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Abstract

We consider complex characters of a p-group P, which are invariant under a fusion system F on
P. Extending a theorem of Barcenas—Cantarero to non-saturated fusion systems, we show that
the number of indecomposable F-invariant characters of P is greater or equal than the number
of F-conjugacy classes of P. We further prove that these two quantities coincide whenever F is
realized by a p-solvable group. On the other hand, we observe that this is false for constrained
fusion systems in general. Finally, we construct a saturated fusion system with an indecomposable
F-invariant character, which is not a summand of the regular character of P. This disproves a
recent conjecture of Cantarero-Combariza.
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1 Introduction

A fusion system F on a finite p-group P is a category, whose objects are the subgroups of P and
whose morphisms are injective group homomorphisms satisfying certain technical conditions (we refer
the reader to [I] for the details). For the moment, we do not require that F is saturated. Elements
x,y € P are called F-conjugate if there exists a morphism f : (z) — P in F such that f(x) = y. We
denote the number of F-conjugacy classes of P by k(F). A complex class function x of P is called
F-invariant if x is constant on the F-conjugacy classes of P. These characters can often be used to
construct new characters of finite groups via the Broué-Puig *-construction introduced in [3]. Further
motivation and background can be found in the recent paper of Cantarero-Combariza [4].

We call an F-invariant character of P indecomposable if it is not the sum of two non-zero F-invariant
characters (this is unrelated to the characters of indecomposable modules of the group algebra). Let
Indz(P) be the set of indecomposable F-invariant characters of P. In the theory of lattices, Indr(P)
is sometimes called the Hilbert basis of the semigroup of F-invariant characters. As a consequence,

Indz(P) is finite (see below).

Our first theorem gives a lower bound on |Indz(P)|. This was previously proved by Bércenas and
Cantarero in [2, Lemma 2.1| for saturated fusion systems.

Theorem 1. The space of F-invariant class functions of P is spanned by Indz(P). In particular,
Indz(P)| > k(F).
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Cantarero and Combariza have proven in [4, Lemma 2.17] that |Indz(P)| = k(F) holds for controlled
fusion systems (among other cases). A controlled fusion system is realized by a group of the form
P x H for some p’-group H. Our second theorem generalizes this result to the larger class of p-solvable
groups.

Theorem 2. Let F be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group G.
Then |Indz(P)| = k(F).

In the last section of this paper, we construct examples of saturated constrained fusion systems with
Ind#(P)| > |P| by making use of GAP [6]. Since there are only finitely many fusion systems on a given
p-group P, it is clear that |Indz(P)| can be bounded by a function in |P|. We do not know how to
construct such a function explicitly. A related question for quasi-projective characters has been raised
by Willems—Zalesski [14, Question 4.2].

In [4, Conjecture 2.19|, Cantarero and Combariza have conjectured that for a saturated fusion system,
every J-invariant indecomosable character is a summand of the regular character of P. In the last
section, we exhibit a counterexample to this conjecture.

2 The number of indecomposable F-invariant characters

As in the introduction, F denotes a fusion system on a finite p-group P for the remainder of the paper.
Our notation for characters follows Navarro’s book [9]. In particular, if y is a character of a group G
and P < G, then yp denotes the restriction of y to P. Moreover, for characters x, v of GG, the usual
scalar product is denoted by [x, ¥].

The following lemma is well-known among experts in lattice theory (it follows from Gordan’s lemma,
see [13 Theorem 16.4]), but perhaps less known among representation theorists.

Lemma 3. There are only finitely many indecomposable F-invariant characters of P.

Proof. Let Trr(P) = {x1,...,xx}- For ¢ € Indz(P) let c(¢)) = ([, xi] i = 1,...,k) € N§. We define
a partial order on N’S by a < b:i<= b—a € N’g. For distinct characters 1,v’ € Indz(P), we have
c() £ e(y¢'), since otherwise ¢' = (1" — 1) + ¢ would be a non-trivial decomposition of F-invariant
characters. Therefore, {c(¢) : ¢ € Indz(P)} is an antichain in NE with respect to <, i.e. no two

distinct elements are comparable. Therefore, it is enough to show that every antichain in ng is finite.
2) ... is an infinite antichain in ng. We may replace this

sequence by an infinite subsequence such that cgl) < ng) < .... This sequence can in turn be replaced

by a subsequence such that cgl) < céQ) < .... Repeating this process k times yields an infinite sequence

¢ < ¢ < ... But this is impossible since the original sequence was an antichain. O

By way of contradiction, suppose that @ ¢l

Since for every k > 2, the poset NE contains antichains of arbitrary finite lengths (e.g. (n,1,%,...,%),
(n—1,2,%,...,%),... for any n € N), it is not easy to give an upper bound on [Indz(P)|.

We now prove the first theorem stated in the introduction.



Proof of[Theorem 1. By a theorem of Park [10], there exists a finite group G such that P < G and the
morphisms of F are induced by conjugation in G. In particular, k(F) is the number of G-conjugacy
classes which intersect P. Let T" be the part of the character table of GG, whose columns correspond
to elements in P. Since the character table is invertible, T has full rank. Hence, the (G-invariant)
restrictions xp for x € Irr(G) span the space of G-invariant class functions on P. Since each yp can
be decomposed into G-invariant indecomposable characters, the claim follows. O

Next we restrict ourselves to saturated fusion systems arising from a finite group with Sylow p-subgroup
P (those fusion systems are sometimes called non-ezxotic). Here we can prove a stronger theorem, which
resembles the fact that Brauer characters are restrictions of generalized characters (see [8, Corol-
lary 2.16]).

Theorem 4. Let G be a finite group with Sylow p-subgroup P. Then every G-invariant character ¢ of
P is the restriction of a generalized character of G.

Proof. We extend ( to a class function é of G in the following way: Every g € G is conjugate to an
element of the form zy = yz where z € P and y is a p/-element. We define ¢ (9) := ((x) (this is
well-defined since ( is G-invariant). Now we use Brauer’s characterization of characters to show that ¢
is a generalized character of G (see [9, Corollary 7.12]). To this end, let N < G be a nilpotent subgroup
with Sylow p-subgroup @ < N. After conjugation, we may assume that ¢Q < P. Then fQ = (g is a
character of @Q = N/O,(N) and Cx is the inflation of (o to N. In particular, Cn is a (generalized)
character of N. Hence, é is a generalized character of G, which restricts to (. O

Obviously, every G-invariant character of P is a summand of a restriction of a character of G. However,
an indecomposable character is not necessarily a summand of a restriction of an irreducible character
of G. A counterexample will be given in the last section of the paper.

The following lemma of Cantarero-Combariza [4, Corollary 2.9] characterizes equality in [Theorem 1}
We include the short proof for the convenience of the reader.

Lemma 5. For every fusion system F on P we have |Indz(P)| = k(F) if and only if every F-invariant
character of P can be decomposed uniquely into indecomposable characters.

Proof. If |Indz(P)| = k(F), then Ind#(P) is a basis of the space of F-invariant class functions and the
result follows. Now assume that [Indz(P)| > k(F). Since the dimension of the Q-vectorspace spanned
by Indz(P) is bounded by k(F), the set Indz(P) is linearly dependent over Q. Hence, there exist
integers ¢y € Z (not all zero) such that

Z wa =0.
YeInd #(P)

Since the degree of each character is positive, not all ¢, can have the same sign. If we bring the
negative coefficients to the right hand side, we end up with two distinct decompositions of an F-
invariant character. O

We turn to the proof of our second main theorem.



Proof of[Theorem 3 We apply Isaacs’ theory of m-partial characters, where 7 = {p} (see [7, p. 71]).
Every indecomposable F-invariant character xy of P extends uniquely to a class function y on the set

of p-elements of G. By [7, Corollary 3.5], x is an irreducible p-partial character of G. The number of
those characters is exactly k(F) by [7, Theorem 3.3]. O

We remark that every fusion system of a p-solvable group is constrained. Conversely, by the model
theorem [Il Theorem 1.4.9|, every constrained fusion system is realized by a p-constrained group.
However, does not hold for constrained fusion systems in general as we will see in the next
section.

As a consequence of we obtain the following extension of some results in [4].

Theorem 6. Let F be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group.
Then every indecomposable F-invariant character of P is a summand of the reqular character of P.

Proof. This follows from and [4, Remark 2.18]. For the convenience of the reader we repeat
the short proof of the latter result: Let ¢) be an indecomposable F-invariant character of P. Let

m :=max{ [, x] : x € Irr(P)}.

Then ¢ is a summand of mp, where p is the regular character of P. By the hypothesis and [Lemma 5] mp
has a unique decomposition into indecomposable F-invariant characters. Since p itself is F-invariant
(remember that p(z) =0 for all x € P\ {1}), ¥ must appear as a summand of p. O

3 Counterexamples

In [4 table on p. 5206] and [5], the authors list some fusion systems F where [Indz(P)| > k(F),
including the system on P = D4 of the group PSL(2,17). This fusion system has two conjugacy
classes of essential subgroups. The authors seem to have overlooked the “smaller” fusion system of
PGL(2,7) with only one class of essential subgroups (still on Djg). With the notation

P=(z,y|a®=y*=1, 2av =271,

the character table of P is:

3 2 4

1 x T ¢ | x y | xy
vill] 1 1 |11 11
x2 | 1| —1 -1 1 1 1 |-1
xs|1| =1 ] -1 | 1|1 —-1|1
xa | 1 1 1 1 1 —-1|-1
X512 0 0 |-21 2 010
x6 2| V2 |—vV2| 0 ]-2 0] 0
X712/ -vV2] V2|0 ]-2 0] 0

We may assume that z* and y are F-conjugate, but the other classes of P are not fused. The F-
invariant characters of P must agree on the fifth and sixth column of the character table. Hence, we
are looking for non-negative integral vectors orthogonal to (0,0,1,1,1,—1,—1). Now it is easy to see
that

Ind#(P) = {x1, x2, X3+ X6, X3+ X7, Xa+ X6, Xa+ X7, X5+ X6, X5+ X7}



In particular, [Indz(P)| =8 > 6 = k(F).

To turn this into a constrained fusion system, we set G := PGL(2, 7) and choose an irreducible faithful
FoG-module V' of dimension 6. Then

G =V x G = PrimitiveGroup(64, 64) = TransitiveGroup(16, 1802)

(notation from GAP [6]) is a 2-constrained group with Sylow 2-subgroup P := V x P. Let F be
the corresponding constrained fusion system. The inflations of the eight G-invariant indecomposable
characters of P are ﬁ—indeeomposable. By the proof of we may construct further F-
indecomposable characters by restricting characters y € Irr(G) with V' ¢ Ker(x) to P. The space
spanned by those restrictions has dimension at least k(F)—k(F) = k(F)—6. In particular, [Indz(P)| >
k(F).

Finally, we provide a counterexample to [4, Conjecture 2.19| as claimed in the introduction. Let F
be the fusion system on a Sylow 2-subgroup P of the automorphism group of the Mathieu group
G = Aut(May) = Mys x Cy. Then |P| = 28, Let Irr(G) = {x1, ..., x21} and Irr(P) = {\1,..., A34}. It
can be checked with GAP that k(F) = 10. Let

A= ([(Xj)P’)\i])i,j € Z34X21.

By every ¢ € Indz(P) is the restriction of some generalized character ¢ of G. Setting
x:= ([1h, xi])i € Z*', we obtain Az = ([¢,7;]); > 0. Hence, x belongs to the semigroup

S :={x ez : Az > 0}.

Moreover, since ( is indecomposable, x is a member of a Hilbert basis H of S. We remark that H
is not unique, because there exist vectors y with Ay = 0. However, if y € H satisfies Az = Ay,
then x = y, since otherwise z = (z — y) + y would be a non-trivial decomposition of x in S. In this
way, H corresponds to Indz(P). Using the nconvex-package [11] in GAP, we compute H and obtain
|H| = |Ind#(P)| = 25. The source code is available at [12]. Moreover, 14 indecomposable F-invariant
characters are not summands of the regular character of P and six are not summands of restrictions
of irreducible characters of G. It would take too much space to print these characters here, but we
exhibit at least one indecomposable character for illustration:

Ci= M+ A+ A3 +20+ A5+ Xg + A7+ 2h8 + Ag + 2A10 + A11 + 20,

The labeling is chosen in such a way that A1,..., s have degree 1, A5, ..., Ag have degree 2, Ag, A\1g
have degree 4, and A11, A12 have degree 8. Since A4 occurs with multiplicity 2, ¢ is not a summand of
the regular character of P.

The symmetric group G = Sis is a counterexample for p = 2,3. As promised in the introduction,
G = Sy for p =2 provides an example where |Indz(P)| = 266 > 256 = |P|.
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