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Abstract

Let K be a conjugacy class of a finite p-group G where p is a prime, and let K−1 denote the conjugacy
class of G consisting of the inverses of the elements in K. We observe that, in several cases, the number of
elements in the product KK−1 is congruent to 1 modulo p−1, and we pose the question in which generality
this congruence is valid. We also consider related properties of the class multiplication constants of G.
Furthermore, let χ be an irreducible character of G, and let χ denote the complex conjugate of χ. We show
that, in several cases, the number of irreducible constituents of the product χχ is congruent to 1 modulo
p− 1, and we pose the question in which generality this congruence is valid.

1 Introduction

This paper is motivated by results of Adan-Bante [1], [2]. Let G be a finite p-group where p is a prime, and let
K ∈ Cl(G) where Cl(G) denotes the set of conjugacy classes of G. Then

K−1 := {a−1 : a ∈ K} ∈ Cl(G),

and the product KK−1 = {ab−1 : a, b ∈ K} is a union of conjugacy classes of G. We denote the number of
conjugacy classes of G contained in KK−1 by η(K). In [2], Adan-Bante proved that

η(K) ≥ n(p− 1) + 1 whenever |K| = pn.

Moreover, she showed that this bound is sharp. Our own interest started with the observation that, in many
cases, we have

η(K) ≡ 1 (mod p− 1). (P1)
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Of course, the length |K| of K is a power of p; in particular, |K| ≡ 1 (mod p − 1). Thus η(K) ≡ |KK−1|
(mod p− 1), so that (P1) is equivalent to

|KK−1| ≡ 1 (mod p− 1). (P2)

At present, we do not have a single example where these congruences are violated. In this paper, we approach
the problem via the class multiplication constants of G. Thus, in the following, we denote by ZG the integral
group ring of G and, for a subset X of G, we set X+ :=

∑
x∈X x ∈ ZG. Then the class sums K+ (K ∈ Cl(G))

form a Z-basis of the center Z(ZG) of ZG. For K,L,M ∈ Cl(G) and z ∈M , the nonnegative integer

cKLM := |{(x, y) ∈ K × L : xy = z}|

is called a class multiplication constant; it is independent of the choice of z. Moreover we have

K+L+ =
∑

M∈Cl(G)

cKLMM
+, (⋆)

and cKLM 6= 0 if and only if M ⊆ KL. The map

ǫ : ZG→ Z,
∑

g∈G

αgg 7→
∑

g∈G

αg,

is a homomorphism of rings called the augmentation map of ZG. Applying ǫ to the equation (⋆) we obtain

1 ≡ |K||L| =
∑

M∈Cl(G)

cKLM |M | ≡
∑

M∈Cl(G)

cKLM (mod p− 1).

Suppose that the following condition is satisfied:

cKK−1L ≡ 1 (mod p− 1) for all L ∈ Cl(G) such that L ⊆ KK−1. (P3)

Then
η(K) =

∑

L∈Cl(G)

L⊆KK−1

1 ≡
∑

L∈Cl(G)

L⊆KK−1

cKK−1L =
∑

L∈Cl(G)

cKK−1L ≡ 1 (mod p− 1).

This shows that (P3) implies (P1) and (P2). We will prove that, in several “small” cases, cKK−1L is in fact a
power of p, for all K,L ∈ Cl(G) such that L ⊆ KK−1, a property which is slightly stronger than (P3). However,
we will also give an example of a group of order 37 where (P3) does not hold.

The questions above can also be dualized: Let χ ∈ Irr(G) where Irr(G) denotes the set of irreducible characters
of G. Then χ, the complex conjugate of χ, is again an irreducible character of G, and the product χχ is a
character of G. In [1], Adan-Bante proved that

| Irr(χχ)| ≥ 2n(p− 1) + 1 whenever χ(1) = pn;

here Irr(ξ) denotes the set of irreducible constituents of a character ξ of G. Adan-Bante also showed that her
bound is sharp. Our own interest started with the observation that, in many cases, we have

| Irr(χχ)| ≡ 1 (mod p− 1). (Q1)

At present, we do not have a single example where this congruence is violated. In the following, we write

(χ|ψ)G :=
1

|G|

∑

g∈G

χ(g)ψ(g),

for complex characters χ, ψ of G. Then, for ψ ∈ Irr(G), (χ|ψ)G is the multiplicity of ψ as an irreducible
constituent of χ; in particular, we have

χ(1) =
∑

ψ∈Irr(G)

(χ|ψ)Gψ(1). (⋆⋆)
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Suppose now that χ ∈ Irr(G). Then χ(1) is a power of p; in particular, we have χ(1) ≡ 1 (mod p − 1). Thus
(⋆⋆) implies that

1 ≡ χ(1)2 = (χχ)(1) ≡
∑

ψ∈Irr(χχ)

(χχ|ψ)G (mod p− 1).

Thus suppose that the following holds, for every χ ∈ Irr(G) and every ψ ∈ Irr(χχ):

(χχ|ψ)G ≡ 1 (mod p− 1). (Q2)

Then 1 ≡
∑
ψ∈Irr(χχ) 1 = | Irr(χχ)| (mod p − 1), so that (Q2) implies (Q1). We will prove that, in several

“small” cases, (χχ|ψ)G is in fact a power of p, for all χ ∈ Irr(G) and all ψ ∈ Irr(χχ), a property slightly stronger
than (Q2). However, we will also give an example of a group of order 37 where (Q2) does not hold.

It is perhaps of interest to point out some connections of this paper to other results in the literature. J. G. Thomp-
son has conjectured that every nonabelian finite simple groupG contains a conjugacy classK such thatKK = G.
It is easy to see that then K = K−1, so that also KK−1 = G, and η(K) = |Cl(G)|. Thompson’s conjecture
is a strengtheninig of a conjecture by Ore which claims that every element in a nonabelian finite simple group
can be written as a commutator. Also, there have been considerable efforts in recent years to determine the
so-called covering number

cn(G) = max
K∈Cl(G)

{n ∈ N : Kn = G 6= Kn−1}

of a finite simple group G (see [3] and [15], for example). So one can view our results and questions on conjugacy
classes as variants of these problems.

Of course, our results on class multiplication constants contribute to the general theory of integral group rings
and their centers (see [12], for example).

Every finite group G acts on itself by conjugation, and the character of the corresponding permutation module
is

∑
χ∈Irr(G) χχ. Thus, looking at the Wedderburn decomposition

CG =
⊕

χ∈Irr(G)

Aχ

of the group algebra CG, the character χχ of G comes from the conjugation action of G on the minimal ideal
Aχ of CG, for χ ∈ Irr(G).

We also note that our results on characters are related to the theory of S-characters (see p. 161 in [4], for
example). A character θ of a finite group G is called an S-character if (θ|1G)G = 1 and θ(g) ≥ 0 for every g ∈ G.
Important examples are provided by characters of the form χχ where χ ∈ Irr(G), and by characters of the form
(1H)G where H ≤ G.

H. Blau [5] has pointed out that some of our questions can also be formulated in the framework of integral table
algebras (see [6], for example). However, we do not pursue this direction here.

Some of the results in this paper are taken from the Diplomarbeit [13] of the third author written under the
direction of the second author.

Most of our notation will be standard. We write H ≤ G if H is a subgroup of G, and H EG if H is a normal
subgroup of G. For a, b ∈ G, the element [a, b] := aba−1b−1 is called a commutator. For subsets A,B of G,
we set [A,B] := 〈[a, b] : a ∈ A, b ∈ B〉 where 〈X〉 denotes the subgroup of G generated by X ⊆ G. Then
G′ := [G,G] is the commutator subgroup of G. We denote the derived series of G by

G = G(0) ≥ G(1) = G′ ≥ G(2) ≥ . . . ,

the lower central series of G by

G = K1(G) ≥ K2(G) = G′ ≥ K3(G) ≥ . . . ,

and the upper central series of G by

1 = Z0(G) ≤ Z1(G) = Z(G) ≤ Z2(G) ≤ . . . .
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The nilpotency class of G will be denoted by cl(G). We write a =G b if a, b are conjugate elements of G. We
denote the set of maximal subgroups of G by Max(G), and the set of maximal abelian normal subgroups of G
by SCN(G) (cf. [8]). Recall that CG(A) = A for A ∈ SCN(G). Also, we denote the set of integers by Z, the set
of positive integers by N and the set of nonnegative integers by N0. For i ∈ N0, we set

Ωi(G) := 〈g ∈ G : gp
i

= 1〉 and ℧i(G) := 〈gp
i

: g ∈ G〉.

Moreover, we denote the Frattini subgroup of G by Φ(G). We set

Ĝ := {χ ∈ Irr(G) : χ(1) = 1}.

Then Ĝ is a group under multiplication, and Ĝ ∼= G/G′. The trivial character 1G is the identity element of Ĝ.
For χ ∈ Irr(G), we set

Z(χ) := {g ∈ G : |χ(g)| = χ(1)}.

Then ker(χ) E Z(χ) EG. For H ≤ G and a character ξ of G, we denote its restriction to H by ξH . Also, for a
character φ of H, we denote its induction to G by φG. Moreover, we write ρG for the regular character of G.
If N is a normal subgroup of G and ψ is a character of G/N , we will often identify ψ with its inflation to G.
Also, for ν ∈ Irr(N), we denote its inertia group in G by IG(ν).

2 Class multiplication constants

In the following, we fix a prime number p and a finite p-group G. We start by proving some general elementary
facts on the class multiplication constants cKLM , for K,L,M ∈ Cl(G). These results will be used throughout
the paper.

Lemma 2.1. Let x ∈ K ∈ Cl(G), let L ∈ Cl(G) be such that L ⊆ KK−1 (so that L ∩ xK−1 6= ∅), and let
t ∈ L ∩ xK−1. Then the following hold:

(i) cKK−1L ≤ |K| ≤ |KK−1|;

(ii) cKK−1L = |K| ⇔ L ⊆ xK−1;

(iii) L ⊆ Z(G) ⇒ cKK−1L = |K|;

(iv) |K| = |KK−1| ⇒ cKK−1L = |K|;

(v) cKK−1L ≥ |CG(t) : CG(t) ∩ CG(x)| ≥ |K|
|L| ;

(vi) |KK−1 ∩ Z(G)| ≤ η(K) ≤ |K|;

(vii) η(K) = |K| ⇒ cKK−1L = |K|
|L| ;

(viii) |CG(x) : CG(x) ∩ CG(t)| ≤ |L ∩ xK−1| ≤ |L|;

(ix) CG(x) ⊆ CG(t) E G ⇒ cKK−1L = |L ∩ xK−1| |K|
|L| .

Proof. Since L ⊆ KK−1, there are g, h ∈ G such that gxg−1 ·hx−1h−1 ∈ L. Then x ·g−1hx−1h−1g ∈ L∩xK−1,
so that indeed L ∩ xK−1 6= ∅.

(i) The inequality |K| ≤ |KK−1| is trivial. Moreover, for a ∈ K, there is at most one b ∈ K−1 such that
ab = t. Thus

cKK−1L = |{(a, b) ∈ K ×K−1 : ab = t}| ≤ |K|.

(ii) Suppose first that cKK−1L = |K|, and let g ∈ G. Then, by the proof of (i), there exists h ∈ G such that
t = gxg−1 · hx−1h−1. Thus g−1tg = x · g−1hx−1h−1g ∈ xK−1. This shows that L ⊆ xK−1.

Now suppose conversely that L ⊆ xK−1, and let g ∈ G. Then there is h ∈ G such that gtg−1 = xhx−1h−1.
Thus t = g−1xg · g−1hx−1h−1g, and the proof of (i) implies that cKK−1L = |K|.

(iii) If L ⊆ Z(G) then L = {t} ⊆ xK−1, and the result follows from (ii).

(iv) Suppose that |KK−1| = |K| = |xK−1|. Since xK−1 ⊆ KK−1 this implies that L ⊆ KK−1 = xK−1.
Thus (iv) follows from (ii).
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(v) Since CG(t) acts by conjugaction on the set {(a, b) ∈ K × K−1 : ab = t} and since c := |CG(t) :
CG(t) ∩ CG(x)| is the length of the orbit (x, x−1t), we have

cKK−1L ≥ c ≥
|CG(t)|

|CG(x)|
=

|K|

|L|
.

(vi) The inequality |KK−1 ∩Z(G)| ≤ η(K) is trivial. Since every element in KK−1 is conjugate to an element
in xK−1, we get η(K) ≤ |K|.

(vii) Suppose that η(K) = |K|. Then the proof of (vi) shows that any two elements of xK−1 are contained in
distinct conjugacy classes of G. So there is a unique y ∈ K−1 such that xy ∈ L. Since this holds for every
x ∈ K, the conclusion follows.

(viii) The inequality |L ∩ xK−1| ≤ |L| is trivial. Moreover, CG(x) acts on L ∩ xK−1 via conjugation, and
|CG(x) : CG(x) ∩ CG(t)| is the length of the orbit of t under this action.

(ix) Suppose that CG(x) ⊆ CG(t) E G, and let n := |L ∩ xK−1|. We write L ∩ xK−1 = {a1ta
−1
1 , . . . , anta

−1
n }

and aita
−1
i = xkix

−1k−1
i for i = 1, . . . , n.

Let g, h ∈ G be such that t = gxg−1 · hx−1h−1. Then g−1tg = x · g−1hx−1h−1g ∈ L ∩ xK−1. Thus
g−1tg = ajta

−1
j for some j ∈ {1, . . . , n} and gaj ∈ CG(t), i. e. g ∈ CG(t)a−1

j = a−1
j CG(t).

Conversely, let g ∈ CG(t)a−1
j for some j ∈ {1, . . . , n}. Then c := gaj ∈ CG(t). Setting h := ca−1

j kj we
have

gxg−1 · hx−1h−1 = ca−1
j xajc

−1ca−1
j kjx

−1k−1
j ajc

−1 = ca−1
j ajta

−1
j ajc

−1 = ctc−1 = t.

This shows:

cKK−1L = |{gxg−1 : g ∈
n⋃

i=1

a−1
i CG(t)}|.

Let i, j ∈ {1, . . . , n} and c, d ∈ CG(t) be such that a−1
i cxc−1ai = a−1

j dxd−1aj . Then c−1aia
−1
j d ∈ CG(x) ⊆

CG(t) and aia
−1
j ∈ CG(t). Thus i = j and cxc−1 = dxd−1. This implies that c−1d ∈ CG(x), and we have

shown:

cKK−1L = n|CG(t) : CG(x)| = n
|K|

|L|
.

Now we investigate the connection between the class multiplication constants of G and of G/N , for N E G.
These results will allow us to use induction on |G|.

Lemma 2.2. Let K,L ∈ Cl(G), and let N EG. Then K := {aN : a ∈ K} and L := {bN : b ∈ L} are conjugacy
classes of G := G/N . If KLN = KL then |KL| = |KL| · |N | ≡ |KL| (mod p− 1).

Proof. Let a1, . . . , ar ∈ G be such that KL is the disjoint union of a1N, . . . , arN . Then

|KL| = r|N | = |KL||N | ≡ |KL| (mod p− 1).

The following result will be useful in order to construct suitable normal subgroups N of G.

Lemma 2.3. If z ∈ Z(G) and K ∈ Cl(G) then zK ∈ Cl(G). In this way Z(G) acts on Cl(G). For K ∈ Cl(G),
the stabilizer of K in Z(G) is Z := KK−1 ∩ Z(G).

Proof. The first two statements are obvious. Let z ∈ Z(G), K ∈ Cl(G) and a ∈ K. Then the following holds:

zK = K ⇐⇒ za ∈ K ⇐⇒ z ∈ Ka−1 ⇐⇒ z ∈ KK−1,

and the result follows.

Our next result is a variant of Lemma 2.2.

Lemma 2.4. Let K,L,M ∈ Cl(G), and let NEG. We denote the images of K,L,M in G := G/N by K,L,M ,
respectively. If MN = M then the class multiplication constants cKLM and cKLM differ by a factor which is a
power of p. In particular, we have:
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(i) cKLM = 0 ⇔ cKLM = 0;

(ii) cKLM ≡ 1 (mod p− 1) ⇔ cKLM ≡ 1 (mod p− 1).

Proof. The canonical epimorphism G → G induces a ring homomorphism ν : ZG → ZG. Applying ν to the
equation (⋆) we obtain

|K| · |L|

|K| · |L|
K

+
L

+
=

∑

C∈Cl(G)

cKLC
|C|

|C|
C

+
.

The hypothesis MN = M implies that M is the only conjugacy class of G which maps onto M . Thus |K| · |L| ·
|M | · cKLM = |K| · |L| · |M | · cKLM , and the result follows.

The following elementary fact will be applied in connection with Lemma 2.1.

Lemma 2.5. Let g, h ∈ G and i, j ∈ Z be such that i 6≡ j (mod p) and [h, gi] =G [h, gj ]. Then g ∈ CG(h).

Proof. Let G be a counterexample of minimal order. Since G := G/Z(G), g := g Z(G) and h := hZ(G) also
satisfy the hypothesis of the lemma, minimality ensures that g ∈ CG(h). Thus [h, gi] ∈ Z(G), and our hypothesis
implies that [h, gi] = [h, gj ]. Hence gi−j ∈ CG(h), and the result follows.

3 Elementary results on conjugacy classes

Let G be a finite p-group where p is a prime. In this section we are going to present some elementary positive
results concerning (P1), (P2) and (P3). We begin with the trivial remark that these conditions are always
satisfied for p = 2. It is also easy to show that (P1) and (P2) are satisfied for p = 3:

Proposition 3.1. Let p > 2 and K ∈ Cl(G). Then |KK−1| and η(K) are odd.

Proof. Let x ∈ KK−1, and write x = a · ga−1g−1 where a ∈ K and g ∈ G. Then x−1 = gag−1 · a−1 ∈ KK−1.
Moreover, x 6= x−1 unless x = 1. Thus the elements in KK−1 \ {1} come in pairs of the form (x, x−1). Hence
|KK−1| is odd. The result follows since η(K) ≡ |KK−1| (mod p− 1).

Our next goal is to show that (P1), (P2) and (P3) are satisfied for finite p-groups of nilpotency class 2. We
start with a slightly more general result.

Proposition 3.2. Let H ≤ G, and let K,L ∈ Cl(G) be such that L ⊆ KK−1 ⊆ CG(H) and G = H CG(x) for
some x ∈ K. Then |KK−1| = |K| and cKK−1L = |K|; in particular, (P3), (P2) and (P1) hold.

Proof. The hypothesis G = H CG(x) implies that K = {hxh−1 : h ∈ H}. Thus the hypothesis KK−1 ⊆ CG(H)
forces

KK−1 = {h1xh
−1
1 · h2x

−1h−1
2 : h1, h2 ∈ H} = {x · h−1

1 h2x
−1h−1

2 h1 : h1, h2 ∈ H} = xK−1.

Hence the result follows from Lemma 2.1(iv).

Our first application of Proposition 3.2 is to finite p-groups of nilpotency class 2.

Corollary 3.3. Let K,L ∈ Cl(G) be such that L ⊆ KK−1. If cl(G) ≤ 2 then |KK−1| = |K| and cKK−1L = |K|;
in particular, (P3), (P2) and (P1) hold.

Proof. Since cl(G) ≤ 2, we have KK−1 = {a · ga−1g−1 : a ∈ K, g ∈ G} ⊆ G′ ⊆ Z(G) = CG(G). Thus we can
apply Proposition 3.2 with H := G.

Our next result is another application of Proposition 3.2.
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Corollary 3.4. Let K,L ∈ Cl(G) be such that L ⊆ KK−1, and let A E G be abelian such that G′ ⊆ A and
G = ACG(x) for some x ∈ K. Then |KK−1| = |K| and cKK−1L = |K|; in particular, (P3), (P2) and (P1)
hold.

Proof. As in the proof of Corollary 3.3, we have KK−1 ⊆ G′ ⊆ A = Z(A) ⊆ CG(A). Thus we can apply
Proposition 3.2 with H := A.

Much of the following result comes from a paper by Adan-Bante [2].

Proposition 3.5. Let |G| = pn for some n ≥ 2, and let K,L ∈ Cl(G) be such that |K| ∈ {1, p, pn−2} and
L ⊆ KK−1. Then cKK−1L ∈ {1, |K|}; in particular, (P3), (P2) and (P1) hold.

Proof. The case |K| = 1 is trivial. Suppose that |K| = p. Then, by Lemma 4.1 in [2], we have η(K) = p = |K|.
Thus the result follows from Lemma 2.1(vii) in this case.

Finally, suppose that |K| = pn−2. If x ∈ K then

pn−2 = |K| ≤ |KK−1| = |{a · ga−1g−1 : a ∈ K, g ∈ G}| ≤ |G′| ≤ pn−2.

Thus |KK−1| = |K|, and the result follows from Lemma 2.1(iv).

We note that a p-group of order pn with a conjugacy class of length pn−2 has maximal class, by Satz III.14.23
in [9]. The following result is a consequence of Corollary 3.4 and Proposition 3.5.

Corollary 3.6. Let K,L ∈ Cl(G) be such that L ⊆ KK−1, and let A ∈ Max(G) be abelian. Then |K| ≤ p or
|KK−1| = |K|, and cKK−1L ∈ {1, |K|}; in particular, (P3), (P2) and (P1) hold.

Proof. Let x ∈ K. If x ∈ A then A ≤ CG(x) and therefore |K| ≤ p. In this case the result follows from
Proposition 3.5. Thus we may assume that x /∈ A. In this case Corollary 3.4 implies the result.

The following result will also be useful.

Lemma 3.7. Let K,L ∈ Cl(G) be such that L ⊆ KK−1, and let K ⊆ N E G where |N | = p|K|. Then
KK−1 = [G,N ] and |KK−1| = |K|. Thus cKK−1L = |K|, and (P3), (P2) and (P1) hold.

Proof. Let x ∈ K. Then

KK−1 = {gxg−1 · hx−1h−1 : g, h ∈ G} = {g[x, g−1h]g−1 : g, h ∈ G} ⊆ [N,G] < N.

Thus |N | = p|K| ≤ p|KK−1| ≤ p|[G,N ]| ≤ |N |, and we conclude that |K| = |KK−1| and KK−1 = [G,N ].
The result follows as before.

Now we can deal with the groups of order pn, for n = 0, 1, . . . , 5.

Proposition 3.8. Let |G| = pn where n ≤ 5, and let K,L ∈ Cl(G) be such that L ⊆ KK−1. Then cKK−1L is
a power of p; in particular, (P3), (P2) and (P1) hold.

Proof. By Proposition 3.5 and Lemma 2.1(iv), we may assume that p2 = |K| < |KK−1| and |G| = p5. Since
KK−1 ⊆ G′ this implies that |G′| = p3 and G′ = Φ(G). Moreover, Lemma 3.7 shows that K * G′. Let x ∈ K,
so that M := G′〈x〉 ∈ Max(G).

If |L| = 1 then L ⊆ Z(G), and the result follows from Lemma 2.1(iii). If |L| = p2 then LL−1 = K3(G) by
Lemma 3.7 since L ⊆ KK−1 ⊆ G′. Thus N := LL−1 ∩Z(G) 6= 1, and NL = L by Lemma 2.3. Hence the result
follows from Lemma 2.4.

It remains to deal with the case |L| = p. Let t ∈ L ∩ xK−1. Then t = xgx−1g−1 for some g ∈ G, and
|CG(t)| = p4.
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Suppose first that g ∈M . Thus t ∈M ′ and L ⊆M ′. Since |M ′| ≤ p2, Lemma 3.7 implies that LL−1 = [G,M ′];
in particular, N := LL−1 ∩ Z(G) 6= 1. Since NL = L by Lemma 2.3, the result follows in this case from
Lemma 2.4.

Thus we may assume that g /∈ M , so that G = M〈g〉 = G′〈x, g〉 = Φ(G)〈x, g〉 = 〈x, g〉. Since [x, g] = t ∈
Z(CG(t)) we conclude that G/Z(CG(t)) is abelian. Thus G′ ⊆ Z(CG(t)) and |CG(t)/Z(CG(t))| ≤ p. Hence
CG(t) is abelian, and the result follows from Corollary 3.6.

Our next result generalizes Corollary 3.3. It will be used in Section 4.

Lemma 3.9. Let K,L ∈ Cl(G) be such that L ⊆ KK−1, and let n ∈ N0 be such that KK−1 ∩ Zn(G) = 1 and
KK−1 ⊆ Zn+1(G). Then η(K) = |K|, and cKK−1L is a power of p; in particular, (P3), (P2) and (P1) hold.

Proof. Let x ∈ K, and let g, h ∈ G be such that [x, g] =G [x, h]. We set G := G/Zn(G), x := xZn(G), etc.

Then [x, g] =G [x, h]. But [x, g] ∈ KK
−1

⊆ Zn+1(G)/Zn(G) = Z(G), so that [x, g] = [x, h]. Thus g−1h ∈ CG(x)
and [x, g−1h] ∈ KK−1 ∩ Zn(G) = 1. Therefore g−1h ∈ CG(x) and [x, g] = [x, h].

This shows that the elements in xK−1 lie in distinct conjugacy classes of G. Thus η(K) ≥ |xK−1| = |K|.
Lemma 2.1(vi) implies that η(K) = |K|, and the result follows from Lemma 2.1(vii).

4 Conjugacy classes of groups of order p
6

In this section we will extend Proposition 3.8 to groups of order p6 where p is a prime. In the following, let G
be a finite p-group. Our first lemma is well-known, so we omit the proof.

Lemma 4.1. The Sylow p-subgroups of GL(3, p) are nonabelian of order p3.

Next we consider Aut(Z/p2Z × Z/pZ).

Lemma 4.2. Let G = 〈a〉× 〈b〉 where |〈a〉| = p2 and |〈b〉| = p. Then Aut(G) has order p3(p− 1)2 and a unique
Sylow p-subgroup P . Moreover, P ′ 6= 1.

Proof. Every α ∈ Aut(G) is uniquely determined by α(a) and α(b), and we may write

α(a) = aibj , α(b) = akpbl

with uniquely determined i ∈ {0, . . . , p2 − 1}, j, k, l ∈ {0, . . . , p− 1} such that l 6= 0 and p ∤ i. Conversely, every
4-tuple (i, j, k, l) of this form determines an automorphism α of G. This shows that |Aut(G)| = p3(p− 1)2.

Restriction induces a homomorphism ρ : Aut(G) → Aut(Φ(G)). Since Φ(G) = 〈ap〉, ρ is surjective. Thus
| ker(ρ)| = p3(p− 1). By Sylow’s Theorem, ker(ρ) has a unique Sylow p-subgroup P . Then P is the only Sylow
p-subgroup of Aut(G).

Let α, β ∈ Aut(G) be defined by α(a) = a1+pb, α(b) = b, β(a) = a and β(b) = apb. Then αp = 1 = βp, so that
α, β ∈ P . Since αβ 6= βα we conclude that P ′ 6= 1.

Our next result gives useful information concerning the structure of groups of order p6.

Lemma 4.3. Suppose that |G| = p6 and |G′| = p3. Then G′ is abelian, but G′ /∈ SCN(G).

Proof. Satz III.7.11 in [9] implies that G′ is abelian. Assume that G′ ∈ SCN(G). Then the abelian group
G/G′ = G/CG(G′) of order p3 embeds into Aut(G′). Thus G′ cannot be cyclic. By Lemma 4.1, G′ cannot be
elementary abelian. In the remaining case, Lemma 4.2 leads to a contradiction.

Next we prove (P3) for groups of order p6 in special situations.

Lemma 4.4. Let |G| = p6, and suppose that G′′ 6= 1. Moreover, let K,L ∈ Cl(G) be such that L ⊆ KK−1.
Then cKK−1L is a power of p.
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Proof. Lemma 4.3 implies that |G′| = p4. Satz III.7.8(b) in [9] shows that Z(G′) is noncyclic. Thus Z(G′)
and G′/Z(G′) are both elementary abelian of order p2. Also, Hilfssatz III.7.10 in [9] shows that |G′′| = p. In
particular G′′ ⊆ Z(G).

By Lemma 2.1(iv), we may assume that |K| < |KK−1| ≤ |G′| = p4. Thus, by Proposition 3.5, we may assume
that |K| ∈ {p2, p3}, and |L| ≤ p3. If |L| = 1 then cKK−1L = |K| by Lemma 2.1(iii). So we may assume that
|L| > 1. Then, by Lemma 2.3, Z := LL−1 ∩ Z(G) EG and ZL = L. Thus, by Lemma 2.4 and Proposition 3.8,
it suffices to show that Z 6= 1. Let t ∈ L. If |L| = p then |CG(t)| = p5 and G′ ⊆ CG(t). Thus t ∈ Z(G′) and
LL−1 = [G,Z(G′)], by Lemma 3.7. Hence Z 6= 1 in this case.

Suppose that |L| = p2. If G′ = CG(t) then t ∈ Z(G′) and L ⊆ Z(G′); however, this is impossible since
|Z(G′)| = p2. Thus G′ 6= CG(t) and 1 6= {[t, y] : y ∈ G′} ⊆ LL−1 ∩G′′ ⊆ LL−1 ∩ Z(G) = Z. Hence we are done
in this case. Finally, suppose that |L| = p3. Then Lemma 3.7 implies that LL−1 = K3(G). Hence Z 6= 1 also
in this case.

Thus it remains to deal with the case G′′ = 1.

Lemma 4.5. Let |G| = p6, let K,L ∈ Cl(G) be such that |K| = p2 and L ⊆ KK−1, and let x ∈ K. Suppose
that |KK−1 ∩ Z(G)| = p and CG(x) E G. Then cKK−1L is a power of p; in particular, (P3), (P2) and (P1)
hold.

Proof. Let g ∈ G be such that 1 6= [x, g] ∈ KK−1 ∩ Z(G). Then [x, gi] = [x, g]i ∈ KK−1 ∩ Z(G) for i ∈ Z. The
case gp /∈ CG(x) leads to the contradiction |KK−1 ∩ Z(G)| = p2. Thus gp ∈ CG(x) and |CG(x)〈g〉| = p5. Let
h ∈ G be such that G = CG(x)〈g, h〉. Then

xK−1 = {[x, higj ] : i, j = 0, . . . , p− 1}.

Let t ∈ L ∩ xK−1, and write t = [x, higj ] with i, j ∈ {0, . . . , p − 1}. Since CG(x) E G, we have CG(x) ⊆
CG(t) E G. Thus, by Lemma 2.1(ix), it suffices to prove that |L ∩ xK−1| ∈ {1, p}. We may therefore assume
that |L ∩ xK−1| 6= 1. Then i 6= 0; for otherwise t = [x, gj ] ∈ Z(G) and therefore |L ∩ xK−1| ≤ |L| = 1. We can
now replace h by higj and therefore assume that i = 1 and j = 0.

Let t 6= u ∈ L ∩ xK−1, and write u = [x, hkgl] with k, l ∈ {0, . . . , p − 1}. Then k 6= 0 since otherwise
u = [x, gl] ∈ Z(G) and |L| = 1. Since [x, g] ∈ Z(G), we get

u = [x, hkgl] = [x, hk]hk[x, gl]h−k = [x, hk][x, g]l.

We set G := G/Z(G), x := xZ(G), etc. Then t =G u implies that [x, h] = t =G u = [x, h
k
].

Assume that k 6= 1. Then Lemma 2.5 implies that h ∈ CG(x). Hence t = 1 and t ∈ Z(G), a contradiction.

Thus we must have k = 1. Then l 6= 0. Let y ∈ G be such that

yty−1 = u = [x, hgl] = [x, h][x, g]l = t[x, g]l.

Then, for m = 0, . . . , p− 1, we obtain

ymty−m = t[x, g]lm = [x, h][x, g]lm = [x, hglm] ∈ L ∩ xK−1.

This shows that L ∩ xK−1 = {[x, hgn] : n = 0, . . . , p − 1}, so that |L ∩ xK−1| = p, which remained to be
proved.

Lemma 4.6. Let |G| = p6, and let x ∈ K ∈ Cl(G) be such that |K| = p2, |KK−1| ≤ p3 and CG(x) E G.
Suppose that the following conditions are satisfied:

(i) KK−1 ∩ Z(G) = 1 and KK−1 ⊆ Z3(G);

(ii) 1 6= y ∈ KK−1 ∩ Z2(G) ⇒ |CG(y)| = p5.

Then cKK−1L is a power of p, for all L ∈ Cl(G) such that L ⊆ KK−1.
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Proof. Since x ∈ Z(CG(x)) E G, we have K ⊆ Z(CG(x)) and 〈K〉 ≤ Z(CG(x)). Thus p2 = |K| < |〈K〉| ≤
|Z(CG(x))|, so that |CG(x)/Z(CG(x))| ≤ p, and CG(x) is abelian.

Let L ∈ Cl(G) be such that L ⊆ KK−1, and let t ∈ L ∩ xK−1. Then CG(x) ⊆ CG(〈K〉) ⊆ CG(t) E G. Thus,
by Lemma 2.1(ix), it suffices to show that |L ∩ xK−1| is a power of p.

If KK−1 ⊆ Z2(G) then the result follows from Lemma 3.9 with n := 1, and if KK−1 ∩ Z2(G) = 1 then the
result follows from Lemma 3.9 with n := 2. Thus we may assume that

1 6= KK−1 ∩ Z2(G) 6= KK−1.

Hence there exists g ∈ G such that 1 6= [x, g] ∈ KK−1 ∩ Z2(G). For i ∈ N, we then have

[x, gi] = ([x, g]g)ig−i ≡ [x, g]i (mod Z(G)).

Thus [x, gi] ∈ Z2(G).

Assume that gp /∈ CG(x). Then xK−1 = {[x, gi] : i = 0, . . . , p2 − 1} ⊆ Z2(G) and therefore KK−1 ⊆ Z2(G), a

contradiction.

Hence gp ∈ CG(x) and |CG(x)〈g〉| = p5. Let h ∈ G be such that G = CG(x)〈g, h〉. Then

xK−1 = {[x, higj ] : i, j = 0, . . . , p− 1}.

Assume that [x, h] ∈ Z2(G). Then [x, higj ] = [x, hi]hi[x, gj ]h−i ≡ [x, h]i[x, g]j (mod Z(G)), so that [x, higj ] ∈ Z2(G) for

i, j ∈ N. Thus xK−1 ⊆ Z2(G) and KK−1 ⊆ Z2(G), a contradiction.

Thus [x, h] /∈ Z2(G). Since we can replace h by higj whenever p ∤ i we obtain:

xK−1 ∩ Z2(G) = {[x, gj ] : j = 0, . . . , p− 1}.

By Lemma 2.5, the elements [x, gj ] (j = 0, . . . , p− 1) are contained in p distinct conjugacy classes of G. If L is
one these conjugacy classes then certainly |L ∩ xK−1| = 1. Thus it remains to deal with the conjugacy classes
of G contained in KK−1 \ Z2(G).

Suppose that i, j, k, l ∈ {0, . . . , p− 1} are such that i 6= 0 6= k and [x, higj ] =G [x, hkgl]. Setting G := G/Z2(G),

x := xZ2(G), etc. we get [x, h
i
gj ] =G [x, h

k
gl]. But [x, h

i
gj ] = [x, h

i
]h
i
[x, gj ]h

−i
= [x, h

i
] and similarly

[x, h
k
gl] = [x, h

k
].

Assume that i 6= k. Then h ∈ CG(x) by Lemma 2.5. Thus [x, h] ∈ Z2(G), a contradiction.

This means that i = k. We have thus shown that |L∩xK−1| ≤ p for every L ∈ Cl(G) with L ⊆ KK−1 \Z2(G).
We distinguish two cases:

Case 1: g ∈ CG([x, g]), i. e. CG([x, g]) = CG(x)〈g〉.
Again, we distinguish between two cases:

Case 1.1: There are i, j ∈ {0, . . . , p− 1} with i 6= 0 such that the conjugacy class of [x, higj ] has length p. We
will show that |L ∩ xK−1| = 1 for every L ∈ Cl(G) with L ⊆ KK−1 in this case.

Since we can replace h by higj we may assume that i = 1 and j = 0. Let s ∈ G be such that CG([x, h]) =
CG(x)〈s〉.

Assume that s ∈ CG([x, g]). Then g ∈ CG([x, g]) = CG(x)〈s〉 = CG([x, h]). Since CG(x) and G/CG(x) are abelian we
conclude:

h[x, g]h−1 = hxh−1hgx−1g−1h−1 = (hxh−1)(ghx−1h−1g−1) = (ghx−1h−1g−1)(hxh−1)

= ghx−1h−1g−1[x, h]−1x = ghx−1h−1[x, h]−1g−1x = (gx−1g−1)x = x(gx−1g−1) = [x, g].

Thus h ∈ CG([x, g]), so that [x, g] ∈ Z(G), a contradiction.

Hence we must have s /∈ CG([x, g]).
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Next assume that there are k, l ∈ {0, . . . , p − 1} such that k 6= l and [x, hgk] =G [x, hgl]. Then there exist y ∈ G and
z ∈ Z(G) such that

y[x, h]y−1yh[x, gk]h−1y−1 = y[x, hgk]y−1 = [x, hgl] = [x, h]h[x, gl]h−1

and
y[x, h]y−1[x, g]k = [x, h][x, g]lz.

Thus y[x, h]y−1 = [x, h][x, g]l−kz. Since s ∈ CG([x, h]) = CG(y[x, h]y−1) we obtain the contradiction s ∈ CG([x, g]).

This shows that the elements [x, hgk] (k = 0, . . . , p − 1) lie in p distinct conjugacy classes of G. Moreover,
for i = 1, . . . , p − 1, we have [x, hi] = [x, h]h[x, hi−1]h−1. Since CG([x, h]) E G we obtain by induction that
CG([x, h]) = CG([x, hi]). So we can conclude, analogously, that, for fixed i, the elements [x, higk] (k = 0, . . . , p−
1) are contained in p distinct conjugacy classes of G. Thus, in this case, we indeed have |L ∩ xK−1| = 1 for
every L ∈ Cl(G) such that L ⊆ KK−1.

Case 1.2: All conjugacy classes of G contained in KK−1 \ Z2(G) have length p2.
Since |KK−1 \ Z2(G)| < p3 there are at most p − 1 such conjugacy classes. Thus, for i ∈ {1, . . . , p − 1}, the
elements [x, higk] (k = 0, . . . , p − 1) are all in the same conjugacy class of G. Thus, in this case, we have
|L ∩ xK−1| = p for each such conjugacy class L, which remained to be proved.

Case 2: g /∈ CG([x, g]).
In this case we may assume, choosing h appropriately, that CG([x, g]) = CG(x)〈h〉. Then a computation, similar
to the one in Case 1.1, shows that g[x, h]g−1 = . . . = [x, h]. Thus g ∈ CG([x, h]).

Assume that there are k, l ∈ {0, . . . , p−1} such that k 6= l and [x, hgk] =G [x, hgl]. Let y ∈ G be such that y[x, hgk]y−1 =
[x, hgl]. But y[x, hgk]y−1 = y[x, h]y−1yh[x, gk]h−1y−1 and [x, hgl] = [x, h]h[x, gl]h−1. Thus there is z ∈ Z(G) such that

y[x, h]y−1[x, g]k = [x, h][x, g]lz.

Hence y[x, h]y−1 = [x, h][x, g]l−kz. Since g ∈ CG([x, h]) = CG(y[x, h]y−1) this leads to the contradiction g ∈ CG([x, g]).

This shows that the elements [x, hgk] (k = 0, . . . , p−1) are contained in p distinct conjugacy classes of G. Since
we can replace h by hi, for each i ∈ {1, . . . , p − 1}, we also obtain that, for each i, the elements [x, higk] (k =
0, . . . , p− 1) are contained in p distinct conjugacy classes of G. Thus, in this case, we also have |L∩ xK−1| = 1
for every L ∈ Cl(G) such that L ⊆ KK−1. This finishes the proof of Lemma 4.6.

Now we deal with the case |G′| = p3.

Lemma 4.7. Let |G| = p6, and suppose that |G′| ≤ p3. Moreover, let K,L ∈ Cl(G) be such that L ⊆ KK−1.
Then cKK−1L is a power of p.

Proof. By Lemma 2.1(iv), we may assume that |K| < |KK−1| ≤ |G′| ≤ p3, so that |K| ≤ p2. Thus, by
Proposition 3.5, we may assume that |K| = p2 and |G′| = p3. By Lemma 4.3, G′ is abelian, and there exists
A ∈ SCN(G) such that G′ < A. Then Corollary 3.6 implies that |A| = p4. Let x ∈ K, so that |CG(x)| = p4.
Then Corollary 3.4 implies that ACG(x) < G, and Lemma 3.7 implies that x /∈ G′. Since KK−1 ⊆ G′, we must
have |L| ≤ p2. We distinguish two cases:

Case 1: G′ * CG(x).
Then x /∈ A, and p4 = |A| < |A〈x〉| ≤ |ACG(x)| ≤ p5. Thus M := A〈x〉 = ACG(x) ∈ Max(G), and |CA(x)| =
|A ∩ CG(x)| = p3. Setting H := {[x, a] : a ∈ A}, we have |H| = |A : CA(x)| = p and H ⊆ KK−1 ⊆ G′ ⊆ A.
It is easy to see that H ≤ G. Then H EM since xHx−1 = H. But M/H is abelian, so M ′ ⊆ H ⊆ M ′. Thus
H = M ′ EG, and H ⊆ Z(G).

By Lemma 2.1(iii), we may assume that |L| > 1. Suppose that |L| = p2. Since L ⊆ KK−1 ⊆ G′ Lemma 3.7
implies that LL−1 = K3(G). Thus Z := LL−1 ∩ Z(G) 6= 1, and ZL = L by Lemma 2.3. Hence by Lemma 2.4
and Proposition 3.8, cKK−1L is a power of p.

It remains to deal with the case |L| = p. Let t ∈ L ∩ xK−1, so that |CG(t)| = p5, and write t = [x, g] for some
g ∈ G.

Assume that CG(x) ⊆ CG(t). Since A ⊆ CG(G′) ⊆ CG(t) we get M = ACG(x) = CG(t). Then g /∈M , for otherwise t ∈

M ′ = H ⊆ Z(G). Thus G = M〈g〉 = CG(t)〈g〉. Since CG(x) ⊆ CG(t) = CG(xgx−1g−1) we get CG(x) ⊆ CG(gx−1g−1) =
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gCG(x−1)g−1 = gCG(x)g−1 and g ∈ NG(CG(x)). Since |CG(t) : CG(x)| = p we also have CG(t) ⊆ NG(CG(x)). We

conclude that G = CG(t)〈g〉 ⊆ NG(CG(x)), i. e. CG(x) E G and G′ ⊆ CG(x), a contradiction.

Thus we must have CG(x) * CG(t), so that G = CG(t)CG(x) and |CG(t) ∩ CG(x)| = p3. Hence |CG(t) :
CG(t) ∩ CG(x)| = p2. So cKK−1L = p2 by Lemma 2.1(i), (v). The result follows in this case.

Case 2: G′ ⊆ CG(x).
Then CG(x) = G′〈x〉 is abelian and normal in G. If |KK−1 ∩ Z(G)| = p2 then Lemma 2.1(vi), (vii) imply the
result, and if |KK−1 ∩ Z(G)| = p then Lemma 4.5 implies the result.

Thus we are left with the case |KK−1 ∩ Z(G)| = 1. Since |G′| = p3 we have cl(G) ≤ 4. Hence KK−1 ⊆ G′ ⊆
Z3(G). If KK−1 ⊆ Z2(G) or |KK−1 ∩ Z2(G)| = 1 then the result follows from Lemma 3.9. Thus we may
assume that 1 6= KK−1∩Z2(G) 6= KK−1. Hence |G′∩Z2(G)| ∈ {p, p2}. Since G/CG(G′∩Z2(G)) is isomorphic
to a p-subgroup of Aut(G′ ∩ Z2(G)) we conclude that |G/CG(G′ ∩ Z2(G))| ≤ p. In particular, |CG(y)| = p5

whenever 1 6= y ∈ KK−1 ∩ Z2(G) ⊆ G′ ∩ Z2(G). The result now follows from Lemma 4.6.

It remains to deal with the case where G′ is abelian of order p4. We distinguish the cases |K| 6= p3 and
|K| = p3.

Lemma 4.8. Let |G| = p6, and suppose that |G′| = p4 and G′′ = 1. Moreover, let K,L ∈ Cl(G) be such that
|K| 6= p3 and L ⊆ KK−1. Then cKK−1L is a power of p.

Proof. By Proposition 3.5 and Lemma 2.1(iv), we may assume that p2 = |K| < |KK−1|. Also, we may assume
that |KK−1 ∩ Z(G)| < |K|, by Lemma 2.1(vi), (vii). Thus |KK−1 ∩ Z(G)| ∈ {1, p} by Lemma 2.3. Let x ∈ K,
let t ∈ L∩ xK−1, and let g ∈ G be such that t = [x, g]. Since G′ ⊆ CG(t) we must have |L| ≤ p2. Corollary 3.6
implies that G′ = Φ(G) ∈ SCN(G). We distinguish two cases:

Case 1: x /∈ G′.
Then M := G′〈x〉 = G′ CG(x) ∈ Max(G) by Corollary 3.4, and H := {[x, y] : y ∈ G′} ⊆ KK−1 ⊆ G′. It is easy
to see that H ≤ G, and |H| = |G′ : CG′(x)| = p. Since xHx−1 = H we have H EM . But M/H is abelian, so
that M ′ ⊆ H ⊆M ′, and we see that H = M ′ EG. Thus H ⊆ KK−1 ∩ Z(G). Since |H| = p ≥ |KK−1 ∩ Z(G)|
we conclude that H = KK−1 ∩ Z(G). In particular, KK−1 contains exactly p conjugacy classes of G of length
1. If L is one of these then the result follows from Lemma 2.1(iii).

Assume that |L| = p, so that |CG(t)| = p5. We must have g /∈ M ; for otherwise t ∈ M ′ = H ⊆ Z(G). Thus

G = M〈g〉 = G′〈x, g〉 = Φ(G)〈x, g〉 = 〈x, g〉. Since [x, g] = t ∈ Z(CG(t)) we conclude that G/Z(CG(t)) is abelian. Hence

G′ ⊆ Z(CG(t)). Since |G′| = p4 this implies that CG(t) is abelian, and we have a contradiction to Corollary 3.6.

This means that KK−1 does not contain conjugacy classes of G of length p. Let l denote the number of
conjugacy classes of G of length p2 contained in KK−1. Then Theorem A in [2] implies that p + l = η(K) ≥
2(p− 1) + 1 = 2p− 1, so that l ≥ p− 1. Suppose now that |L| = p2. Then CG(t) = G′ since t ∈ G′. Moreover,
Lemma 2.1(v) implies that cKK−1L ≥ |G′ : CG′(x)| = p. The augmentation map ǫ gives

p4 = |K| · |K−1| = ǫ(K+)ǫ((K−1)+) = ǫ(K+(K−1)+)

=
∑

J∈Cl(G)

cKK−1J |J | ≥ |KK−1 ∩ Z(G)| · |K| + lp3 ≥ p4.

Hence l = p− 1 and cKK−1L = p, and the result follows in this case.

Case 2: x ∈ G′.
Then G′ = CG(x) and KK−1 = {axa−1 · bx−1b−1 : a, b ∈ G} = {a[x, a−1b]a−1 : a, b ∈ G} ⊆ K3(G) < G′.
Hence p4 = |G′| > |K3(G)| ≥ |KK−1| > p2, so that |K3(G)| = p3. If |KK−1 ∩Z(G)| = p then the result follows
from Lemma 4.5. Thus we may assume that KK−1 ∩ Z(G) = 1. If cl(G) ≤ 4 then KK−1 ⊆ K3(G) ⊆ Z2(G).
In this case the result follows from Lemma 3.9. Hence we may assume that G has maximal class. Then
KK−1 ⊆ K3(G) = Z3(G), and |Z(G)| = p. If 1 6= y ∈ KK−1 ∩ Z2(G) then hyh−1 ∈ y Z(G) for h ∈ G, so
|CG(y)| = p5. Now the result follows from Lemma 4.6.

Now it remains to handle the case where |K| = p3 and G′ is abelian of order p4.

Theorem 4.9. Let |G| = p6, and let K,L ∈ Cl(G) be such that L ⊆ KK−1. Then cKK−1L is a power of p.
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Proof. By the preceding results, we may assume that |G′| = p4, G′′ = 1 and |K| = p3. By Lemma 2.1(iv), we
may assume that |KK−1| > p3. Let x ∈ K, let t ∈ L ∩ xK−1, and let g ∈ G be such that t = [x, g] ∈ G′.
Then G′ ⊆ CG(t), so that |L| ≤ p2. Corollary 3.6 implies that G′ = Φ(G) ∈ SCN(G). Moreover, Lemma 3.7
implies that x /∈ G′. Thus M := G′〈x〉 = G′ CG(x) ∈ Max(G) by Corollary 3.4. Furthermore, H := {[x, y] : y ∈
G′} ⊆ KK−1 ⊆ G′ and |H| = |G′ : CG′(x)| = p2. As before, we have H ≤ G. Also, H EM since xHx−1 = H.
Since M/H is abelian, we get M ′ ⊆ H ⊆ M ′, so that H = M ′ E G and 1 6= H ∩ Z(G) ⊆ KK−1 ∩ Z(G). Let
y ∈ KK−1 ∩ Z(G). Then there is h ∈ G such that y = [x, h].

Assume that h /∈ M . Then G = M〈h〉 = G′〈x, h〉 = Φ(G)〈x, h〉 = 〈x, h〉. Since [x, h] = y ∈ Z(G) this implies that

G/Z(G) is abelian. Thus cl(G) ≤ 2 which contradicts Corollary 3.3.

Hence h ∈M and y ∈M ′ ∩Z(G) = H ∩Z(G). This shows that H ∩Z(G) = KK−1 ∩Z(G). We distinguish two
cases:

Case 1: |KK−1 ∩ Z(G)| = p2.
In this case we have KK−1 ∩ Z(G) = H, and KK−1 contains exactly p2 conjugacy classes of G of length 1.
By Lemma 2.1(iii), we may assume that |L| > 1. Then g /∈ M ; for otherwise t ∈ M ′ = H ⊆ Z(G). Thus
G = M〈g〉 = G′〈x, g〉 = Φ(G)〈x, g〉 = 〈x, g〉.

Assume that |L| = p, so that |CG(t)| = p5. Then [x, g] = t ∈ Z(CG(t)) EG, so we conclude that G/Z(CG(t)) is abelian.

Hence G′ ⊆ Z(CG(t)). Since |G′| = p4 this means that CG(t) is abelian. However, this contradicts Corollary 3.6.

This shows that KK−1 does not contain conjugacy classes of G of length p. Suppose that |L| = p2. Since
t ∈ G′ we conclude that CG(t) = G′. We determine |L ∩ xK−1|. Note that CG(x) E M since M ′ = H ⊆
Z(G) ⊆ CG(x). Also, we have x /∈ G′ = CG(t) = CG([x, g]), so we conclude that CG(x) 6= CG(gxg−1)
and CG(x) ∩ CG(gxg−1) = Z(G). Furthermore, CG(x)CG(gxg−1) ∈ Max(M). Let a ∈ CG(x) be such that
CG(x)CG(gxg−1) = CG(gxg−1)〈a〉, and let b ∈ G′ be such that M = CG(x)CG(gxg−1)〈b〉. Since G = M〈g〉
we conclude that

K = {gibjak(gxg−1)a−kb−jg−i : i, j, k = 0, . . . , p− 1}.

Note that [x, akg] = ak[x, g]a−k = akta−k ∈ L∩xK−1 for k = 0, . . . , p−1. Suppose now that also [x, bjakg] ∈ L
for some j, k ∈ {0, . . . , p − 1} such that j 6= 0. Since we may replace b by bj we may assume that j = 1. Note
that c := bakb−1 ∈ bCG(x)b−1 = CG(x). Since [x, bakg] = [x, cbg] = c[x, bg]c−1 we then also have [x, bg] ∈ L.
Let y ∈ G be such that

yty−1 = [x, bg] = [x, b][x, g] = [x, b]t.

Since [x, b] ∈ H ⊆ Z(G) we conclude that

ylty−l = yl−1[x, b]ty1−l = [x, b]yl−1ty1−l = . . . = [x, b]lt = [x, bl][x, g] = [x, blg],

for l = 0, . . . , p − 1. Thus [x, amblg] = am[x, blg]a−m = amylty−la−m ∈ L for l,m = 0, . . . , p − 1. Since
CG(gxg−1) EM these are precisely the elements [x, blamg] (l,m = 0, . . . , p− 1). Hence L = {[x, blamg] : l,m =
0, . . . , p− 1}.

Assume that [x, gibjakg] ∈ L for some i, j, k ∈ {0, . . . , p − 1} such that i 6= 0. Note that y := gibjakg−i ∈ M , and
[x, gibjakg] = [x, ygi+1]. Thus there is z ∈ G such that

ztz−1 = [x, ygi+1] = [x, y]y[x, gi+1]y−1 ≡ y[x, gi+1]y−1 (mod Z(G))

since [x, y] ∈M ′ = H ⊆ Z(G). We set G := G/Z(G), g := g Z(G), etc. Then [x, g] =G [x, gi+1]. Thus Lemma 2.5 implies

that g ∈ CG(x). This leads to the contradiction t = [x, g] ∈ Z(G).

This shows that [x, gibjakg] /∈ L for all i, j, k ∈ {0, . . . , p − 1} such that i 6= 0. So we have proved that
|L ∩ xK−1| ∈ {p, p2} in this case. However, we cannot apply Lemma 2.1(ix) here since CG(x) * G′ = CG(t).
But Lemma 2.1(v) implies that cKK−1L ≥ |G′ : CG′(x)| = p2. If |L ∩ xK−1| = p2 then L ⊆ xK−1, and the
result follows from Lemma 2.1(ii).

Thus we may assume that |L ∩ xK−1| = p. Let h1, h2 ∈ G be such that t = h1xh
−1
1 · h2x

−1h−1
2 . Then there is

i ∈ {0, . . . , p− 1} such that h−1
1 th1 = xh−1

1 h2x
−1h−1

2 h1 = aita−i. Thus h1a
i ∈ CG(t) = G′ and h1 ∈ M . Since

|M : CG(x)| = p2 this implies that cKK−1L ≤ p2. Hence cKK−1L = p2, and the result follows in this case.

Case 2: |KK−1 ∩ Z(G)| = p.
In this case KK−1 contains exactly p conjugacy classes of G of length 1. If L is one of these then we have
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cKK−1L = |K| by Lemma 2.1(iii). Thus we may assume that |L| > 1. Let us consider next the case |L| = p,
i. e. |CG(t)| = p5.

Assume that g /∈ M . Then G = M〈g〉 = G′〈x, g〉 = Φ(G)〈x, g〉 = 〈x, g〉 and [x, g] = t ∈ Z(CG(t)). Thus G/Z(CG(t)) is

abelian and G′ ⊆ Z(CG(t)). Since |G′| = p4 this means that CG(t) is abelian. However, this contradicts Corollary 3.6.

Thus g ∈ M and t = [x, g] ∈ M ′ = H. Then L ⊆ H ⊆ xK−1, and Lemma 2.1(ii) implies that cKK−1L = |K|.
It is clear that H contains exactly p− 1 conjugacy classes of G of length p.

It remains to consider the case |L| = p2. Then g /∈ M ; for otherwise t = [x, g] ∈ M ′ = H and L ⊆ H, which is
impossible. Thus G = M〈g〉 and CG(t) = G′ since t ∈ G′. It is easy to see that

B := {h ∈ G′ : [x, h] ∈ Z(G)} ≤ G′.

Moreover, |B ∩ CG(x)| = |G′ ∩ CG(x)| = p2 and |B| = p3. We claim that B EG.

Indeed, if y ∈ B and z ∈ G then

[x, zyz−1] = [x, z]z[x, yz−1]z−1 = [x, z]z[x, y]y[x, z−1]y−1z−1 = [x, z][x, y]z[x, z−1]z−1

= [x, z]z[x, z−1]z−1[x, y] = [x, y] ∈ Z(G),

so zyz−1 ∈ B.

In particular, we have BCG(gxg−1) ∈ Max(M).

Assume that CG(x) ⊆ BCG(gxg−1). Then BCG(gxg−1) = BCG(x) and g ∈ NG(BCG(x)). Since also M ⊆

NG(BCG(x)) we conclude that BCG(x) E G. Thus G′ = BCG(x) and x ∈ G′, a contradiction.

Hence CG(x) * B CG(gxg−1) and M = CG(x)B CG(gxg−1). Let B CG(gxg−1) = 〈b〉CG(gxg−1) with b ∈ B,
and let a ∈ CG(x) be such that M = 〈a〉B CG(gxg−1). Then

K := {giajbk(gxg−1)b−ka−jg−i : i, j, k = 0, . . . , p− 1}.

Note that [x, ajg] = aj [x, g]a−j = ajta−j ∈ L for j = 0, . . . , p− 1.

Assume that [x, giajbkg] ∈ L for some i, j, k ∈ {0, . . . , p − 1} such that i 6= 0. Then y := giajbkg−i ∈ M . Let z ∈ G be
such that

ztz−1 = [x, giajbkg] = [x, ygi+1] = [x, y]y[x, gi+1]y−1.

Since [x, y] ∈ M ′ = H this implies that z[x, g]z−1 = ztz−1 ≡ y[x, gi+1]y−1 (mod H). We set G := G/H, g := gH, etc.

Then [x, g] =G [x, gi+1]. Thus Lemma 2.5 implies that g ∈ CG(x) and t = [x, g] ∈ H. So we have the contradiction

L ⊆ H.

This shows that [x, giajbkg] /∈ L for all i, j, k ∈ {0, . . . , p − 1} such that i 6= 0. Let us consider the case where
[x, ajbkg] ∈ L for some j, k ∈ {0, . . . , p− 1} such that k 6= 0. Since we may replace b by bk we may assume that
k = 1. Then also [x, bg] ∈ L. Let y ∈ G be such that

yty−1 = [x, bg] = [x, b]b[x, g]b−1 = [x, b]t.

Since [x, b] ∈ Z(G) we conclude that, for l = 0, . . . , p− 1, we have

ylty−l = [x, b]yl−1ty1−l = . . . = [x, b]lt = [x, blg].

Thus L = {[x, amblg] : l,m = 0, . . . , p− 1} ⊆ xK−1 in this case, and Lemma 2.1(ii) implies cKK−1L = |K|.

It remains to consider the case

L ∩ xK−1 = {[x, ajg] : j = 0, . . . , p− 1}.

Lemma 2.1(v) implies that cKK−1L ≥ |G′ : CG′(x)| = p2. On the other hand, let h1, h2 ∈ G be such that
t = h1xh

−1
1 · h2x

−1h−1
2 . Then h−1

1 th1 = x · h−1
1 h2x

−1h−1
2 h1 ∈ L ∩ xK−1, so h−1

1 th1 = ajta−j for some
j ∈ {0, . . . , p− 1}. Thus h1a

j ∈ CG(t) = G′ and h1 ∈ M . Since |M : CG(x)| = p2 we get cKK−1L ≤ p2 in this
case, so that cKK−1L = p2. The theorem is now proved in all cases.
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It can be shown that (P3) does not hold, in general, for groups of order p7. Indeed, the following GAP code
gives a group G of order 37 with conjugacy classes K of length 33 and L of length 3 such that cKK−1L = 18 6≡ 1
(mod 2):

G:=PcGroupCode(32162330624780229618657386444736,3^7);

CC:=ConjugacyClasses(G);

K:=CC[24];

L:=CC[6];

x:=Representative(L);

product:=function(x,y) return x*y^-1; end;

Size(Filtered(ListX(K,K,product),y->y=x)); # = c_{KK^{-1}L}

Although (P3) certainly holds for finite 2-groups, it is not true, in general, that the relevant class multiplication
constants cKK−1L are always powers of 2. Indeed, the group SmallGroup(2^8,503) of order 28 in the “Small
Group Library” gives a counterexample.

5 Conjugacy classes of metacyclic p-groups

The purpose of this section is to show that (P3) holds for metacyclic p-groups. We start with an elementary
observation.

Lemma 5.1. Let G be a metacyclic p-group where p is an odd prime. More precisely, let G = AB where
A = 〈a〉 EG and B = 〈b〉 ≤ G. Then

G′ = {[ai, b] : i ∈ Z} = {[a, bi] : i ∈ Z}

and |A : CA(B)| = |B : CB(A)|.

Proof. Since G/A is cyclic, we have N := {[ai, b] : i ∈ Z} ⊆ G′ ⊆ A. Thus [ai, b] = [a, b]i for i ∈ Z, so that
N = 〈[a, b]〉 ≤ A. Since N is characteristic in A, we have N E G. But G/N is abelian, so G′ ⊆ N ⊆ G′, i. e.
G′ = N .

We know that M := {[a, bi] : i ∈ Z} ⊆ G′ = N and that |M | = |B : CB(A)| = ps for some s ∈ N0. Let |A| = pn

where n ∈ N, so that |Aut(A)| = pn−1(p − 1). Since p is odd, Aut(A) is cyclic, and its Sylow p-subgroup P

is generated by the automorphism α of A satisfying α(a) = a1+p. Every subgroup of P has the form 〈αp
t

〉 for
some t ∈ {0, . . . , n− 1}. Replacing b by a suitable power we may assume that

bab−1 = αp
t

(a) = a(1+p)pt

for some t ∈ {0, . . . , n− 1}.

Since |B : CB(A)| = ps we have

a = bp
s

ab−p
s

= a(1+p)ps+t

.

Thus (1 + p)p
s+t

≡ 1 (mod pn). This implies that s + t ≥ n − 1. On the other hand, we have (1 + p)p
t

≡ 1

(mod pt+1), so we can write (1 + p)p
t

= 1 + kpt+1 with k ∈ Z. Then

bap
s

b−1 = ap
s(1+p)pt

= ap
s(1+kpt+1) = ap

s+kps+t+1

= ap
s

.

Thus |G′| = |N | = |A : CA(B)| ≤ ps = |M | and therefore M = G′. Hence |A : CA(B)| = |B : CB(A)|.

The dihedral group of order 16 shows that the hypothesis p 6= 2 is necessary.

Proposition 5.2. Let G be a metacyclic p-group where p is an odd prime. Moreover, let K,L ∈ Cl(G) be such
that L ⊆ KK−1. Then cKK−1L = |K|; in particular, (P3), (P2) and (P1) are satisfied.
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Proof. Let A = 〈a〉 and B = 〈b〉 as in Lemma 5.1. Moreover, let x ∈ K, and let s, t ∈ Z be such that x = bsat.
Then the elements in K have the form

aibjxb−ja−i = x(a−tb−saibjbsatb−ja−i) = x(a−t · b−saibs · bjatb−j · a−i)

= x(a−t · bjatb−j · b−saibs · a−i) = x[a−t, bj ][b−s, ai]

with i, j ∈ Z. Since U := 〈at〉B and V := A〈bs〉 are also metacyclic, we have

U ′ = {[a−t, bj ] : j ∈ Z} and V ′ = {[ai, b−s] : i ∈ Z},

by Lemma 5.1. Since U ′ ≤ A and V ′ ≤ A, we have U ′ E G and V ′ E G, so that N := U ′V ′ E G. Thus
K = xN and KK−1 = Nxx−1N = N . This implies that |KK−1| = |N | = |K|, and the result follows from
Lemma 2.1(iv).

Also in this case the dihedral group of order 16 shows that the hypothesis p 6= 2 is necessary.

6 Elementary abelian normal subgroups with cyclic quotients

In this section we fix a prime number p > 2 and a finite p-group G containing an elementary abelian normal
subgroup A such that G/A is cyclic. We are going to prove that (P1) and (P2) hold for G. We start with the
following elementary observation.

Lemma 6.1. In the situation above, let g ∈ G be such that G = A〈g〉, and suppose that gp = 1. Moreover, let
a ∈ A and i, j ∈ Z be such that [a, gi] =G [a, gj ]. Then [a, gi] = [a, gj ].

Proof. Assume that [a, gi] 6= [a, gj ]. Then gi 6= gj , so that i 6≡ j (mod p). But now Lemma 2.5 gives a
contradiction.

Next we extend the result above.

Lemma 6.2. In the situation above, let g ∈ G be such that G = A〈g〉. Moreover, let a ∈ A and i, j ∈ Z be such
that [a, gi] =G [a, gj ]. Then [a, gi] = [a, gj ].

Proof. It is clear that we can replace G by the semidirect product of A and 〈g〉. In other words, we may assume
that A ∩ 〈g〉 = 1. With this additional condition, let G be a minimal counterexample. Then 〈g〉 acts faithfully
on A. Moreover, we have G = 〈a, g〉 and A = 〈gkag−k : k ∈ Z〉. Moreover, we can write [a, gj ] = gs[a, gi]g−s

with s ∈ Z. Let Z be a minimal normal subgroup of G, so that Z ⊆ A. Then G := G/Z, A := A/Z, g := gZ
and a := aZ also satisfy the hypothesis of Lemma 6.2. Thus [a, gi] = [a, gj ] by minimality, and gi−j ∈ CG(a).
Thus gi−j ∈ Z(G) since G = 〈a, g〉. Also, [a, gi−j ] ∈ Z ⊆ Z(G) implies that [a, (gi−j)p] = [a, gi−j ]p = 1,
so g(i−j)p ∈ CG(a). Thus g(i−j)p ∈ Z(G) since G = 〈a, g〉. Since 〈g〉 acts faithfully on A we conclude that
g(i−j)p = 1. Let pm := |〈g〉|. Then m ≥ 2 by Lemma 6.1, and i ≡ j (mod pm−1); in particular, 〈gi〉 = 〈gj〉. If G
contains distinct minimal normal subgroups Z1, Z2 then the argument above shows that [a, gi−j ] ∈ Z1∩Z2 = 1,
so gi−j ∈ CG(a) and [a, gi] = [a, gj ]. Thus the result is proved in this case. Hence we may assume that Z is the
only minimal normal subgroup of G. We distinguish between two cases:

Case 1: i ≡ 0 (mod p).
Then j ≡ i ≡ 0 (mod p). If s ≡ 0 (mod p) as well then H := A〈gp〉 also satisfies the hypothesis of Lemma 6.2.
By minimality, this implies that [a, gi] = [a, gj ]. Thus we may assume that s 6≡ 0 (mod p). Then we can replace
g by gs and assume that [a, gj ] = g[a, gi]g−1. Thus g centralizes [a, gi]. Hence g normalizes 〈[a, gi], Z〉 and
centralizes both Z and 〈[a, gi], Z〉/Z. Therefore gp centralizes 〈[a, gi], Z〉; in particular, gi centralizes [a, gi].
Since 〈gi〉 = 〈gj〉 there is k ∈ Z such that gj = (gi)k. Then g[a, gi]g−1 = [a, gik] = [a, gi]k, so g normalizes
〈[a, gi]〉. Thus 〈[a, gi]〉 EG, so 〈[a, gi]〉 ⊆ Z ⊆ Z(G), and [a, gj ] = g[a, gi]g−1 = [a, gi].

Case 2: i 6≡ 0 (mod p).
In this case we may replace g by gi and assume that i = 1. The map f : A→ A, b 7→ [b, g], is a homomorphism;
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in particular, f(A) = {[b, g] : b ∈ A} ≤ A. Moreover, f(A) EG and G/f(A) is abelian. Thus G′ ≤ f(A) ≤ G′,
so that

G′ = f(A) = 〈f(gkag−k) : k ∈ Z〉 = 〈[gkag−k, g] : k ∈ Z〉.

We know that [a, g] ∈ CG(gs). Thus [gkag−k, g] = gk[a, g]g−k ∈ CG(gs) for k ∈ Z. We conclude that

G
′
⊆ CG(gs) and set H := G′〈gs〉. Then H := HZ/Z is an abelian normal subgroup of G. Thus H ′ ⊆

Z ⊆ Z(G). Since p is odd, H is a regular p-group. Hence (xy)p = xpyp for x, y ∈ H, by Satz III.10.8 in
[9]. In particular, we have ℧1(H) = 〈gsp〉. Since Z * ℧1(H) E G we must have 1 = ℧1(H) = 〈gsp〉. Thus

gs ∈ 〈gp
m−1

〉 = 〈gi−j〉 ∈ CG(A). Hence we can write gsag−s = az with z ∈ Z. We conclude:

[a, gj ] = gs[a, g]g−s = [gsag−s, g] = [az, g] = [a, g],

and the proof is complete.

Lemma 6.3. In the situation above, let K,L ∈ Cl(G) be such that K ⊆ A and L ⊆ KK−1. Then cKK−1L = |K|
|L| ;

in particular, (P3), (P2) and (P1) hold.

Proof. Let x ∈ K. Then Lemma 6.2 shows that

η(K) ≥ |{[x, gi] : i ∈ Z}| = |G : CG(x)| = |K|.

Thus Lemma 2.1(vi) implies that η(K) = |K|, and cKK−1L = |K|
|L| by Lemma 2.1(vii).

Proposition 6.4. Let G be a finite p-group where p is an odd prime, and let A be an elementary abelian normal
subgroup of G such that G/A is cyclic. Then |KK−1| ≡ 1 (mod p− 1) for K ∈ Cl(G).

Proof. Let g ∈ G be such that G = A〈g〉, and let x = ags ∈ K where a ∈ A and s ∈ Z. Then KK−1 consists
of the conjugates of the elements

[ags, bgi] = agsbgig−sa−1g−ib−1 = a · gsbg−s · gia−1g−i · b−1

= agia−1g−i · gsbg−sb−1 = [a, gi][gs, b]

(b ∈ A, i ∈ Z). The map f : A→ A, b 7→ [gs, b], is a homomorphism; in particular,

N := f(A) = {[gs, b] : b ∈ A} ≤ A.

Clearly, N E G. The equation above shows that {[ags, bgi] : b ∈ A, i ∈ Z} is a union of complete cosets of N

in G. Thus KK−1 is a union of complete cosets of N in G. Hence Lemma 2.2 implies that |KK−1| ≡ |KK
−1

|
(mod p − 1) where K ∈ Cl(G) denotes the image of K in G := G/N . Therefore it suffices to show that

|KK
−1

| ≡ 1 (mod p − 1). Note that G also satisfies the hypothesis of the proposition. So we may replace G
by G. Then gs centralizes A, so gs ∈ Z(G). Hence K = Lgs where L is the conjugacy class of a in G, and
KK−1 = LL−1. Thus we may also replace K by L. But then the result follows from Lemma 6.3.

7 Elementary results on characters

In the following, let p be a prime, and let G be a finite p-group. Our first result is analogous to Lemma 2.3.

Lemma 7.1. Let χ ∈ Irr(G). Then Λ := Irr(χχ) ∩ Ĝ is a subgroup of Ĝ. Furthermore, Λ acts on Irr(G) by
multiplication, and we have (χχ|λψ)G = (χχ|ψ)G for λ ∈ Λ and ψ ∈ Irr(G).

Proof. If λ ∈ Ĝ then χλ ∈ Irr(G), and (χχ|λ)G = (χ|χλ)G ∈ {0, 1}. Moreover, we have (χχ|λ)G 6= 0 if and only

if χλ = χ. Thus Λ is the stabilizer of χ in Ĝ, under the action of Ĝ on Irr(G) by multiplication. In particular,

Λ is a subgroup of Ĝ. If λ ∈ Λ and ψ ∈ Irr(G) then

(χχ|λψ)G = (χ|χλψ)G = (χ|χψ)G = (χχ|ψ)G.
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It is clear that (Q1) and (Q2) hold for p = 2. It is also easy to see that (Q1) holds whenever p = 3:

Lemma 7.2. Suppose that p 6= 2. Then | Irr(χχ)| is odd for χ ∈ Irr(G); in particular, (Q1) holds for p = 3.

Proof. For ψ ∈ Irr(G), we have

(χχ|ψ)G = (χχ|ψ)G = (χχ|ψ)G = (χχ|ψ)G.

Since the trivial character of G is the only real-valued irreducible character of G the elements in Irr(χχ) \ {1G}
come in pairs of the form (ψ,ψ). The result follows since certainly 1G ∈ Irr(χχ).

Our next result is an easy observation.

Lemma 7.3. Let χ, ψ ∈ Irr(G). Then (χχ|ψ)G ≤ ψ(1).

Proof. Since (χχ|ψ)G = (χ|χψ)G is the multiplicity of χ in χψ we have χ(1)ψ(1) ≥ (χχ|ψ)Gχ(1), and the result
follows.

The next result comes from the paper [1] by Adan-Bante.

Lemma 7.4. Let χ ∈ Irr(G) be such that χ(1) ∈ {1, p}. Then (χχ|ψ)G = 1 for ψ ∈ Irr(χχ).

Proof. The case χ(1) = 1 is trivial, and the case χ(1) = p is a consequence of Lemma 5.1 in [1].

As an application of Lemma 7.4, we obtain:

Corollary 7.5. Suppose that G contains an abelian subgroup A of index p. Then (χχ|ψ)G = 1 for ψ ∈ Irr(χχ).

Proof. This follows from Lemma 7.4 since χ(1) ≤ |G : A| = p by Problem 2.9 in [11].

We now turn our attention to irreducible characters of “large” degree.

Lemma 7.6. Let χ ∈ Irr(G) be such that χ(1)2 = |G : Z(χ)|. Then (χχ|ψ)G = ψ(1) is a power of p, for
ψ ∈ Irr(χχ). Thus (Q2) holds, in particular, if |G| = p2n+1 and χ(1) = pn for some n ∈ N.

Proof. By Corollary 2.30 in [11], χ vanishes on G\Z(χ). Moreover, by Lemma 2.27 in [11], there is ζ ∈ Irr(Z(χ))
such that ζ(1) = 1 and χZ(χ) = χ(1)ζ. Thus χχ is the regular character of G/Z(χ), viewed as a character of G.
Hence

χχ =
∑

φ∈Irr(G/Z(χ))

φ(1)φ,

and (χχ|ψ)G = ψ(1) for ψ ∈ Irr(χχ) = Irr(G/Z(χ)). Suppose that |G| = p2n+1 and χ(1) = pn for some n ∈ N.
Since

p2n = χ(1)2 ≤ |G : Z(χ)| ≤ |G : Z(G)| ≤ p2n

we conclude that |Z(G)| = p and χ(1)2 = |G : Z(χ)|. Then the result follows from the first part of the proof.

The preceding results allow to deal with the groups of order pn, for n = 0, 1, . . . , 5.

Proposition 7.7. Suppose that |G| ≤ p5. Then (χχ|ψ)G is a power of p, for χ ∈ Irr(G) and ψ ∈ Irr(χχ).

Proof. Since χ(1)2 ≤ |G : Z(χ)| ≤ |G : Z(G)| ≤ p4, we must have χ(1) ≤ p2. If χ(1) = p2 then |G : Z(G)| = p4,
and therefore |G| = p5. Hence the result follows from Lemma 7.6 in this case. On the other hand, if χ(1) < p2

then Lemma 7.4 implies the result.

We will deal with the groups of order p6 in the next section. Another consequence of Lemma 7.6 is the following
result:

Proposition 7.8. Let χ ∈ Irr(G) be such that G′ ⊆ Z(χ). Then (χχ|ψ)G = ψ(1) for ψ ∈ Irr(χχ). In particular,
(Q2) holds for finite p-groups of nilpotency class 2.

Proof. Theorem 2.31 in [11] implies that χ(1)2 = |G : Z(χ)|. Thus the result follows from Lemma 7.6.
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8 Characters of groups of order p
6

In this section we show that (Q1) and (Q2) hold for groups of order p6 where p is a prime.

Proposition 8.1. Let p be a prime, let G be a group of order p6, and let χ ∈ Irr(G). Then (χχ|ψ)G is a power
of p, for ψ ∈ Irr(χχ); in particular, (Q1) and (Q2) hold.

Proof. By Proposition 7.8, we may assume that cl(G) > 2. By Proposition 7.7, we may assume that χ is faithful.
By Lemma 7.4, we may also assume that χ(1) = p2. Let A ∈ SCN(G). Then |A| ≥ p3 since G/A = G/CG(A)
is isomorphic to a p-subgroup of Aut(A). On the other hand, p2 = χ(1) ≤ |G : A| by Problem 2.9 in [11]. Thus
|A| ∈ {p3, p4}, and we distinguish the corresponding cases.

Case 1: |A| = p4.
Let λ ∈ Irr(χA). Then λ(1) = 1 and 0 6= (χA|λ)A = (χ|λG)G, by Frobenius reciprocity. Since χ(1) = p2 = λG(1)
we conclude that λG = χ ∈ Irr(G). Hence IG(λ) = A by Theorem 17.4 in [10]. Let Λ denote the orbit of λ, in
the action of G on Irr(A) by conjugation, and let Λ+ denote the sum of the elements in Λ. Then χA = Λ+, and
ψA = peΨ+ where Ψ is another G-orbit on Irr(A), and e ∈ N0. Since

χχ = χλ
G

= (χAλ)G = (Λ+λ)G

we obtain, by Frobenius reciprocity:

(χχ|ψ)G = ((Λ+λ)G|ψ)G = (Λ+λ|ψA)A = pe(Λ+λ|Ψ+)A = pe|{λ′ ∈ Λ : λ′λ ∈ Ψ}|

=
pe

|Λ|
|{(λ1, λ2) ∈ Λ2 : λ1λ2 ∈ Ψ}| = pe

|Ψ|

|Λ|
cΛΛ−1Ψ

where cΛΛ−1Ψ denotes a class multiplication constant of the semidirect product Â⋊ (G/A). Thus Theorem 4.9
implies that cΛΛ−1Ψ is a power of p, and we are done in this case.

Case 2: |A| = p3.
By Case 1, we may assume that there is no B ∈ SCN(G) such that |B| = p4. We are going to show that G has
maximal class, and that G is an exceptional group, in the sense of Definition III.14.5 of [9].

Assume first that G′ is abelian. Then we may assume that G′ ⊆ A. Thus G/A = G/CG(A) is isomorphic to an abelian

p-subgroup of Aut(A). Since |G/A| = p3, A cannot be cyclic. By Lemma 4.1, A cannot be elementary abelian, and by

Lemma 4.2, A cannot be isomorphic to Z/p2Z × Z/pZ. Thus we have a contradiction in this case.

Hence G′ is nonabelian. Then Hilfssatz III.7.10 in [9] implies:

|G′| ≥ p4, |Z(G′)| ≥ p2, |G′/G′′| ≥ p3.

This means that |G′| = p4, |G′′| = p, G′ = Φ(G) and |Z(G′)| = p2. We claim that A ⊆ G′ = Φ(G).

Indeed, otherwise |G/AΦ(G)| ≤ p, and G = 〈g〉AΦ(G) = 〈g〉A for some g ∈ G. But then G/A is cyclic, and G′ ⊆ A.

Since G′ is nonabelian we have a contradiction.

We conclude that Z(G) ⊆ CG(A) = A ⊆ G′. We claim that even Z2(G) ⊆ G′ = Φ(G).

Indeed, otherwise |G/Z2(G)Φ(G)| ≤ p, and G = 〈g〉Z2(G)Φ(G) = 〈g〉Z2(G) for some g ∈ G. Then G/Z(G) is abelian,

so that cl(G) ≤ 2, a contradiction.

Hauptsatz III.2.11 in [9] implies that [Z2(G), G′] = 1, so that Z2(G) ⊆ Z(G′). Since p2 = |Z(G′)| ≥ |Z2(G)| ≥ p2

we conclude that Z2(G) = Z(G′) has order p2. Hence |Z(G)| = p. Since |G/Φ(G)| = p2, Hilfssatz III.1.11 in [9]
implies that K2(G)/K3(G) is cyclic. Furthermore, Satz III.2.13 in [9] shows that exp(K2(G)/K3(G)) divides
exp(G/K2(G)) = p. Thus |K2(G)/K3(G)| = p and |K3(G)| = p3; in particular, K3(G) * Z2(G). Hence
K4(G) = [K3(G), G] * Z(G) and K5(G) = [K4(G), G] 6= 1. We conclude that G must have maximal class. We
claim that G is an exceptional group, in the sense of Definition III.14.5 of [9].

Otherwise Hauptsatz III.14.7 in [9] implies that [K2(G),K3(G)] ⊆ K6(G) = 1, i. e. K3(G) ⊆ Z(G′). This is a contradic-

tion since |K3(G)| = p3 and |Z(G′)| = p2.

19



Now Aufgabe 35 in Chapter III of [9] shows that A = K3(G) is the only maximal abelian normal subgroup of
G.

Next we turn our attention to the character theory of G. Recall that we are considering a faithful χ ∈ Irr(G)
of degree p2. Let λ ∈ Irr(χA) and T := IG(λ).

Assume that G′ ⊆ T . Since |G′ : A| = p, λ has exactly p extensions to G′, and λG′

is the sum of these extensions. Since

0 6= (χA|λ)A = (χG′ |λG′

)G′ there exists an extension µ of λ to G′ such that 0 6= (χG′ |µ) = (χ|µG). Since χ(1) = p2 =

µG(1) this implies that χ = µG. Since G′′ ⊆ ker(µ) we are led to the contradiction 1 < G′′ ≤ ker(µG) = ker(χ) = 1.

Thus we must have G′ * T ; in particular, |G : T | ≥ p2. By Clifford Theory, χ = µG for a unique µ ∈ Irr(T |λ).
Hence |G : T | = p2, and µ(1) = 1. Since |T | = p4 = |G′| and T ∩ G′ = A we conclude that |TG′| = p5.
Hence TG′ is the only maximal subgroup of G containing T ; in particular, we have TG′ = NG(T ) =: W .
Since A = CG(A), T is nonabelian, i. e. 1 6= T ′ ⊆ ker(µ). Since µG = χ is faithful, T ′ does not contain any
nontrivial normal subgroup of G; in particular, we have T ′ 6E G and T ′∩Z(G) = 1. On the other hand, we have
T ′ E NG(T ) = W , so T ′ ∩ Z(W ) 6= 1, and Z(G) 6= Z(W ) EG. Thus Z2(G) ≤ Z(W ) and W ⊆ CG(Z2(G)). Since
|G : CG(Z2(G))| = p we conclude that W = CG(Z2(G)). Since 1 6= T ′ ≤W ′ EG and T ′ 6E G we have T ′ < W ′;
in particular, |W ′| ≥ p2.

Let W 6= M ∈ Max(G). Then TM = G and T ∩M = A. The Mackey formula shows that

χM = (µG)M = (µA)M = λM ∈ Irr(M);

for IM (λ) = T ∩M = A. Thus p4 = χM (1)2 ≤ |M : Z(M)| ≤ p4. Hence Z(M) = Z(G), and χM (1)2 = |M :
Z(M)|. So Corollary 2.30 in [11] implies that χM (g) = 0 for all g ∈ M \ Z(M). This yields that χMχM is the
regular character ρM/Z(M) of M/Z(M), viewed as a character of M .

Suppose first that |M ′| = p, i. e. M ′ = Z(G) = Z(M). Then χMχM =
P

α∈Irr(M/ Z(M)) α. If ψ(1) = 1 then (χχ|ψ)G ≤

ψ(1) = 1 by Lemma 7.9, so that (χχ|ψ) = 1, and we are done. If ψ(1) 6= 1 then ψ = αG for some α ∈ Irr(M/Z(M)) ⊆
Irr(M), and

(χχ|ψ)G = (χχ|αG)G = (χMχM |α)M = 1,

and the result follows in this case.

Thus we may assume that |M ′| ≥ p2 for all M ∈ Max(G). This means that G/Z(G) does not have an abelian
maximal subgroup. Hence Theorem 12.11 in [11] shows that G/Z(G) has an irreducible character of degree
p2. This character vanishes outside of Z2(G)/Z(G). Algebraic conjugation gives precisely p − 1 irreducible
characters of G/Z(G) of degree p2. Also, G/Z(G) has precisely p2 irreducible characters of degree 1. The
remaining irreducible characters of G/Z(G) must have degree p. Since

p2 · 1 + (p2 − 1) · p2 + (p− 1) · p4 = p5,

G/Z(G) has precisely p2 − 1 irreducible characters of degree p. Similarly, G/Z2(G) has precisely p2 irreducible
characters of degree 1. All other irreducible characters of G/Z2(G) must have degree p. Since p4 = p2 · 1 +
(p2 − 1) · p2, G/Z2(G) has precisely p2 − 1 irreducible characters of degree p. This implies that all irreducible
characters of G/Z(G) of degree p have Z2(G)/Z(G) in their kernel. We now analyze the multiplicity of any
β ∈ Irr(G/Z(G)) ⊆ Irr(G) in χχ.

Suppose first that β(1) = p2. Let W 6= M ∈ Max(G). Then β = φG for some φ ∈ Irr(M/Z(G)), and φ(1) = p.
Then

(χχ|β)G = (χχ|φG)G = (χMχM |φ)M = (ρM/Z(M)|φ)M = φ(1) = p.

This shows that every irreducible character of G/Z(G) of degree p2 occurs with multiplicity p in χχ.

Suppose next that β(1) = p. We consider β as an irreducible character of G̃ := G/Z2(G). There are two
possibilities:

Suppose first that β is not faithful, considered as a character of eG. Then Z( eG) ⊆ ker(β). Let W 6= M ∈ Max(G), so that
fM := M/Z2(G) ∈ Max( eG), and |fM | = p3. Then fM ′ ⊆ Z( eG) ⊆ ker(β), and β = αG for some α ∈ Irr(fM) ⊆ Irr(M). We
conclude that

(χχ|β)G = (χχ|αG)G = (χMχM |α)M = (ρM/ Z(M)|α)M = α(1) = 1.
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Now suppose that β is a faithful character of G̃. Since G̃ is an M-group, there are L̃ = L/Z2(G) ∈ Max(G̃) and

ω ∈ Irr(L̃) such that β = ω
eG. Since L̃′ ⊆ ker(ω) and L̃′ E G̃ we have L̃′ ⊆ ker(ω

eG) = ker(β) = 1, i. e. L̃ is

abelian. In particular, L̃ does not have maximal class.

Note that G̃ is a p-group of maximal class, but not an exceptional group, by Hauptsatz III.14.6 in [9]. Thus, by

Satz III.14.22 in [9], G̃1 := C eG(K2(G̃)/K4(G̃)) is the only maximal subgroup of G̃ which does not have maximal

class; in particular, L̃ = G̃1, and L = G1 6= CG(Z2(G)) = W since G is an exceptional group. Thus, as we
showed above, χL ∈ Irr(L) and χLχL = ρL/Z(L). Moreover,

(χχ|β)G = (χχ|ωG)G = (χLχL|ω)L = (ρL/Z(L)|ω)L = 1.

We have thus shown that each of the p2 − 1 irreducible characters of G/Z(G) of degree p occurs in χχ with
multiplicity 1.

It remains to consider the irreducible characters of G/Z(G) of degree 1. Again, let W 6= M ∈ Max(G). Then
G acts by conjugation on the nontrivial elementary abelian p-group Irr(M/Φ(M)). Thus G has at least p fixed
points on Irr(M/Φ(M)). If ω is one of these, then ωG is the sum of the p extensions of ω to G. We get
1 = (χMχM |ω)M = (χχ|ωG)G. In this way we obtain (at least) p irreducible constituents of χχ of degree 1.
However, since

p+ (p2 − 1) · p+ (p− 1) · p · p2 = p4

we have already accounted for all irreducible constituents of χχ, and the result is proved.

The result above does not extend to groups of order p7. In fact, there is a group of order 37 with two irreducible
characters χ, ψ such that (χχ|ψ)G = 2, as the example following Theorem 4.9 shows. This can be checked easily
using GAP [7].

9 Characters of metacyclic p-groups

In this section we prove (Q1) and (Q2) for metacyclic p-groups.

Proposition 9.1. Let G be a metacyclic p-group where p is an odd prime, and let χ ∈ Irr(G). Then χχ is the
regular character of G/Z(χ), viewed as a character of G. Thus (χχ|ψ)G = ψ(1) for ψ ∈ Irr(χχ); in particular,
(Q1) and (Q2) are satisfied.

Proof. Let A = 〈a〉 EG and B = 〈b〉 ≤ G such that G = AB. Then C := CG(A) EG. Moreover, C is abelian
since A ⊆ Z(C) and C/A is cyclic. By Lemma 5.1, we have G′ = {[a, bi] : i ∈ Z}, so

|G′| = |{biab−i : i ∈ Z}| = |{gag−1 : g ∈ G}| = |G : CG(a)| = |G : C|.

Also, Lemma 12.12 in [11] implies that |C| = |G′| · |Z(G)|. Thus

|G : Z(G)| = |G : C| · |C : Z(G)| = |G′|2.

Now let χ ∈ Irr(G). We may assume that χ is faithful. Let λ ∈ Irr(χA), and let T := IG(λ). Then A ≤ C ≤

T E G, and T/A is cyclic. Thus χ = µG where µ ∈ T̂ is an extension of λ. Now T ′ ⊆ ker(µ) and T ′ E G,
so T ′ ⊆ ker(µG) = ker(χ) = 1. Hence T is abelian, so that T ≤ CG(A) = C. We conclude that T = C and
χ(1) = |G : T | = |G : C| = |G′|; in particular, χ(1)2 = |G′|2 = |G : Z(G)| = |G : Z(χ)|. Now Corollary 2.30
in [11] implies that χ vanishes on G \ Z(χ). Moreover, (χχ)(z) = χ(1)2 = |G : Z(χ)| for z ∈ Z(χ). Thus χχ is
indeed the regular character of G/Z(χ). The result follows.
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