate to their
inverses under L. As usual, we obtain l(bx) = 2, l(bxz) = 1 and l(bz) ∈ {2, 5, 8}. Moreover, Q̃xz = Qxz
and C̃xz = Cxz = (27). If Nx = NG(⟨x⟩, bx)/CG(x) ∼= ⟨a2⟩ acts non-trivially on IBr(bx), then the
exact Cartan matrix of bx is Cx = 9

(
2 1
1 2

)
as can be seen from the elementary divisors just as in the

proof of Lemma 13. If, on the other hand, Nx acts trivially on IBr(bx) we choose a basic set such that
Cx = 9

(
2 1
1 2

)
So there are two possibilities

C̃x = Cx = 9

(
2 1
1 2

)
or C̃x =

(
1 1

ζ ζ

)−t

Cx

(
1 1

ζ ζ

)−1

= 3

(
5 1
1 2

)
,

which we denote by (A) and (B). The block bz fulfills the hypothesis of Lemma 13. We choose a
corresponding basic set Φ and observe that Nz = NG(⟨z⟩, bz)/CG(z) ∼= ⟨c⟩ has cycle type (1), (2), (22),
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(23), (24) provided l(bz) is large enough. The relevant fake Cartan matrices C̃z are

3

(
5 4
4 5

)
,

(
14 1
1 2

)
, 3


2 1 1 1 2
1 2 1 1 2
1 1 2 1 2
1 1 1 2 2
2 2 2 2 5

 ,


5 1 3 3 6
1 2 . . .
3 . 6 3 6
3 . 3 6 6
6 . 6 6 15

 ,


5 1 3 . 6
1 2 . . .
3 . 5 1 6
. . 1 2 .
6 . 6 . 15



3(1 + δij)
8
i,j=1,



5 1 3 3 3 3 3 3
1 2 . . . . . .
3 . 6 3 3 3 3 3
3 . 3 6 3 3 3 3
3 . 3 3 6 3 3 3
3 . 3 3 3 6 3 3
3 . 3 3 3 3 6 3
3 . 3 3 3 3 3 6


,



5 1 3 . 3 3 3 3
1 2 . . . . . .
3 . 5 1 3 3 3 3
. . 1 2 . . . .
3 . 3 . 6 3 3 3
3 . 3 . 3 6 3 3
3 . 3 . 3 3 6 3
3 . 3 . 3 3 3 6


,



5 1 3 . 3 . 3 3
1 2 . . . . . .
3 . 5 1 3 . 3 3
. . 1 2 . . . .
3 . 3 . 5 1 3 3
. . . . 1 2 . .
3 . 3 . 3 . 6 3
3 . 3 . 3 . 3 6


,



5 1 3 . 3 . 3 .
1 2 . . . . . .
3 . 5 1 3 . 3 .
. . 1 2 . . . .
3 . 3 . 5 1 3 .
. . . . 1 2 . .
3 . 3 . 3 . 5 1
. . . . . . 1 2


.

We number these cases from (1) to (10). In total there are 20 cases to consider. As usual,

k(B)− l(B) = l(bx) + l(bz) + l(bxz) ∈ {5, 8, 11}.

Note that M̃x =Mx and M̃ z =M z. As in the proof of Lemma 10 we obtain Mx +Mxz ≡ 0 (mod 3)
and M z +Mxz ≡ 0 (mod 9) from (4.1). It is remarkable that Plesken’s algorithm applied to Cxz ⊕ C̃z
under the condition M z+Mxz ≡ 0 (mod 9) always has a unique solution up to basic sets. In particular,
k(B) and l(B) are uniquely determined in each of the cases (1)–(10). If k(B) is given, there are only
a few solutions Q̃x for Q̃t

xQ̃x = C̃x. Eventually we combine (Qxz, Q̃z) with Q̃x. We collect the possible
pairs (k(B), l(B)) in the following table:

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(A) (9, 4) (6, 1) (18, 10) − (12, 4) (27, 16) − (21, 10) (18, 7) (15, 4)
(B) − − − (15, 7) (12, 4) − − − (18, 7) (15, 4)

In each case we obtain a handful of possible Cartan matrices C of B. If

m := min
{
xC−1xt : x ∈ Zl(B) \ {0}

}
≥ l(B)

27
,

then the claim follows withW := 1
mC

−1. This works in all cases except Case (8A). For this exception we
construct W from an identity matrix by adding some entries ±1

2 matching the positions of the “large”
off-diagonal entries of C. Then we check if W is positive definite (cf. [26, proof of Theorem 13.7]). This
can all be done in an automatic fashion. Finally, we remark that the existence of W does not depend
on the basic set for B (see [31, Introduction]).

Now we turn to non-abelian defect groups. For the definitions of controlled and constrained fusion
systems (and blocks) we refer to [26, p. 11].
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Lemma 15. Let B be a controlled block with extraspecial defect group D ∼= 31+2
+ of order 27 and

exponent 3. Suppose that I(B) ∼= Z2 and D ⋊ I(B) = SmallGroup(54, 5). Then l(B) ≤ 2.

Proof. Let D = ⟨x, y, z⟩ and E := I(B) = ⟨a⟩ such that

[x, y] = z, x3 = y3 = z3 = [x, z] = [y, z] = 1, xa = x−1, ya = y, za = z−1.

Since the fusion system F of B is controlled, every subgroup of D is fully F-centralized. Hence, for
u ∈ D the Brauer correspondent bu of B in CG(u) has defect group CD(u) and I(bu) ∼= CE(u). It can be
checked that the E-orbits on D are represented by the elements 1, z, x, y, y−1, xy, xy−1. Since CE(z) =
CE(x) = CE(xy) = CE(xy

−1) = 1 and CE(y) = E, we have l(bz) = l(bx) = l(bxy) = l(bxy−1) = 1 and
l(by) = l(by−1) = 2. It follows that

k(B)− l(B) = 4 · 1 + 2 · 2 = 8.

By [26, Theorem 4.2] applied to bx, we obtain k0(B) ≤ 9 where kh(B) denotes the number characters of
height h in B. Hence, we may assume that l(B) ≥ 3 and k1(B) ≥ 2. Now [26, Theorem 4.7] applied to bz
yields k(B) = k0(B) + k1(B) = 9+ 2 = 11 and l(B) = 3. Consequently, the generalized decomposition
numbers corresponding to (z, bz) have the form (±1, . . . ,±1,±3,±3)t where the first nine entries
correspond to the characters of height 0. Similarly, the generalized decomposition numbers with respect
to (x, bx) are (±1, . . . ,±1, 0, 0)t. But now these two columns cannot be orthogonal (regardless of the
signs). This contradicts [26, Theorem 1.14]. Hence, l(B) ≤ 2.

In the following the famous group

Qd(3) = ASL(2, 3) = Z2
3 ⋊ SL(2, 3) ∼= SmallGroup(63, 153)

plays a role.

Lemma 16. Let B be a constrained block with extraspecial defect group D ∼= 31+2
+ and fusion system

F = F(Qd(3)). Then l(B) ≤ 2 or the Cartan matrix of B is

C =

4 1 2
1 4 2
2 2 7


up to basic sets.

Proof. Let D = ⟨x, y, z⟩ as in Lemma 15 and E = ⟨a, b⟩ ∼= Q8 such that E acts on ⟨x, z⟩ (but not on
D). Then I(B) = ⟨a2⟩ = ⟨b2⟩ and xa2 = x−1, ya2 = y and za2 = z−1. The F-conjugacy classes of fully
centralized cyclic subgroups of D are represented by R = {1, z, y, xy}. We compute l(bz) = l(bxy) = 1

and l(by) = 2. Since z is F-conjugate to z−1, we obtain Qz = Q̃z and Cz = C̃z = (27). On the other
hand, xy and (xy)−1 are not F-conjugate. From Cxy = (9) we conclude

C̃xy =

(
1 1

ζ ζ

)−t(
9 0
0 9

)(
1 1

ζ ζ

)−1

= 3

(
2 1
1 2

)
.

Similarly, y and y−1 are not F-conjugate. It follows from Brauer’s theory of blocks of defect 1 (see
[20, Theorem 11.4]) that

(
2 1
1 2

)
is the exact Cartan matrix of by (no just up to basic sets). Therefore,
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Cy = 3
(
2 1
1 2

)
is the Cartan matrix of by and we may assume that Qy = Qy−1 . Thus, we do not need to

find E-compatible basic sets as in Proposition 7. We compute

C̃y =


1 1 . .

ζ ζ . .
. . 1 1

. . ζ ζ


−t

6 . 3 .
. 6 . 3
3 . 6 .
. 3 . 6



1 1 . .

ζ ζ . .
. . 1 1

. . ζ ζ


−1

=


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

 .

Moreover,
k(B)− l(B) = l(bz) + l(by) + k(by−1) + l(bxy) + l(b(xy)−1) = 7.

We may assume that l(B) > 2 and therefore, k(B) ≥ 10. By [26, Theorem 4.2] applied to bxy, it follows
that k0(B) ≤ 9. Hence, k0(B) ∈ {3, 6, 9} by [26, Proposition 1.31]. Now [26, Proposition 4.7] applied
to bz yields k0(B) = 9 and k1(B) ≤ 2. In total, k(B) ≤ 11. Recall that the height zero characters
correspond to non-zero rows in Q̃y and Q̃xy. By Plesken’s algorithm, the non-zero parts Q̃0

y and Q̃0
xy

of these matrices are essentially unique:

Q̃0
y =



1 1 1 1
1 1 . .
1 . 1 .
1 . . .
. 1 . 1
. 1 . .
. . 1 1
. . 1 .
. . . 1


, Q̃0

xy =



1 .
1 .
1 .
. 1
. 1
. 1
1 1
1 1
1 1


The ∗-construction with suitable F-invariant characters implies

3M z ≡ M̃y ≡ −M̃xy (mod 9)

by (4.1). Under these restrictions Q̃y and Q̃xy can only be combined in a few ways.

Suppose that k(B) = 11. Then Qz = (±1, . . . ,±1,±3,±3)t where the first nine characters have
height 0. However, one can show with GAP that Qz cannot be orthogonal to the matrix (Q̃y, Q̃xy)
formed above. Consequently, k(B) = 10 and l(B) = 3. Then Qz = (±2,±2,±2,±1, . . . ,±1,±3)t up to
permutations. All possible combinations lead to the desired Cartan matrix.

We remark that the case l(B) = 3 in Lemma 16 occurs and is predicted in general by Alperin’s Weight
Conjecture.

6 Abelian defect groups

We are now in a position to prove the first main result of this paper.

Theorem 17. Let B be a 3-block of a finite group G with abelian defect group D of rank at most 5.
Then k(B) ≤ |D|.
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Proof. Let E := I(B) as usual. We decompose D into indecomposable E-invariant subgroups

D = D1 × . . .×Dn

where n ≤ 5 since D has rank at most 5. Since E is a 3′-automorphism group of D, we know that
each Di is homocyclic, i. e. a direct product of isomorphic cyclic groups (see [8, Theorem 5.2.2]). If Di

is not elementary abelian or |Di| = p, then there always exists xi ∈ Di such that CE(xi) = CE(Di) by
[27, Proposition 19]. If |Di| ≤ 27, then there exists xi ∈ Di such that |CE(xi) : CE(Di)| ≤ 2. Hence,
if n ≥ 3, the element x := x1 . . . xn satisfies |CE(x)| ≤ 4. In this case the claim follows from [26,
Lemma 14.5].

Now suppose that n = 2. Then we may assume that D1
∼= Z4

3 . Let x2 be a generator of the cyclic group
D2. We may assume that there is no x1 ∈ D1 such that |CE(x1) : CE(D1)| ≤ 4, because otherwise
|CE(x1x2)| ≤ 4. The action of E on D1 determines an irreducible 3′-subgroup E := E/CE(D1) of
GL(4, 3). In other words, L1 := D1 ⋊ E is a primitive permutation group on D1 of affine type. These
groups are fully classified and available in GAP. It turns out that there are three possibilities:

(i) E ∼= SD32 ≀ Z2 (a Sylow 2-subgroup of GL(4, 3)) and L1
∼= PrimitiveGroup(34, 95),

(ii) E ∼= SmallGroup(28, 6662) and L1
∼= PrimitiveGroup(34, 83),

(iii) E ∼= SmallGroup(640, 21454) and L1
∼= PrimitiveGroup(34, 99).

In the first two cases there exists x1 ∈ D1 such that CE(x1)
∼= D8. With x := x1x2 we obtain

CE(x) ∼= D8. Let bx be the corresponding Brauer correspondent of B in CG(x) and let bx be the
dominated block in CG(x)/⟨x⟩ with defect group D := D/⟨x⟩. Another GAP computation shows that
D⋊I(bx) ∼= SmallGroup(63, 158)×D2/⟨x32⟩ where the second factor has order 3 if D2 ̸= 1. Our Usami–
Puig algorithm applied in Lemma 8 works equally well if D2 ̸= 1 (only Plesken takes a little longer).
Consequently, l(bx) = l(bx) ∈ {2, 5}. If l(bx) ≤ 2, then the claim follows from [26, Theorem 4.9].
Otherwise we know the Cartan matrix Cx of bx up to basic sets from Lemma 8 (for D2 ̸= 1 the given
matrix must be multiplied by 3). The Cartan matrix of bx is 3Cx (up to basic sets). Now the claim
follows from [26, Theorem 4.2].

In the third case above we find x ∈ D such that D ⋊ I(bx) ∼= SmallGroup(63, 155) × D2/⟨x32⟩. This
time we get the Cartan matrix of bx from Lemmas 10 and 11 (again assuming l(bx) > 2). Here the
claim follows from [26, Theorem 4.4] (the minimum of the quadratic form can be computed with the
GAP command ShortestVectors).

Finally, it remains to handle n = 1, i. e. E acts irreducibly on D. By [27, Proposition 11], we may
assume that |CE(x)| > 7 for all x ∈ D. From the GAP library we see that the only primitive group
to consider is L = D ⋊ E ∼= PrimitiveGroup(35, 15). Here we find x ∈ D such that D ⋊ I(bx) ∼=
SmallGroup(63, 158)× Z3. This is the same instance already discussed above.

The inertial index 256 occurring in Case (ii) of the above proof is in fact the smallest inertial index
where Brauer’s k(B)-Conjecture is not known to hold in general (see [26, Proposition 14.13]).

7 Non-abelian defect groups

In order to investigate non-abelian defect groups, we first generalize [27, Theorem 8].

Theorem 18. Let B be a block of a finite group with defect group D such that D/⟨z⟩ is metacyclic for
some z ∈ Z(D). Then k(B) ≤ |D|.
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Proof. If p = 2 or D := D/⟨z⟩ is abelian, then the claim follows from [26, Theorem 13.9] or [27,
Theorem 5] respectively. Thus, we may assume that p > 2 and D is non-abelian. Let bz be a Brauer
correspondent of B in CG(z). As usual, bz dominates a unique block bz of Cz := CG(z)/⟨z⟩ with defect
group D. In order to apply [26, Theorem 4.2], we need to compute the Cartan matrix of bz up to basic
sets. To this end, we may assume that bz is non-nilpotent. Then by [26, Theorem 8.8],

D = ⟨x, y : xp
m
= yp

n
= 1, yxy−1 = x1+p

l⟩

where 0 < l < m and m − l ≤ n. By a result of Stancu [34], bz is a controlled block. Moreover,
E := I(bz) is cyclic of order dividing p − 1 and E acts semiregularly on ⟨x⟩ and trivially on ⟨y⟩ (see
[26, proof of Theorem 8.8]). In particular, the (hyper)focal subgroup [D,E] = ⟨x⟩ is cyclic. By the
main result of [35], bz is perfectly isometric to its Brauer correspondent βz in NCz

(D). In particular,
bz and βz have the same Cartan matrices up to basic sets. By [17], we may assume that βz is the
unique block of L := D ⋊ E ∼= Cpm ⋊ (Cpn × E). By result of Fong (see [20, Theorem 10.13]), the
projective indecomposable characters of L1 := ⟨x⟩⋊E are Φ′

λ := λL1 where λ ∈ Irr(E). Similarly, the
projective indecomposable characters of L are Φλ := λL = (Φ′

λ)
L. Since ⟨y⟩ centralizes E, we have

Φλ(g) = pn(Φ′
λ)(g) if g ∈ L1 and 0 otherwise. Consequently,

[Φλ,Φµ] =
1

|L|
∑
g∈L1

p2nΦ′
λ(g)Φ

′
µ(g) = pn[Φ′

λ,Φ
′
µ]

for λ, µ ∈ Irr(E). The Cartan matrix of L1 is (d + δij)
e
i,j=1 where e := |E| and d := (pm − 1)/e (see

proof of Proposition 7). Hence, the Cartan matrix of L is pn(d + δij) and the Cartan matrix of bz is
|⟨z⟩|pn(d+ δij). Now [26, Theorem 4.2] yields

k(B) ≤ |⟨z⟩|pn
(pm − 1

e
+ e

)
≤ |⟨z⟩|pn+m = |⟨z⟩||D| = |D|.

We can now prove our second main theorem.

Theorem 19. Brauer’s k(B)-Conjecture holds for the 3-blocks of defect at most 4.

Proof. Brauer’s Conjecture has been verified for all p-blocks of defect at most 3 in [28]. Hence, let B be
a block with defect group D of order 81. By Theorems 17 and 18 we may assume that D is non-abelian
and D/⟨z⟩ has order 27 and exponent 3 for every z ∈ Z(D) \ {1}.

Case 1: |Z(D)| = 3.
Since there exists no extraspecial group of order 34, we must have D/Z(D) ∼= 31+2

+ . Using GAP we are
left with four possible groups: D ∼= SmallGroup(81, s) with s = 7, . . . , 10. Let z ∈ Z(D) \ {1}, and let
bz and bz as usual. The possible fusion systems of bz were classified in [25].

We compute further that the 3′-part of |CAut(D)(Z(D))| is at most 2. In particular, |I(bz)| ≤ 2. If
I(bz) = 1, then bz is nilpotent by the main theorem of [25] (this happens if s = 10). In this case the
claim follows from [26, Proposition 4.7]. Hence, we may assume that |I(bz)| = 2 in the following. A
further calculation shows that D ⋊ I(bz) ∼= Z2

3 ⋊ Z2
∼= SmallGroup(54, 5).

By [25], the fusion system Fz of bz is constrained. More precisely, Fz is the fusion system of the
group D ⋊ I(bz) or of the group Qd(3). In the first case, we obtain l(bz) ≤ 2 from Lemma 15. Then
Brauer’s k(B)-Conjecture follows from [26, Theorem 9.4]. In the remaining case, the claim follows from
Lemma 16 and [26, Theorem 4.2].
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Case 2: |Z(D)| = 9.
Here D ∼= Z3 × 31+2

+ . Let z ∈ D′ \ {1} and bz, bz as usual. Note that bz has defect group D = D/D′ =
D/Φ(D) ∼= Z3

3 . The 3′-group E := I(B) ≤ Aut(D) acts faithfully on D and normalizes Z(D)/D′.
Hence, E is a 2-group and I(bz) ∼= CE(z) ≤ Q8 × Z2. If |I(bz)| ≤ 4, then the claim follows from [26,
Lemma 14.5]. Now suppose that |I(bz)| ∈ {8, 16}. Up to isomorphism there are four possibilities for
L := D ⋊ I(bz):

(i) I(bz) ∼= Z4 × Z2 and L ∼= (Z2
3 ⋊ Z4) × S3 ∼= SmallGroup(63, 156): Here the claim follows from

Lemma 9 and [26, Theorem 4.2].

(ii) I(bz) ∼= Q8 and L ∼=M9 × Z3: Apply [26, Theorem 4.2] with Lemma 12.

(iii) I(bz) ∼= Q8 and L ∼= SmallGroup(63, 161): Apply [26, Theorem 4.2] with Lemma 10.

(iv) I(bz) ∼= Q8 × Z2 and L ∼= M9 × S3: In this case we use [31, Theorem A] in combination with
Lemma 14.
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