Fusion invariant characters of p-groups

Benjamin Sambale*

February 3, 2024

Abstract

We consider complex characters of a p-group P, which are invariant under a fusion system \mathcal{F} on P. Extending a theorem of Bárcenas-Cantarero to non-saturated fusion systems, we show that the number of indecomposable \mathcal{F}-invariant characters of P is greater or equal than the number of \mathcal{F}-conjugacy classes of P. We further prove that these two quantities coincide whenever \mathcal{F} is realized by a p-solvable group. On the other hand, we observe that this is false for constrained fusion systems in general. Finally, we construct a saturated fusion system with an indecomposable \mathcal{F}-invariant character, which is not a summand of the regular character of P. This disproves a recent conjecture of Cantarero-Combariza.

Keywords: Fusion systems, invariant characters
AMS classification: 20C15, 20D20

1 Introduction

Let \mathcal{F} be a fusion system (not necessarily saturated) on a finite p-group P (we refer the reader to [1] for terminology). Elements $x, y \in P$ are called \mathcal{F}-conjugate if there exists a morphism $f:\langle x\rangle \rightarrow P$ in \mathcal{F} such that $f(x)=y$. We denote the number of \mathcal{F}-conjugacy classes of P by $k(\mathcal{F})$. A complex class function χ of P is called \mathcal{F}-invariant if χ is constant on the \mathcal{F}-conjugacy classes of P. These characters can often be used to construct new characters of finite groups via the Broué-Puig *-construction introduced in [3]. Further motivation and background can be found in the recent paper of CantareroCombariza [4].

We call an \mathcal{F}-invariant character of P indecomposable if it is not the sum of two (non-zero) \mathcal{F}-invariant characters (this is unrelated to the characters of indecomposable modules). Let $\operatorname{Ind}_{\mathcal{F}}(P)$ be the set of indecomposable \mathcal{F}-invariant characters of P. The following lemma is well-known among experts in lattice theory (it follows from Gordan's lemma), but perhaps less known among representation theorists.

Lemma 1. There are only finitely many indecomposable \mathcal{F}-invariant characters of P.

[^0]Proof. Let $\operatorname{Irr}(P)=\left\{\chi_{1}, \ldots, \chi_{k}\right\}$. For $\psi \in \operatorname{Ind}_{\mathcal{F}}(P)$ let $c(\psi)=\left(\left[\psi, \chi_{i}\right]: i=1, \ldots, k\right) \in \mathbb{N}_{0}^{k}$. We define a partial order on \mathbb{N}_{0}^{k} by $a \leq b: \Longleftrightarrow b-a \in \mathbb{N}_{0}^{k}$. It is easy to see that the set $\left\{c(\psi): \psi \in \operatorname{Ind}_{\mathcal{F}}(P)\right\}$ is an antichain in \mathbb{N}_{0}^{k} with respect to \leq, i. e. no two distinct elements are comparable. Therefore, it is enough to show that every antichain in \mathbb{N}_{0}^{k} is finite.
By way of contradiction, suppose that $c^{(1)}, c^{(2)}, \ldots$ is an infinite antichain in \mathbb{N}_{0}^{k}. We may replace this sequence by an infinite subsequence such that $c_{1}^{(1)} \leq c_{1}^{(2)} \leq \ldots$. This sequence can in turn be replaced by a subsequence such that $c_{2}^{(1)} \leq c_{2}^{(2)} \leq \ldots$. Repeating this process k times yields an infinite sequence $c^{(1)} \leq c^{(2)} \leq \ldots$. But this is impossible since the original sequence was an antichain.

In the theory of lattices, the set $\operatorname{Ind}_{\mathcal{F}}(P)$ is sometimes called the Hilbert basis of the semigroup of \mathcal{F} invariant characters. Since for every $k \geq 2$, the poset \mathbb{N}_{0}^{k} contains antichains of arbitrary finite lengths (e. g. $(n, 1, *, \ldots, *),(n-1,2, *, \ldots, *), \ldots$ for any $n \in \mathbb{N})$, it is not easy to give an upper bound on $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|$. In the last section of this paper we construct examples with $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|>|P|$. However, since there are only finitely many fusion systems on a given p-group P, it is clear that $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|$ can be bounded by a function in $|P|$. A related question for quasi-projective characters has been raised by Willems-Zalesski [13, Question 4.2].

2 The number of indecomposable \mathcal{F}-invariant characters

The following result was shown for saturated fusion systems by Bárcenas-Cantarero [2, Lemma 2.1] using some advanced category theory. Our proof applies to arbitrary fusion systems.

Theorem 2. The space of \mathcal{F}-invariant class functions of P is spanned by $\operatorname{Ind}_{\mathcal{F}}(P)$. In particular, $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right| \geq k(\mathcal{F})$.

Proof. By a theorem of Park [9], there exists a finite group G such that $P \leq G$ and the morphisms of \mathcal{F} are induced by conjugation in G. In particular, $k(\mathcal{F})$ is the number of G-conjugacy classes, which intersect P. Let T be the part of the character table of G, whose columns belong to elements in P. Since the character table is invertible, T has full rank. Hence, the (G-invariant) restrictions χ_{P} for $\chi \in \operatorname{Irr}(G)$ span the space of G-invariant class functions on P. Since each χ_{P} can be decomposed into G-invariant indecomposable characters, the claim follows.

Since Park's result, which we used in the proof, relies on computations in the Burnside ring, we like to offer a conceptually simpler proof for saturated fusion systems:

Proof of Theorem 2 for saturated fusion systems. Let

$$
\zeta=\sum_{\chi \in \operatorname{Irr}(P)} a_{\chi} \chi
$$

be \mathcal{F}-invariant where $a_{\chi} \in \mathbb{C}$ for $\chi \in \operatorname{Irr}(P)$. We define an equivalence relation on $\operatorname{Irr}(P)$ by $\chi \sim \psi$ if and only if there exist positive integers s, t such that $s a_{\chi}=t a_{\psi}$. For an equivalence class $T \subseteq \operatorname{Irr}(P)$ let $\zeta^{(T)}:=\sum_{\chi \in T} a_{\chi} \chi$. There exists a some $z \in \mathbb{C}$ such that $z \zeta^{(T)}$ is a character of P. Since $\zeta=\sum_{T} \zeta^{(T)}$, it suffices to show that $\zeta^{(T)}$ is \mathcal{F}-invariant.

Recall that by Alperin's fusion theorem, every morphism in \mathcal{F} is a composition of automorphisms of some subgroups of P (see [1, Theorem I.3.5]). For every $Q \leq P$, the restricted class function ζ_{Q} is
invariant under $\operatorname{Aut}_{\mathcal{F}}(Q)$. Let $\chi, \psi \in \operatorname{Irr}(P)$ such that $\chi \nsim \psi$. Then, by the definition of \sim, we have $\left[a_{\chi} \chi_{Q}, \tau\right] \neq\left[a_{\psi} \psi_{Q}, \tau\right]$ for every $\tau \in \operatorname{Irr}(Q)$. It follows that each $\left(\zeta^{(T)}\right)_{Q}$ is $\operatorname{Aut}_{\mathcal{F}}(Q)$-invariant. Again by Alperin's fusion theorem, $\zeta^{(T)}$ is \mathcal{F}-invariant.

The argument (Alperin's fusion theorem) in our second proof does not work for arbitrary fusion systems. For instance, $P \cong C_{4} \rtimes C_{4}$ can be embedded (regularly) into the symmetric group S_{16} such that all elements of order 4 in P are conjugate. However, if we choose $x, y \in P$ of order 4 such that $P=\langle x, y\rangle$, then the conjugation of x to y cannot be realized by a composition of automorphisms of subgroups of P. As a matter of fact, the only saturated fusion system on P is the trivial system (see [11, Theorem 1]).

Now we restrict ourselves further to non-exotic saturated fusion systems. Here we can prove a stronger theorem, which resembles the fact that Brauer characters are restrictions of generalized characters (see [8, Corollary 2.16]).

Theorem 3. Let G be a finite group with Sylow p-subgroup P. Then every G-invariant character ζ of P is the restriction of a generalized character of G.

Proof. We extend ζ to a class function $\hat{\zeta}$ of G in the following way: Every $g \in G$ is conjugate to an element of the form $x y=y x$ where $x \in P$ and y is a p^{\prime}-element. We define $\hat{\zeta}(g):=\zeta(x)$ (this is well-defined since ζ is G-invariant). Now we use Brauer's induction theorem to show that $\hat{\zeta}$ is a generalized character of G (along the lines of [8, proof of Lemma 2.15]). To this end, let $N \leq G$ be a nilpotent subgroup with Sylow p-subgroup $Q \unlhd N$. After conjugation, we may assume that $Q \leq P$. Then $\hat{\zeta}_{Q}=\zeta_{Q}$ is a character of $Q \cong N / \mathrm{O}_{p^{\prime}}(N)$ and $\hat{\zeta}_{N}$ is the inflation of ζ_{Q} to N. In particular, $\overline{\hat{\zeta}}_{N}$ is a (generalized) character of N. Hence, $\hat{\zeta}$ is a generalized character of G, which restricts to ζ.

Obviously, every G-invariant character of P is a summand of a restriction of a character of G. However, an indecomposable character is not necessarily a summand of a restriction of an irreducible character of G. A counterexample will be given in the last section of the paper.

The following lemma of Cantarero-Combariza [4, Corollary 2.9] characterizes equality in Theorem 2,
Lemma 4. For every fusion system \mathcal{F} on P we have $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=k(\mathcal{F})$ if and only if every \mathcal{F}-invariant character of P can be decomposed uniquely into indecomposable characters.

Proof. If $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=k(\mathcal{F})$, then $\operatorname{Ind}_{\mathcal{F}}(P)$ is a basis of the space of \mathcal{F}-invariant class functions and the result follows. Now assume that $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|>k(\mathcal{F})$. Since the dimension of the \mathbb{Q}-vectorspace spanned by $\operatorname{Ind}_{\mathcal{F}}(P)$ is bounded by $k(\mathcal{F})$, the set $\operatorname{Ind}_{\mathcal{F}}(P)$ is linearly dependent over \mathbb{Q}. Hence, there exist integers $c_{\psi} \in \mathbb{Z}$ (not all zero) such that

$$
\sum_{\psi \in \operatorname{Ind}_{\mathcal{F}}(P)} c_{\psi} \psi=0 .
$$

Since the degree of each character is positive, not all c_{ψ} can have the same sign. If we bring the negative coefficients to the right hand side, we end up with two distinct decompositions of an \mathcal{F} invariant character.

Cantarero and Combariza [4, Lemma 2.17] have proven that $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=k(\mathcal{F})$ holds for controlled fusion systems (among other cases). A controlled fusion system is realized by a group of the form $P \rtimes H$ for some p^{\prime}-group H. Our main theorem generalizes this result to the larger class of p-solvable groups.

Theorem 5. Let \mathcal{F} be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group G. Then $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=k(\mathcal{F})$.

Proof. We apply Isaacs' theory of π-partial characters, where $\pi=\{p\}$ (see [7, p. 71]). Every indecomposable \mathcal{F}-invariant character χ of P extends uniquely to a class function $\hat{\chi}$ on the set of p-elements of G. By [7, Corollary 3.5], $\hat{\chi}$ is an irreducible p-partial character of G. The number of those characters is exactly $k(\mathcal{F})$ by [7, Theorem 3.3].

We remark that every fusion system of a p-solvable group is constrained by the Hall-Higman lemma. Conversely, by the model theorem [1, Theorem I.4.9], every constrained fusion system is realized by a p-constrained group. However, Theorem 5 does not hold for constrained fusion systems in general as we are about to see.

3 Counterexamples

In [4, table on p. 5206] and [5], the authors list some fusion systems \mathcal{F} where $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|>k(\mathcal{F})$, including the system on $P \cong D_{16}$ of the group $\operatorname{PSL}(2,17)$. This fusion system has two conjugacy classes of essential subgroups. The authors seem to have overlooked the "smaller" fusion system of PGL $(2,7)$ with only one class of essential subgroups (still on D_{16}). With the notation

$$
P=\left\langle x, y \mid x^{8}=y^{2}=1, x^{y}=x^{-1}\right\rangle
$$

the character table of P is:

	1	x	x^{3}	x^{2}	x^{4}	y	$x y$
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	-1	1	1	1	-1
χ_{3}	1	-1	-1	1	1	-1	1
χ_{4}	1	1	1	1	1	-1	-1
χ_{5}	2	0	0	-2	2	0	0
χ_{6}	2	$\sqrt{2}$	$-\sqrt{2}$	0	-2	0	0
χ_{7}	2	$-\sqrt{2}$	$\sqrt{2}$	0	-2	0	0

We may assume that x^{4} and y are \mathcal{F}-conjugate, but the other classes of P are not fused. The \mathcal{F} invariant characters of P must agree on the fifth and sixth column of the character table. Hence, we are looking for non-negative integral vectors orthogonal to $(0,0,1,1,1,-1,-1)$. Now it is easy to see that

$$
\operatorname{Ind}_{\mathcal{F}}(P)=\left\{\chi_{1}, \chi_{2}, \chi_{3}+\chi_{6}, \chi_{3}+\chi_{7}, \chi_{4}+\chi_{6}, \chi_{4}+\chi_{7}, \chi_{5}+\chi_{6}, \chi_{5}+\chi_{7}\right\} .
$$

In particular, $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=8>6=k(\mathcal{F})$.
To turn this into a constrained fusion system, we set $G:=\operatorname{PGL}(2,7)$ and choose an irreducible faithful $\mathbb{F}_{2} G$-module V of dimension 6. Then

$$
\hat{G}:=V \rtimes G=\operatorname{PrimitiveGroup}(64,64)=\operatorname{TransitiveGroup}(16,1802)
$$

(notation from GAP [6]) is a 2-constrained group with Sylow 2-subgroup $\hat{P}:=V \rtimes P$. Let $\hat{\mathcal{F}}$ be the corresponding constrained fusion system. The inflations of the eight G-invariant indecomposable characters of P are $\hat{\mathcal{F}}$-indecomposable. According to the proof of Theorem 2, there must be at least $k(\mathcal{F})-6$ other indecomposable character arsing as summands of $\chi_{\hat{P}}$, where $\chi \in \operatorname{Irr}(\hat{G})$ with $V \nsubseteq \operatorname{Ker}(\chi)$. In particular, $\left|\operatorname{Ind}_{\mathcal{F}}(\hat{P})\right|>k(\hat{\mathcal{F}})$.

In [4, Conjecture 2.19], the authors have conjectured that for saturated fusion systems \mathcal{F}, every indecomposable \mathcal{F}-invariant character of P is a summand of the regular character. As a consequence of Theorem 5, we obtain this for p-solvable groups.

Theorem 6. Let \mathcal{F} be the fusion system on a Sylow p-subgroup P of a p-solvable group. Then every indecomposable \mathcal{F}-invariant character of P is a summand of the regular character of P.

Proof. This follows from Theorem 5 and [4, Remark 2.18]. For the convenience of the reader we repeat the short proof of the latter result: Let ψ be an indecomposable \mathcal{F}-invariant character of P. Let

$$
m:=\max \{[\psi, \chi]: \chi \in \operatorname{Irr}(P)\}
$$

Then ψ is a summand of $m \rho$, where ρ is the regular character of P. By the hypothesis and Lemma 4, $m \rho$ has a unique decomposition into indecomposable \mathcal{F}-invariant characters. Since ρ itself is \mathcal{F}-invariant (remember that $\rho(x)=0$ for all $x \in P \backslash\{1\}$), ψ must appear as a summand of ρ.

On the other hand, we provide a counterexample to [4, Conjecture 2.19]. Let \mathcal{F} be the fusion system on a Sylow 2-subgroup P of the automorphism group of the Mathieu group $G=\operatorname{Aut}\left(M_{22}\right) \cong M_{22} \rtimes C_{2}$. Then $|P|=2^{8}$ and $k(\mathcal{F})=10$. Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \ldots, \chi_{21}\right\}$ and $\operatorname{Irr}(P)=\left\{\lambda_{1}, \ldots, \lambda_{34}\right\}$. Let

$$
A:=\left(\left[\left(\chi_{i}\right)_{P}, \lambda_{j}\right]\right)_{i, j} \in \mathbb{Z}^{34 \times 21}
$$

By Theorem 3, $\operatorname{Ind}_{\mathcal{F}}(P)$ is in one-to-one correspondence to the Hilbert basis of the semigroup

$$
\left\{x \in \mathbb{Z}^{21}: A x \geq 0\right\}
$$

Using the nconvex-package [10] in GAP, we compute $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=25$. Moreover, 14 indecomposable \mathcal{F}-invariant characters are not summands of the regular character of P and six are not summands of restrictions of irreducible characters of G. The source code is available at [12]. The symmetric group $G=S_{12}$ is a counterexample for $p=2,3$. As promised in the introduction, $G=S_{10}$ for $p=2$ provides an example where $\left|\operatorname{Ind}_{\mathcal{F}}(P)\right|=266>256=|P|$.

Acknowledgment

I thank Gabriel Navarro for providing the idea for the proof of Theorem 5. I became aware of the relevance of lattice theory (Hilbert bases) in representation theory by a talk of Wolfgang Willems in Jena, 2015.

References

[1] M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, Vol. 391, Cambridge University Press, Cambridge, 2011.
[2] N. Bárcenas and J. Cantarero, A completion theorem for fusion systems, Israel J. Math. 236 (2020), 501-531.
[3] M. Broué and L. Puig, Characters and local structure in G-algebras, J. Algebra 63 (1980), 306-317.
[4] J. Cantarero and G. Combariza, Uniqueness of factorization for fusion-invariant representations, Comm. Algebra 51 (2023), 5187-5208.
[5] J. Cantarero and J. Gaspar, Fusion-invariant representations for symmetric groups, to appear in Bull. Iran. Math. Soc., arXiv: 2305.17587v1.
[6] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.12.2; 2022, (http: //www.gap-system.org).
[7] I. M. Isaacs, Characters of solvable groups, Graduate Studies in Mathematics, Vol. 189, American Mathematical Society, Providence, RI, 2018.
[8] G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, Vol. 250, Cambridge University Press, Cambridge, 1998.
[9] S. Park, Realizing fusion systems inside finite groups, Proc. Amer. Math. Soc. 144 (2016), 32913294.
[10] K. Saleh and S. Gutsche, NConvex, A Gap package to perform polyhedral computations, Version 2022.09-01, https://homalg-project.github.io/pkg/NConvex.
[11] B. Sambale, Fusion systems on metacyclic 2-groups, Osaka J. Math. 49 (2012), 325-329.
[12] B. Sambale, GAP code to compute indecomposable F-invariant characters, https://github.com/ BrauerSuzuki/GAP-codes/.
[13] W. Willems and A. E. Zalesski, Quasi-projective and quasi-liftable characters, J. Algebra 442 (2015), 548-559.

[^0]: *Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

