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Abstract

We consider complex characters of a p-group P , which are invariant under a fusion system F on
P . Extending a theorem of Bárcenas–Cantarero to non-saturated fusion systems, we show that
the number of indecomposable F-invariant characters of P is greater or equal than the number
of F-conjugacy classes of P . We further prove that these two quantities coincide whenever F is
realized by a p-solvable group. On the other hand, we observe that this is false for constrained
fusion systems in general. Finally, we construct a saturated fusion system with an indecomposable
F-invariant character, which is not a summand of the regular character of P . This disproves a
recent conjecture of Cantarero–Combariza.
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1 Introduction

Let F be a fusion system (not necessarily saturated) on a finite p-group P (we refer the reader to [1]
for terminology). Elements x, y ∈ P are called F-conjugate if there exists a morphism f : ⟨x⟩ → P in
F such that f(x) = y. We denote the number of F-conjugacy classes of P by k(F). A complex class
function χ of P is called F-invariant if χ is constant on the F-conjugacy classes of P . These characters
can often be used to construct new characters of finite groups via the Broué–Puig ∗-construction
introduced in [3]. Further motivation and background can be found in the recent paper of Cantarero–
Combariza [4].

We call an F-invariant character of P indecomposable if it is not the sum of two (non-zero) F-invariant
characters (this is unrelated to the characters of indecomposable modules). Let IndF (P ) be the set
of indecomposable F-invariant characters of P . The following lemma is well-known among experts
in lattice theory (it follows from Gordan’s lemma), but perhaps less known among representation
theorists.

Lemma 1. There are only finitely many indecomposable F-invariant characters of P .
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Proof. Let Irr(P ) = {χ1, . . . , χk}. For ψ ∈ IndF (P ) let c(ψ) = ([ψ, χi] : i = 1, . . . , k) ∈ Nk0. We define
a partial order on Nk0 by a ≤ b :⇐⇒ b − a ∈ Nk0. It is easy to see that the set {c(ψ) : ψ ∈ IndF (P )}
is an antichain in Nk0 with respect to ≤, i. e. no two distinct elements are comparable. Therefore, it is
enough to show that every antichain in Nk0 is finite.

By way of contradiction, suppose that c(1), c(2), . . . is an infinite antichain in Nk0. We may replace this
sequence by an infinite subsequence such that c(1)1 ≤ c

(2)
1 ≤ . . .. This sequence can in turn be replaced

by a subsequence such that c(1)2 ≤ c
(2)
2 ≤ . . .. Repeating this process k times yields an infinite sequence

c(1) ≤ c(2) ≤ . . .. But this is impossible since the original sequence was an antichain.

In the theory of lattices, the set IndF (P ) is sometimes called the Hilbert basis of the semigroup of F-
invariant characters. Since for every k ≥ 2, the poset Nk0 contains antichains of arbitrary finite lengths
(e. g. (n, 1, ∗, . . . , ∗), (n − 1, 2, ∗, . . . , ∗), . . . for any n ∈ N), it is not easy to give an upper bound on
|IndF (P )|. In the last section of this paper we construct examples with |IndF (P )| > |P |. However,
since there are only finitely many fusion systems on a given p-group P , it is clear that |IndF (P )| can
be bounded by a function in |P |. A related question for quasi-projective characters has been raised by
Willems–Zalesski [13, Question 4.2].

2 The number of indecomposable F-invariant characters

The following result was shown for saturated fusion systems by Bárcenas–Cantarero [2, Lemma 2.1]
using some advanced category theory. Our proof applies to arbitrary fusion systems.

Theorem 2. The space of F-invariant class functions of P is spanned by IndF (P ). In particular,
|IndF (P )| ≥ k(F).

Proof. By a theorem of Park [9], there exists a finite group G such that P ≤ G and the morphisms of
F are induced by conjugation in G. In particular, k(F) is the number of G-conjugacy classes, which
intersect P . Let T be the part of the character table of G, whose columns belong to elements in P .
Since the character table is invertible, T has full rank. Hence, the (G-invariant) restrictions χP for
χ ∈ Irr(G) span the space of G-invariant class functions on P . Since each χP can be decomposed into
G-invariant indecomposable characters, the claim follows.

Since Park’s result, which we used in the proof, relies on computations in the Burnside ring, we like
to offer a conceptually simpler proof for saturated fusion systems:

Proof of Theorem 2 for saturated fusion systems. Let

ζ =
∑

χ∈Irr(P )

aχχ

be F-invariant where aχ ∈ C for χ ∈ Irr(P ). We define an equivalence relation on Irr(P ) by χ ∼ ψ if
and only if there exist positive integers s, t such that saχ = taψ. For an equivalence class T ⊆ Irr(P ) let
ζ(T ) :=

∑
χ∈T aχχ. There exists a some z ∈ C such that zζ(T ) is a character of P . Since ζ =

∑
T ζ

(T ),
it suffices to show that ζ(T ) is F-invariant.

Recall that by Alperin’s fusion theorem, every morphism in F is a composition of automorphisms of
some subgroups of P (see [1, Theorem I.3.5]). For every Q ≤ P , the restricted class function ζQ is

2



invariant under AutF (Q). Let χ, ψ ∈ Irr(P ) such that χ ̸∼ ψ. Then, by the definition of ∼, we have
[aχχQ, τ ] ̸= [aψψQ, τ ] for every τ ∈ Irr(Q). It follows that each (ζ(T ))Q is AutF (Q)-invariant. Again
by Alperin’s fusion theorem, ζ(T ) is F-invariant.

The argument (Alperin’s fusion theorem) in our second proof does not work for arbitrary fusion systems.
For instance, P ∼= C4 ⋊ C4 can be embedded (regularly) into the symmetric group S16 such that all
elements of order 4 in P are conjugate. However, if we choose x, y ∈ P of order 4 such that P = ⟨x, y⟩,
then the conjugation of x to y cannot be realized by a composition of automorphisms of subgroups of P .
As a matter of fact, the only saturated fusion system on P is the trivial system (see [11, Theorem 1]).

Now we restrict ourselves further to non-exotic saturated fusion systems. Here we can prove a stronger
theorem, which resembles the fact that Brauer characters are restrictions of generalized characters (see
[8, Corollary 2.16]).

Theorem 3. Let G be a finite group with Sylow p-subgroup P . Then every G-invariant character ζ of
P is the restriction of a generalized character of G.

Proof. We extend ζ to a class function ζ̂ of G in the following way: Every g ∈ G is conjugate to
an element of the form xy = yx where x ∈ P and y is a p′-element. We define ζ̂(g) := ζ(x) (this
is well-defined since ζ is G-invariant). Now we use Brauer’s induction theorem to show that ζ̂ is a
generalized character of G (along the lines of [8, proof of Lemma 2.15]). To this end, let N ≤ G be
a nilpotent subgroup with Sylow p-subgroup Q ⊴N . After conjugation, we may assume that Q ≤ P .
Then ζ̂Q = ζQ is a character of Q ∼= N/Op′(N) and ζ̂N is the inflation of ζQ to N . In particular, ζ̂N is
a (generalized) character of N . Hence, ζ̂ is a generalized character of G, which restricts to ζ.

Obviously, every G-invariant character of P is a summand of a restriction of a character of G. However,
an indecomposable character is not necessarily a summand of a restriction of an irreducible character
of G. A counterexample will be given in the last section of the paper.

The following lemma of Cantarero–Combariza [4, Corollary 2.9] characterizes equality in Theorem 2.

Lemma 4. For every fusion system F on P we have |IndF (P )| = k(F) if and only if every F-invariant
character of P can be decomposed uniquely into indecomposable characters.

Proof. If |IndF (P )| = k(F), then IndF (P ) is a basis of the space of F-invariant class functions and the
result follows. Now assume that |IndF (P )| > k(F). Since the dimension of the Q-vectorspace spanned
by IndF (P ) is bounded by k(F), the set IndF (P ) is linearly dependent over Q. Hence, there exist
integers cψ ∈ Z (not all zero) such that ∑

ψ∈IndF (P )

cψψ = 0.

Since the degree of each character is positive, not all cψ can have the same sign. If we bring the
negative coefficients to the right hand side, we end up with two distinct decompositions of an F-
invariant character.

Cantarero and Combariza [4, Lemma 2.17] have proven that |IndF (P )| = k(F) holds for controlled
fusion systems (among other cases). A controlled fusion system is realized by a group of the form
P ⋊H for some p′-group H. Our main theorem generalizes this result to the larger class of p-solvable
groups.
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Theorem 5. Let F be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group G.
Then |IndF (P )| = k(F).

Proof. We apply Isaacs’ theory of π-partial characters, where π = {p} (see [7, p. 71]). Every indecom-
posable F-invariant character χ of P extends uniquely to a class function χ̂ on the set of p-elements of
G. By [7, Corollary 3.5], χ̂ is an irreducible p-partial character of G. The number of those characters
is exactly k(F) by [7, Theorem 3.3].

We remark that every fusion system of a p-solvable group is constrained by the Hall–Higman lemma.
Conversely, by the model theorem [1, Theorem I.4.9], every constrained fusion system is realized by a
p-constrained group. However, Theorem 5 does not hold for constrained fusion systems in general as
we are about to see.

3 Counterexamples

In [4, table on p. 5206] and [5], the authors list some fusion systems F where |IndF (P )| > k(F),
including the system on P ∼= D16 of the group PSL(2, 17). This fusion system has two conjugacy
classes of essential subgroups. The authors seem to have overlooked the “smaller” fusion system of
PGL(2, 7) with only one class of essential subgroups (still on D16). With the notation

P = ⟨x, y | x8 = y2 = 1, xy = x−1⟩

the character table of P is:

1 x x3 x2 x4 y xy

χ1 1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 1 −1
χ3 1 −1 −1 1 1 −1 1
χ4 1 1 1 1 1 −1 −1
χ5 2 0 0 −2 2 0 0

χ6 2
√
2 −

√
2 0 −2 0 0

χ7 2 −
√
2

√
2 0 −2 0 0

We may assume that x4 and y are F-conjugate, but the other classes of P are not fused. The F-
invariant characters of P must agree on the fifth and sixth column of the character table. Hence, we
are looking for non-negative integral vectors orthogonal to (0, 0, 1, 1, 1,−1,−1). Now it is easy to see
that

IndF (P ) = {χ1, χ2, χ3 + χ6, χ3 + χ7, χ4 + χ6, χ4 + χ7, χ5 + χ6, χ5 + χ7}.

In particular, |IndF (P )| = 8 > 6 = k(F).

To turn this into a constrained fusion system, we set G := PGL(2, 7) and choose an irreducible faithful
F2G-module V of dimension 6. Then

Ĝ := V ⋊G = PrimitiveGroup(64, 64) = TransitiveGroup(16, 1802)

(notation from GAP [6]) is a 2-constrained group with Sylow 2-subgroup P̂ := V ⋊ P . Let F̂ be
the corresponding constrained fusion system. The inflations of the eight G-invariant indecomposable
characters of P are F̂-indecomposable. According to the proof of Theorem 2, there must be at least
k(F)−6 other indecomposable character arsing as summands of χP̂ , where χ ∈ Irr(Ĝ) with V ⊈ Ker(χ).
In particular, |IndF (P̂ )| > k(F̂).
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In [4, Conjecture 2.19], the authors have conjectured that for saturated fusion systems F , every in-
decomposable F-invariant character of P is a summand of the regular character. As a consequence of
Theorem 5, we obtain this for p-solvable groups.

Theorem 6. Let F be the fusion system on a Sylow p-subgroup P of a p-solvable group. Then every
indecomposable F-invariant character of P is a summand of the regular character of P .

Proof. This follows from Theorem 5 and [4, Remark 2.18]. For the convenience of the reader we repeat
the short proof of the latter result: Let ψ be an indecomposable F-invariant character of P . Let

m := max
{
[ψ, χ] : χ ∈ Irr(P )

}
.

Then ψ is a summand of mρ, where ρ is the regular character of P . By the hypothesis and Lemma 4, mρ
has a unique decomposition into indecomposable F-invariant characters. Since ρ itself is F-invariant
(remember that ρ(x) = 0 for all x ∈ P \ {1}), ψ must appear as a summand of ρ.

On the other hand, we provide a counterexample to [4, Conjecture 2.19]. Let F be the fusion system on
a Sylow 2-subgroup P of the automorphism group of the Mathieu group G = Aut(M22) ∼= M22 ⋊ C2.
Then |P | = 28 and k(F) = 10. Let Irr(G) = {χ1, . . . , χ21} and Irr(P ) = {λ1, . . . , λ34}. Let

A :=
(
[(χi)P , λj ]

)
i,j

∈ Z34×21.

By Theorem 3, IndF (P ) is in one-to-one correspondence to the Hilbert basis of the semigroup

{x ∈ Z21 : Ax ≥ 0}.

Using the nconvex-package [10] in GAP, we compute |IndF (P )| = 25. Moreover, 14 indecomposable
F-invariant characters are not summands of the regular character of P and six are not summands of
restrictions of irreducible characters of G. The source code is available at [12]. The symmetric group
G = S12 is a counterexample for p = 2, 3. As promised in the introduction, G = S10 for p = 2 provides
an example where |IndF (P )| = 266 > 256 = |P |.
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