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Abstract

Let B be a block of a finite group G with defect group D. We prove that the exponent of the center
of D is determined by the character table of G. In particular, we show that D is cyclic if and only
if B contains a “large” family of irreducible p-conjugate characters. More generally, for abelian D
we obtain an explicit formula for the exponent of D in terms of character values. In small cases
even the isomorphism type of D is determined in this situation. Moreover, it can read off from the
character table whether |D/D′| = 4 where D′ denotes the commutator subgroup of D. We also
propose a new characterization of nilpotent blocks in terms of the character table.
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1 Introduction

A major problem in character theory is to decide which properties of a finite group G can be read off
from the complex character table X(G) of G. In this note we focus on properties of p-blocks of G and
their defect groups. For motivational purpose we review some results on the principal p-block of G (or
any block of maximal defect). It is known that X(G) determines the following properties of a Sylow
p-subgroup P of G:

(1) |P | (only the first column of X(G) is needed).

(2) whether P is abelian. For p = 2, this is an elementary result of Camina–Herzog [5] (cf. [27]), but
it requires the classification of finite simple groups (CFSG for short) if p is odd (see [17, 26]). If P
is abelian, also the isomorphism type of P can be read off from X(G), albeit there is no easy way
of doing this (see [17]).

(3) the exponent of the center Z(P ) (see [24, Corollary 3.12]).

(4) whether P ⊴G (in fact, all normal subgroup orders).

(5) whether P has a normal p-complement, i. e. whether the principal block is nilpotent (only the first
column of X(G) is needed, see [24, Theorem 7.4]).

(6) whether NG(P ) = PCG(P ), i. e. whether the principal block has inertial index 1. This was done by
Navarro–Tiep–Vallejo [30, Theorem D] for p > 2 and by Schaeffer-Fry–Taylor [39, Theorem 1.7] if
p = 2. Both cases rely on the CFSG.
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(7) whether NG(P ) = P (see Navarro–Tiep–Turull [29] for p > 2 and Schaeffer-Fry [38] for p = 2).
Again the CFSG is required.

(8) whether P is a TI set. The case p = 2 appeared in Chillag–Herzog [6, Corollary 7] and the author
has verified the result for p > 2 via the CFSG.

(9) the exponent of the abelianization P/P ′ if p = 2. This is a special case of a conjecture by Navarro–
Tiep [28] proved by Malle [20] using the CFSG.

(10) whether |P/P ′| = 4 (see [25]).

The results on the exponents of Z(P ) and P/P ′ are of interest, because X(G) does not determine
exp(P ) (consider the non-abelian groups of order p3 where p > 2).

Now let B be an arbitrary p-block of G with defect group D. The distribution of irreducible characters
into p-blocks is given by X(G) (see [23, Theorem 3.19]) and the order of D can be computed by the
formula

|D| = max
{ |G|p
χ(1)p

: χ ∈ Irr(B)
}

(here and in the following, np and np′ denote the p-part and p′-part of an integer n). A p-element g ∈ G
is conjugate to an element of D if and only if χ(g) ̸= 0 for some χ ∈ Irr(B) (see [12, Lemma 22]). In
particular, we can decide if D⊴G. Whether or not we can determine if D is abelian would follow from
the still unproven Height Zero Conjecture of Richard Brauer. Recently, Gabriel Navarro has asked me
if X(G) determines if D is cyclic. As far as we know this has not yet been observed in the literature
(an explicit conjecture for p ≤ 3 appeared in [36]). We give an affirmative answer in terms of Galois
theory. Recall that χ, ψ ∈ Irr(G) are called p-conjugate if there exists a Galois automorphism γ of Q
such that χγ = ψ and γ(ζ) = ζ for all p′-roots of unity ζ (see next section).

Theorem 1. Let B be a p-block of a finite group G with defect d > 0. Then B has cyclic defect groups
if and only if Irr(B) contains a family of p-conjugate characters of size divisible by pd−1.

Next we show that (3) above generalizes to blocks. Although this implies Theorem 1, there is apparently
no simple formula to compute exp(Z(D)) from X(G).

Theorem 2. Let B be a block of a finite group G with defect group D. Then the exponent of the center
Z(D) is determined by the character table of G.

If D is known to be abelian, an explicit formula for exp(D) can be given in terms of the field of values

Q(B) := Q(χ(g) : χ ∈ Irr(B), g ∈ G).

For a positive integer n we denote the n-th cyclotomic field by Qn.

Theorem 3. Let B be a p-block of a finite group G with abelian defect group D ̸= 1. Let m := |G|p′ .
Then

exp(D) = p|Q(B) : Q(B) ∩Qm|p.

If |D| ≤ p5, then even the isomorphism type of D is determined by the character table.

Our last result is a block-wise version of (10).

2



Theorem 4. Let B be a 2-block of a finite group G with defect group D of order 2d ≥ 8. Then
|D/D′| = 4 if and only if |Irr(B)| < 2d and

Q(B)Q|G|2′ ∩Q2d = Q(ζ ± ζ−1)

where ζ ∈ C is a primitive 2d−1-th root of unity. In particular, the character table of G determines if
B has tame representation type.

Recall that a block B with abelian defect group is nilpotent if and only if B has inertial index 1. By work
of Okuyama–Tsushima [31, Proposition 1 and Theorem 3], B is nilpotent with abelian defect group if
and only if all characters in Irr(B) have the same degree. More generally, it has been conjectured (and
verified in many cases) by Malle–Navarro [22] that B is nilpotent if and only if all height zero characters
have the same degree (an invariant of X(G)). A different characterization of nilpotent blocks in terms
of the focal subgroup was proved by Kessar–Linckelmann–Navarro [16]. It is however not clear if the
(order of the) focal subgroup is encoded in X(G). The same remark applies to another conjectural
characterization by Puig in terms of counting Brauer characters in Brauer correspondents (see [8,
Conjecture 6.3.3] and [40]). In the last section of this paper we propose a strengthening of Puig’s
Conjecture characterizing nilpotent blocks by a single invariant which is derived from lower defect
groups and can be computed from X(G) (see Conjecture 8).

Note that (7) above does not admit a direct analog for non-principal blocks by Brauer’s third main
theorem (when NG(P ) is replaced by the inertial group of a Brauer correspondent).

2 Proofs

Our notation is fairly standard and follows [23]. As usual, we set k(B) := |Irr(B)| and l(B) := |IBr(B)|
for every block B of a finite group G. The generalized decomposition matrix Q = (dxχφ) of B has size
k(B)×k(B) and entries in the cyclotomic field Qexp(D) where D is a defect group of B. The rows of Q
are indexed by χ ∈ Irr(B) and the columns are indexed by pairs (x, φ) where x ∈ D and φ ∈ IBr(b) for
some Brauer correspondent b of B in CG(x). Let G be the Galois group of Q|G| with fixed field Q|G|p′ .
Characters in the same G-orbit are called p-conjugate. Characters fixed by G are called p-rational. We
make use of the natural isomorphisms

G ∼= Gal(Q|G|p |Q) ∼= (Z/|G|pZ)×.

In this way G acts on the rows and columns of Q via

dxχγ ,φ = γ(dxχφ) = dx
γ

χφ (γ ∈ G).

We recall that the characters of a nilpotent block B with defect group D were parameterized by
Broué–Puig [4] using the so-called ∗-construction. More precisely, there exists a p-rational character
χ ∈ Irr(B) of height 0 such that Irr(B) = {λ∗χ : λ ∈ Irr(D)}. For γ ∈ G, we have (λ∗χ)γ = (λγ)∗χ.

Proof of Theorem 1. Let D be a defect group of B. If D is not cyclic, then the generalized decom-
position matrix Q has entries in Qpd−1 . Hence, the lengths of the G-orbits on the rows of Q divide
φ(pd−1) = pd−2(p − 1). So there is no family of p-conjugate characters in Irr(B) of size divisible by
pd−1.

Now suppose that D = ⟨x⟩ is cyclic. If p = 2, then B is nilpotent, because the inertial index of B is 1.
By Broué–Puig [4], we have Irr(B) = {λ∗χ : λ ∈ Irr(D)} for some 2-rational χ. Let λ1, . . . , λ2d−1 be the
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faithful characters of Irr(D). Then λ1 ∗χ, . . . , λ2d−1 ∗χ is a family of 2-conjugate characters of B of size
2d−1. Finally let p > 2. Then G ∼= (Z/|G|pZ)× is cyclic and the rows and columns of Q form isomorphic
G-sets by Brauer’s permutation lemma (see [9, Lemma IV.6.10]). Let b be a Brauer correspondent of
B in CG(D). For u ∈ D \ {1} the Brauer correspondents bu := bCG(u) are nilpotent. In particular,
l(bu) = 1 and every such u labels a unique column of Q. Two elements u, v ∈ D determine the same
column of Q if and only if they are conjugate under the inertial quotient N := NG(D, b)/CG(D). We
regard N as a p′-subgroup of Aut(D). Since all generators of D are conjugate under G, the G-orbit of
the column of Q labeled by x has size |Aut(D) : N | ≡ 0 (mod pd−1). The corresponding orbit on the
rows of Q yields the desired family of p-conjugate characters of Irr(B)

We remind the reader that every x ∈ G can be written uniquely as x = xpxp′ = xp′xp where the
p-factor xp is a p-element and the p′-factor xp′ is a p′-element. The p-section of x is the set of elements
y ∈ G such that xp and yp are conjugate.

In the following we work over a “large enough“ complete discrete valuation ring O such that the
residue field O/J(O) is algebraically closed of characteristic p. The remaining theorems are based on
the following observation.

Proposition 5. Let B be a p-block of G with defect group D. For a given p-element x ∈ G, the
character table determines the number of Brauer correspondents of B in CG(x) with defect group D.

Proof. We assume that the column of the character table X = X(G) corresponding to x is given. Let
q ̸= p be another prime. By [24, Theorem 7.16], we find all elements g ∈ G such that the q′-factor
of g is conjugate to x. By induction on the number of prime divisors of the order of an element, the
whole p-section S of x can be spotted in X. Let y1, . . . , yl ∈ CG(x) be representatives for the conjugacy
classes of p-regular elements in CG(x). Then the elements xy1, . . . , xyl represent the conjugacy classes
inside S (see [23, p. 105]). Let IBr(CG(x)) = {φ1, . . . , φl}. We construct the matrices

Xx :=
(
χ(xyi) : χ ∈ Irr(B), 1 ≤ i ≤ l

)
,

Qx :=
(
dxχφi

: χ ∈ Irr(B), 1 ≤ i ≤ l
)
, (2.1)

Yx :=
(
φi(yj) : 1 ≤ i, j ≤ l

)
and observe that Xx = QxYx can be read off of X (see [23, Corollary 5.8]). Let b1, . . . , bs be the Brauer
correspondents of B in CG(x). Let Ci be the Cartan matrix of bi for i = 1, . . . , s. Finally, let

Cx :=


C1 0

. . .
Cs

0 0

 ∈ Zl×l.

Brauer’s second main theorem yields

Xt
xXx = Y t

xQ
t
xQxYx = Y t

xCxYx

where Xt
x denotes the transpose and Xx the complex conjugate of Xx (see [23, Lemma 5.13]). We may

assume that the entries of Xx, Qx, Yx lie in the valuation ring O (recall that these entries are algebraic
integers). It follows from [23, Lemma 2.4 and Theorem 1.19] that Yx is invertible over O. In particular,
Xt

xXx and Cx have the same elementary divisors up to multiplication with units in O (recall that O is
indeed a principal ideal domain). The largest elementary divisor of Ci is the order of a defect group Di

of bi and occurs with multiplicity 1 in Ci (see [23, Theorem 3.26]). Since Di is conjugate to a subgroup
of D, all non-zero elementary divisors of Cx are divisors of |D|. Moreover, the number of blocks bi with
defect group D is just the multiplicity of |D| as an elementary divisor of Cx.
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In the situation of Proposition 5, the pairs (x, b) are called (B-)subsections if b is a Brauer correspondent
of B in CG(x). The subsection is called major if b and B have the same defect (group). One might
wonder if the total number of subsections (major or not) can be deduced from the block decomposition
of the hermitian matrix Xt

xXx. However, if B is the only block of G, then Xt
xXx is just a diagonal

matrix by the second orthogonality relation.

Proof of Theorem 2. The columns of the character table X = X(G) corresponding to p-elements are
determined via [24, Corollary 7.17]. For a p-element x ∈ G, we can decide from X whether there are
major subsections (x, b) by Proposition 5. This happens if and only if x is conjugate to some element
of Z(D) (see [23, Problem 9.6]). Thus, suppose that x ∈ Z(D) has order pe and b has defect group D.
Then the matrix Qx defined in (2.1) of the previous proof has entries in Qpe . The entries of Xx = QxYx
generate a subfield Q(Xx) ⊆ Qpem where m := |G|p′ . Let bD be a Brauer correspondent of b (and of
B) in DCG(D) such that b = b

CG(x)
D . In the following we replace G by the (smaller) Galois group of

Qpem with fixed field Qm. Let γ ∈ G be a non-trivial p-element. By a fusion argument of Burnside, the
B-subsections (x, b) and (xγ , b) are conjugate in G if any only if x and xγ are conjugate in the inertial
group NG(D, bD) (see [23, Problem 9.7]). Since x ∈ Z(D) and NG(D, bD)/DCG(D) is a p′-group, this
cannot happen. Hence, there exist χ ∈ Irr(B) and φ ∈ IBr(b) such that

dxχγ ,φ = γ(dxχφ) = dx
γ

χφ ̸= dxχφ

and χγ ̸= χ. This shows that Q(Xx) does not lie in the fixed field of any non-trivial p-element of G.
Hence by Galois theory, |Qpem : Q(Xx)Qm| is a p′-number and

|Q(Xx)Qm : Qm|p = |Qpem : Qm|p = |G|p = pe−1.

Therefore, X determines the order of every x ∈ Z(D). In particular, exp(Z(D)) is determined.

By the proof above, the character table determines whether all x ∈ D are conjugate to elements of
Z(D). This is a necessary (but insufficient) criterion for D to be abelian. Next we prove the first part
of Theorem 3.

Proposition 6. Let B be a p-block of G with abelian defect group D. Let m := |G|p′ . Then

exp(D) = p|Q(B) : Q(B) ∩Qm|p.

Proof. Since D is abelian, all B-subsections are major (see [23, Problem 9.6]). Hence, in the proof of
Theorem 2 there is no need to consider only one p-section at a time. In the end, we can replace Q(Xx)
by Q(B) to obtain

p|Q(B) : Q(B) ∩Qm|p = p|Q(B)Qm : Qm|p = exp(D).

Now we come to the second part of Theorem 3.

Proposition 7. Let B be a block of G with abelian defect group D and defect at most 5. Then X(G)
determines the isomorphism type of D.

Proof. Since |D| and exp(D) are determined by the character table, we may assume that |D| ∈ {p4, p5}.
Let T be the inertial group of some Brauer correspondent of B in CG(D). Since D is abelian, the G-
conjugacy classes of B-subsections correspond to the T -orbits on D by [23, Problems 9.6 and 9.7]. For
a fixed x ∈ D, the B-subsections of the form (x, b) are pairwise non-conjugate since the blocks are
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ideals of the group algebra of CG(x). Since all B-subsections are major, Proposition 5 allows us to
count the number of subsections (up to conjugation) corresponding to elements x ∈ D of some fixed
order (note that |⟨x⟩| is determined by the proof of Theorem 2). Hence, the character table determines
the number of T -orbits on D of elements of order pi for each i ≥ 0.

We call x, y ∈ D equivalent if there exist t ∈ T and k ∈ Z such that xt = y1+kp. Equivalent elements
clearly have the same order. Let di be the number of equivalence classes of elements in D of order pi

for i ≥ 1. Since T acts coprimely on D, the distinct elements of the form x1+kp lie in distinct T -orbits.
Hence, the number of T -orbits of elements of order pi is dipi−1. In particular, the numbers di are
determined by X(G). Note that d1 is just the number of T -orbits of elements of order p.

Now we assume that |D| = p4. It suffices to distinguish D ∼= C2
p2 from D ∼= Cp2×C2

p . Suppose first that
D ∼= C2

p2 . Then every element of order p in D is a p-power of some element in D. Moreover, if x, y ∈ D

are equivalent, so are xp and yp. This shows that d1 ≤ d2. Next we consider D = D1×D2
∼= Cp2 ×C2

p .
Since T acts coprimely on D, we may assume that D1

∼= Cp2 and D2
∼= C2

p are T -invariant (see [11,
Theorem 5.2.2]). Let x1, y1 ∈ D1 be of order p2. Since D1 is cyclic, we see that x1 and y1 are equivalent
if and only if xp1 and yp1 are equivalent. For any x2, y2 ∈ D2, it follows that x1x2 and y1y2 are equivalent
if and only if xp1x2 and yp1y2 are equivalent. Every element of order p2 has the form x1x2, but the
elements of D2 do not have the form xp1x2. Consequently, d1 > d2.

It remains to discuss the case |D| = p5. If exp(D) = p3, then we need to distinguish Cp3 × Cp2 from
Cp3 × C2

p . But this follows immediately from the case |D| = p4 above by considering only elements
of order at most p2. Hence, we may assume that exp(D) = p2. If D ∼= Cp2 × C3

p , we obtain d1 > d2
just as in the case Cp2 × C2

p . Finally, let D = D1 × D2
∼= C2

p2 × Cp with T -invariant subgroups D1

and D2. Let ∆ ⊆ D1 be a T -orbit of elements of order p. Let ∆̂ := {y ∈ D1 : yp ∈ ∆}. Note that
∆̂ is a union of equivalence classes and |∆̂| = p2|∆|. Since the size of an equivalence class cannot be
divisible by p2, ∆̂ contains at least two equivalence classes. For x ∈ ∆ we pick non-equivalent elements
x̂, x̃ ∈ ∆̂. Let z0 = 1, z1, . . . , zs be representatives for the T -orbits in D2. Let x, y ∈ D1 be of order
p. Since xz0, . . . , xzs lie in distinct T -orbits, we obtain that d1 − s > s. Moreover, if xzi and yzj are
not equivalent, then x̂zi, x̃zi, ŷzj and ỹzj are pairwise non-equivalent elements of order p2. Since every
element of order p outside D2 is equivalent to some xzi, it follows that d1 < 2(d1 − s) ≤ d2.

We do not know if our method extends to blocks of defect 6, but it definitely does not work for defect
7. In fact, the defect groups C3

4 × C2 and C2
4 × C3

2 cannot be distinguished by counting orbits of the
inertial quotient C7 ⋊C3 (given a suitable action, there are three orbits of involutions and eight orbits
of elements of order 4 in both cases). Nevertheless, these groups can still be distinguished by other
means.

Finally we prove our last theorem.

Proof of Theorem 4. Suppose first that |D/D′| = 4. Then D is a dihedral, a semidihedral or a (gen-
eralized) quaternion group by a theorem of Taussky (see [14, Satz III.11.9]). It was shown by Brauer
and Olsson that k(B) < 2d (see [37, Theorem 8.1]). They have also computed the generalized decom-
position numbers of B, but we only need a small portion of those. For that, let x ∈ D be of order 2d−1

and let bx be a Brauer correspondent of B in CG(x). Then bx is a block with cyclic defect group ⟨x⟩.
In particular, bx is nilpotent and IBr(bx) = {φ}. If D is a dihedral or a quaternion group, then x is
conjugate to x−1 in D. From the structure of the fusion system of B (see [37, Theorem 8.1]) we see that
there is no more fusion inside ⟨x⟩. It follows as in Theorem 2 that Q(dxχφ : χ ∈ Irr(B)) = Q(ζ + ζ−1).
In the semidihedral case we obtain similarly that Q(dxχφ : χ ∈ Irr(B)) = Q(ζ − ζ−1).
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Next let y ∈ D be arbitrary. If y has order at most 2, then the generalized decomposition numbers
with respect to y are rational integers. Thus, we may assume that |⟨y⟩| > 2. Then y and y−1 (or
y−1+2d−2 if D is semidihedral) are conjugate in D and the Brauer correspondent by has cyclic defect
group (namely ⟨y⟩ or ⟨x⟩; see [37, Lemma 1.34]). Hence, IBr(by) = {µ} and the argument above yields
dyχµ ∈ Q(ζ ± ζ−1) for every χ ∈ Irr(B). Therefore, the entries of the generalized decomposition matrix
Q of B generate the field Q(Q) = Q(ζ ± ζ−1) ⊆ Q2d . Let m := |G|2′ and γ ∈ Gal(Q2d |Q). Let γ̂ be the
unique extension of γ to Gal(Q2dm|Qm). Then

γ ∈ Gal(Q2d |Q(Q)) ⇐⇒ γ̂ ∈ Gal(Q2dm|Q(Q)Qm) = Gal(Q2dm|Q(B)Qm)

⇐⇒ γ ∈ Gal(Q2d |Q(B)Qm ∩Q2d)

(this argument is due to Reynolds [35]). The main theorem of Galois theory implies Q(B)Qm ∩Q2d =
Q(Q) = Q(ζ ± ζ−1) as desired.

Now assume conversely that k(B) < 2d and Q(B)Qm ∩ Q2d = Q(ζ ± ζ−1). If D is cyclic or of type
C2d−1×C2 with d ≥ 3, then B is nilpotent in contradiction to k(B) < 2d. Suppose that exp(D) < 2d−1.
Then the generalized decomposition numbers of B lie in Q2d−2 and we obtain

ζ ± ζ−1 ∈ Q(B)Qm ∩Q2d ⊆ Q2d−2m ∩Q2d = Q2d−2 .

This forces d = 3 and exp(D) = 2. Then however, D is elementary abelian and k(B) = 8 = 2d by
Kessar–Koshitani–Linckelmann [15]. This contradiction shows that exp(D) = 2d−1. Now it is well-
known that |D : D′| = 4 unless d > 3 and

D = ⟨x, y : x2
d−1

= y2 = 1, yxy−1 = x1+2d−2⟩.

In this exception, B is nilpotent by [37, Theorem 8.1]. By Broué–Puig [4], there exists a 2-rational
character χ ∈ Irr(B) such that Irr(B) = {λ ∗ χ : λ ∈ Irr(D)}. This yields the contradiction

Q(B)Qm = Q(D)Qm = Q2d−2m.

For the last claim recall that B has tame representation type if and only if D is a Klein four-group
(detectable by Theorem 3) or D is non-abelian and |D/D′| = 4.

We remark that the distinction of the defect groups of order 8 in the proof above relies implicitly on the
classification of finite simple groups (via [15]). The dependence on the CFSG can be avoided by making
use of the remark after the proof of Theorem 2. As in [25], the Alperin–McKay Conjecture would imply
that |D/D′| = 4 if and only if B has exactly four irreducible characters of height 0 (provided p = 2).

3 A characterization of nilpotent blocks

As before, let B be a p-block of G with defect group D. Let X(B) be the submatrix of X(G) with
rows indexed by Irr(B). By the block orthogonality relation (see [23, Corollary 5.11]), the matrix
X(B)tX(B) has block diagonal shape. The blocks (of that matrix) are the matrices Xt

xXx studied in
the proof of Proposition 5. Let (1, B) = (x1, b1), . . . , (xs, bs) be representatives for the G-conjugacy
classes of B-subsections. Let Ci be the Cartan matrix of bi. We have seen in the proof of Proposition 5
that X(B)tX(B) and the block diagonal matrix C1 ⊕ . . . ⊕ Cs have the same non-zero elementary
divisors e1, . . . , ek over O (up to multiplication with units in O). Hence, we may assume that e1, . . . , ek
are uniquely determined integer p-powers. We call e1, . . . , ek the elementary divisors of B. It turns out
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that these numbers are the orders of the lower defect groups of B (with multiplicities) introduced by
Brauer [2] (see Proposition 11 below). We call

γ(B) :=
1

e1
+ . . .+

1

ek
∈ Q

the fusion number of B. This definition is inspired by the class equation in finite groups as will become
clear in the sequel.

Conjecture 8. For every block B of G we have γ(B) ≥ 1 with equality if and only if B is nilpotent.

In contrast to the character degrees considered in [22], we will see that the fusion number is invariant
under categorical equivalences like isotypies.

To verify that γ(B) ≥ 1, it is often enough to consider only the Cartan matrix C1 of B. If C1 possesses
an entry coprime to p, then 1 is an elementary divisor and γ(B) ≥ 1 with equality if and only if B
has defect 0. The remaining elementary divisors ei > 1 can in principle be computed locally (see [32,
Theorem 4.3]).

Before providing evidence for Conjecture 8, we derive a consequence which strengthens Puig’s Conjec-
ture (mentioned in the introduction) and was established for abelian defect groups in [34].

Proposition 9. Conjecture 8 implies that B is nilpotent if and only if l(b) = 1 for every B-subsection
(x, b).

Proof. It is well-known that every nilpotent block fulfills the condition. Suppose conversely that l(b) = 1
for every B-subsection (x, b). Let D be a defect group of B and let bD be a Brauer correspondent of
B in DCG(D). By [37, Lemma 1.34], there exist representatives (x1, b1), . . . , (xs, bs) ∈ (D, bD) for the
G-conjugacy classes of B-subsections such that bi is uniquely determined by xi and has defect group
CD(xi). Since l(bi) = 1, the Cartan matrix of bi is (|CD(xi)|) for i = 1, . . . , s. The elements x1, . . . , xs
can be complemented to a set of representatives x1, . . . , xt for the conjugacy classes of D. The class
equation for D shows that

γ(B) =
s∑

i=1

1

|CD(xi)|
≤

t∑
i=1

1

|CD(xi)|
= 1.

According to Conjecture 8, γ(B) = 1 and B is nilpotent.

Theorem 10. Conjecture 8 holds in each of the following situations:

(i) B is nilpotent.

(ii) B is the only block of G.

(iii) B has cyclic defect group.

(iv) G is a symmetric group.

(v) G is a simple group of Lie type in defining characteristic.

(vi) G is a quasisimple group appearing in the ATLAS.

Proof.
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(i) This follows from the proof of Proposition 9. For the remaining parts we may assume that B is
non-nilpotent.

(ii) If B is the only block of G, then X(B) = X(G) = X and XtX = diag(|CG(gi)| : i = 1, . . . , k)
where g1, . . . , gk represent the conjugacy classes of G. In particular, ei = |CG(gi)|p for i = 1, . . . , k.
The class equation of G reads

1

|CG(g1)|
+ . . .+

1

|CG(gk)|
= 1.

Hence, γ(B) > 1 unless G is a p-group in which case B is nilpotent.

(iii) It is well-known that a non-nilpotent block with cyclic defect group has elementary divisor 1 (see
[37, Theorem 8.6]). This implies γ(B) > 1 as explained before Proposition 9.

(iv) Let B be a p-block of weight w of the symmetric group Sn. It is well-known that B is nilpotent
if and only if w = 0 or (p, w) = (2, 1). Thus, let w ≥ 1. If p is odd or w is even, then C1 has
elementary divisor 1 by a theorem of Olsson [33, Corollary 3.13]. Now let p = 2 and w = 2k+1 ≥ 3.
Then the multiplicity of 2 as an elementary divisor of C1 is the number of partitions of w with
exactly one odd part (this can be extracted from [1, Theorem 4.5]). Since there are at least two
such partitions (namely (w) and (2k, 1)), it follows that γ(B) > 1.

(v) Apart from finitely many exceptions (like 2F4(2)
′) which are covered by (vi) below, we may

assume that G has only two blocks: the principal block B and a block of defect 0 containing
the Steinberg character (see [13, Section 8.5]). Malle [21, Corollary 4.2] has shown that there are
at least two non-conjugate elements g, h ∈ G such that |CG(g)|p = |CG(h)|p = 1. One of them
accounts for an elementary divisor 1 of the Cartan matrix of B. Thus, γ(B) > 1.

(vi) In order to check the claim by computer, we replace B by the union of its Galois conjugate blocks
so that X(B)tX(B) becomes an integral matrix. The p-parts of the elementary divisors of that
matrix can be computed efficiently with Frank Lübeck’s edim package [19] for GAP [10]. Since
Galois conjugate blocks clearly have the same fusion number, we need to divide by the number of
Galois conjugate blocks in the end. It turns out that for all blocks B of quasisimple groups in the
ATLAS, γ(B) > 1 unless all characters have the same degree. In the latter case, B is nilpotent
by [31] (in fact, An and Eaton have shown that all nilpotent blocks of quasisimple groups have
abelian defect groups).

We have also compared Conjecture 8 to the Malle–Navarro Conjecture (mentioned in the introduction)
for small groups (|G| ≤ 2000) without finding any differences.

In the remainder of the paper we offer two reduction theorems. To this end, we review Olsson’s work [32]
on lower defect groups which makes use of the algebraically closed field F := O/J(O) of characteristic
p. We denote the set of blocks of G by Bl(G) and the set of conjugacy classes by Cl(G). For B ∈ Bl(G)
let ϵB be the block idempotent of B as a subalgebra of FG. Moreover, K+ :=

∑
x∈K x ⊆ Z(FG) is the

class sum of K ∈ Cl(G).

Proposition 11. The set Cl(G) can be partitioned into a so-called block splitting

Cl(G) =
⋃

B∈Bl(G)

Cl(B)

such that {K+ϵB : K ∈ Cl(B)} is a basis of Z(B) ⊆ Z(FG) for every B ∈ Bl(G). If xK ∈ K ∈
Cl(B), then the Sylow p-subgroups of CG(xK) are called lower defect groups of B. Their orders are
the elementary divisors of B, i. e. {e1, . . . , ek} = {|CG(xK)|p : K ∈ Cl(B)} as multisets.
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Proof. The existence of block splittings is proved in [32, Proposition 2.2] (the proof is revisited in
the following lemma). To verify the second claim, we freely use the notation from [32]. In particular,
mB(P ) denotes the multiplicity of a p-subgroup P ∈ P(G) as a lower defect group of B. By combining
Theorems 3.2, 5.4(1) and Corollary 7.7 of [32], the multiplicity of pn in the multiset {|CG(xK)|p : K ∈
Cl(B)} is ∑

P∈P(G)
|P |=pn

mB(P ) =
∑

P∈P(G)
|P |=pn

∑
x∈Π(G)

m
(x)
B (P ) =

∑
x∈Π(G)

∑
b∈Bl(CG(x))

bG=B

∑
Q∈P(CG(x))

|Q|=pn

m
(1)
b (Q).

Now by [32, Remark on p. 285], ∑
Q∈P(CG(x))

|Q|=pn

m
(1)
b (Q)

is the multiplicity of pn as an elementary divisor of the Cartan matrix of b. Moreover, everyB-subsection
(x, b) appears (up to G-conjugation) just once in the sum.

In the language of block splittings our conjecture can be rephrased as∑
K∈Cl(B)

|K|p ≥ |G|p

with equality if and only if B is nilpotent.

Lemma 12. Let Z ≤ Z(G) be of order p. Then there exists a block splitting Cl(G) =
⋃

B∈Bl(G)Cl(B)
such that Cl(B) = {Kz : K ∈ Cl(B)} for all B ∈ Bl(G) and z ∈ Z.

Proof. In order to exploit Olsson’s proof of the existence of block splittings, we recall the full details.
Instead of the generalized Laplace expansion we make use of the Leibniz formula for determinants. Let
Bl(G) = {B1, . . . , Bn} and Cl(G) = {K1, . . . ,Kk}. Let I1 ∪ . . . ∪ In = {1, . . . , k} be a partition such
that {bi : i ∈ Ij} is an F -basis of Z(Bj). Then b1, . . . , bk is a basis of Z(B1) ⊕ . . . ⊕ Z(Bn) = Z(FG).
On the other hand, the class sums K+

1 , . . . ,K
+
k also form a basis of Z(FG). Hence, there exists an

invertible matrix A = (aij) ∈ F k×k such that

A

b1...
bk

 =

K
+
1
...
K+

k

 . (3.1)

Let J = (J1, . . . , Jn) be a partition of {1, . . . , k} such that |Ji| = |Ii| for i = 1, . . . , n. Let σJ ∈ Sk be
the unique permutation which sends Ji to Ii for i = 1, . . . , n and preserves the natural order of those
sets. By the Leibniz formula,

0 ̸= detA =
∑
α∈Sk

sgn(α)
k∏

i=1

ai,α(i) =
∑
J

∑
α∈SI1

×...×SIn

sgn(ασJ)
k∏

i=1

ai,ασJ (i)

=
∑
J

sgn(σJ)
( ∑
α1∈SI1

sgn(α1)
∏
j∈J1

aj,α1σJ (j)

)
. . .

( ∑
αn∈SIn

sgn(αn)
∏
j∈Jn

aj,αnσJ (j)

)
=

∑
J

sgn(σJ) det(AJ1I1) . . . det(AJnIn) (3.2)
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where AIiJi := (ast : s ∈ Ii, t ∈ Ji). Hence, there exists some partition J such that det(AJiIi) ̸= 0 for
i = 1, . . . , n. We now multiply (3.1) with the block idempotent ϵs of Bs to get

AJsIs(bi : i ∈ Is) = (K+
j ϵs : j ∈ Js)

(notice that bjϵs = 0 if j /∈ Is). Hence, the sets Cl(Bs) := {Kj : j ∈ Js} form a block splitting of G.

Next we observe that Z = ⟨z⟩ acts by multiplication on Cl(G). In this way, z induces a permutation
πz on {1, . . . , k} such that Kjz = Kπz(j). Let J ′

i := πz(Ji) for i = 1, . . . , n. We claim that J ′ makes the
same contribution to (3.2) as J . Since Z(Bs) is an ideal of Z(FG), we see that (K+

j zϵs : j ∈ Js) is a
basis of Z(Bs)z = Z(Bs). Thus, there exists As ∈ GL(k(Bs), F ) such that

As(K
+
j ϵs : j ∈ Js) = (K+

j zϵs : j ∈ Js).

Since zp = 1, it follows that Ap
s = 1. In particular det(As) = 1, since F has characteristic p. Let

τs ∈ SJ ′
s

such that the elements τsπz(j) with j ∈ Js appear in their natural order. Let Ps be the
permutation matrix corresponding to τs. Then AJ ′

sIs = PsAsAJsIs for s = 1, . . . , n. In particular,
det(AJ ′

sIs) = sgn(τs) det(AJsIs) for s = 1, . . . , n. If p = 2, it is now clear that J and J ′ make the
same contribution to (3.2). Thus, let p > 2. Then πz has order p and therefore sgn(πz) = 1. Moreover,
σJ ′τ1 . . . τsπz = σJ . Consequently,

sgn(σJ ′) det(AJ ′
1I1

) . . . det(AJ ′
nIn) = sgn(σJ) det(AJ1I1) . . . det(AJnIn)

as desired.

If J ′ ̸= J , then the orbit of J under Z has length p. The corresponding p equal summands of (3.2)
cancel out. Since we still have detA ̸= 0, there must exist a block splitting J such that J ′ = J . The
claim follows.

In the remark after [32, Propsosition 7.8] Olsson states that there is no relation between a lower defect
group of a block and its dominated block modulo a central p-subgroup. Nevertheless, we show that
there is a relation if one considers all lower defect groups at the same time.

Proposition 13. Let Z be a p-subgroup of Z(G). Let B be a p-block of G and let B be the unique block
of G/Z dominated by B. Then γ(B) = γ(B) and B is nilpotent if and only if B is.

Proof. The second claim was proved in [40, Lemma 2]. A modern proof in terms of fusion systems
can be given along the following lines. The fusion system F of B contains Z in its center, i. e. F =
CF (Z). One then shows that F := F/Z is the fusion system of B (see [7, Definition 5.9]). Now by [7,
Proposition 5.60], there is a one-to-one correspondence between F-essential subgroups and F-essential
subgroups. Hence, B is nilpotent if and only if B is.

To prove the first claim, we may assume that |Z| = p by induction on |Z|. It is convenient to prove
the claim for all blocks B ∈ Bl(G) at the same time. By Lemma 12, there exists a block splitting
Cl(G) =

⋃
B∈Bl(G)Cl(B) such that

K ∈ Cl(B) ⇐⇒ Kz ∈ Cl(B) (3.3)

for all K ∈ Cl(G) and z ∈ Z.

The canonical epimorphism G→ G := G/Z maps ϵB to ϵB = ϵB since B is the only block dominated
by B (see [23, p. 198]). Moreover, K ∈ Cl(G) for every K ∈ Cl(G). Hence, {K+

ϵB : K ∈ Cl(B)}
spans Z(B). If K,L ∈ Cl(G) induce the same class K = L, then L = Kz for some z ∈ Z. In this
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case (3.3) implies that K ∈ Cl(B) ⇐⇒ L ∈ Cl(B). Thus, after removing duplicates from the set
Cl(B) := {K : K ∈ Cl(B)}, we obtain a partition

Cl(G) =
⋃

B∈Bl(G)

Cl(B).

Since
|Cl(G)| = dimZ(FG) =

∑
B∈Bl(G)

dimZ(B) ≤
∑

B∈Bl(G)

|Cl(B)| = |Cl(G)|,

the sets Cl(B) form a block splitting of Cl(G).

Finally, we determine the elementary divisors e1, . . . , ek of B. By Proposition 11, we may label Cl(B) =
{K1, . . . ,Kk} such that ei|Ki|p = |G|p for i = 1, . . . , k. If |Ki| = |Ki|, then the p classes Kiz ∈ Cl(B)
with z ∈ Z are all distinct. Since 1

pei|Ki|p = |G|p, we have p of the ei, say ei1 = . . . = eip accounting
for one elementary divisor ei := 1

pei of B. If, on the other hand, |Ki| = p|Ki|, then Ki = Kiz for all
z ∈ Z. In this case we set ei := ei. This gives the elementary divisors e1, . . . , el of B such that

γ(B) =
1

e1
+ . . .+

1

el
=

1

e1
+ . . .+

1

ek
= γ(B).

Our final result is a reduction for blocks of p-solvable groups to a purely group-theoretic assertion (it
might be called a projective class equation).

Proposition 14. Conjecture 8 holds for all p-blocks of p-solvable groups if and only if the following is
true: Let G be a p-solvable group such that Z := Z(G) = Op′(G) ≤ G′ is cyclic and Z ̸= Op(G). Let
K1, . . . ,Kn be the conjugacy classes of G/Z consisting of elements xZ such that CG/Z(xZ) = CG(x)/Z.
Then |K1|p + . . .+ |Kn|p > |G|p.

Proof. Let B be a p-block of a p-solvable group G. By Broué [3, Théorème 5.5], B is isotypic to a
block of a p-solvable group H such that Op′(H) ⊆ Z(H). Since isotypies preserve the generalized
decomposition matrices up to basic sets (see [3, Théorème 4.8]), also the elementary divisors of B
are preserved. Hence, we may assume that Z := Op′(G) ≤ Z(G). By Proposition 13, we may further
assume that Z = Z(G). Recall that Ker(B) ≤ Z by [23, Theorem 6.10]. Obviously, B is nilpotent if
and only if the isomorphic block B of G/Ker(B) is nilpotent. Moreover, X(B) is obtained from X(B)
by removing duplicate columns. It follows that γ(B) = γ(B). By replacing G with G/Ker(B), we
may assume that B is faithful. By Theorem 10, we may assume that B is non-nilpotent and therefore
Z ̸= Op(G). The reduction to Z ≤ G′ will be established at the end of the proof.

In order to construct a block splitting, we need to consider all blocks of G. By [23, Theorem 10.20], the
blocks of G can be labeled by λ ∈ Irr(Z) such that Irr(Bλ) = Irr(G|λ). The block idempotent of Bλ is
just the ordinary character idempotent ϵλ ∈ Z(FZ) (see [23, p. 51]). Note that Z acts by multiplication
on Cl(G). Let ZK := {z ∈ Z : zK = K} ≤ Z be the stabilizer of K ∈ Cl(G). The classes in the orbit
of K can be labeled arbitrarily by Irr(Z/ZK) ≤ Irr(Z), say {Kz : z ∈ Z} = {Kλ : λ ∈ Irr(Z/ZK)}.
We define

Cl(Bλ) := {Kλ : K ∈ Cl(G), ZK ⊆ Ker(λ)}.

Note that for K ∈ Cl(Bλ) and z ∈ Z we have

(Kz)+ϵλ = λ(z)K+ϵλ ∈ F ·K+ϵλ.
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On the other hand, if z ∈ ZK \Ker(λ), then

K+ϵλ = (Kz)+ϵλ = λ(z)K+ϵλ = 0.

It follows easily that Z(Bλ) is spanned by {K+ϵλ : K ∈ Cl(Bλ)}. Since

|Cl(G)| = dimZ(FG) =
∑

λ∈Irr(Z)

dimZ(Bλ) ≤
∑

λ∈Irr(Z)

|Cl(Bλ)| = |Cl(G)|,

we conclude that Cl(G) =
⋃

λ∈Irr(Z)Cl(Bλ) is indeed a block splitting of G (this can also be explained
with the notion of good conjugacy classes in [24, Theorem 5.14]).

We only need to verify the claim for a faithful block B = Bλ, i. e. Ker(λ) = 1 and Z is cyclic. Here
the conjugacy classes K ∈ Cl(B) represent the regular orbits of Z on Cl(G). Thus, for x ∈ K we
have CG(x)/Z = CG/Z(xZ) as desired. Now we fix coset representatives ĝ for every g ∈ G/Z. Then
the equation ĝĥ = α(g, h)ĝh where g, h ∈ G/Z defines a 2-cocycle α ∈ Z2(G/Z,Z). Let β := λ ◦ α ∈
Z2(G/Z,F×). It is well-known that the map g 7→ ĝϵλ induces an algebra isomorphism between the
twisted group algebra Fβ[G/Z] and B. The class sums K+ϵ with K ∈ Cl(B) correspond to the so-
called β-regular class sums of Fβ[G/Z] (these are the only non-vanishing class sums in Fβ[G/Z] and
therefore form a basis of Z(Fβ[G/Z])).

Since β can be regarded as an element of the Schur multiplier H2(G/Z,F×), Fβ[G/Z] is also isomorphic
to a faithful block of a covering group G̃ with cyclic Z̃ ≤ Z(G̃) ∩ G̃′ such that G̃/Z̃ ∼= G/Z. Again
the β-regular class sums correspond to the regular orbits of Z̃ on Cl(G̃). Moreover, we still have
Z̃ = Op′(G̃) ̸= Op(G̃). Hence, we may replace G by G̃ and Z by Z̃. Since B is non-nilpotent, it remains
to show that ∑

K∈Cl(B)

|K|p = |G|pγ(B) > |G|p.

A concrete example to Proposition 14 is the double cover of S3×S3 for p = 3. Here the fusion number
of the unique non-principal block is 10/9 (this is the smallest number larger than 1 that we have
encountered).

If Conjecture 8 can be verified for blocks of p-solvable groups, then it also holds for blocks with
normal defect groups since such blocks are splendid Morita equivalent to blocks of p-solvable groups
by Külshammer [18]. Similarly, Conjecture 8 would follow for blocks with abelian defect groups if
additionally Broué’s Conjecture is true.
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