2-Blocks with minimal nonabelian defect groups

Benjamin Sambale
Mathematisches Institut
Friedrich-Schiller-Universität
07743 Jena
Germany
benjamin.sambale@uni-jena.de

May 23, 2011

Abstract

We study numerical invariants of 2-blocks with minimal nonabelian defect groups. These groups were classified by Rédei (see [41). If the defect group is also metacyclic, then the block invariants are known (see 43]). In the remaining cases there are only two (infinite) families of "interesting" defect groups. In all other cases the blocks are nilpotent. We prove Brauer's $k(B)$-conjecture and the Olsson-conjecture for all 2-blocks with minimal nonabelian defect groups. For one of the two families we also show that Alperin's weight conjecture and Dade's conjecture is satisfied. This paper is a part of the author's PhD thesis.

Keywords: blocks of finite groups, minimal nonabelian defect groups, Alperin's conjecture, Dade's conjecture.

Contents

3.1 The B-subsections . 3
3.2 The numbers $k(B), k_{i}(B)$ and $l(B)$. 4
3.3 Generalized decomposition numbers . 6
3.4 The Cartan matrix . 9
3.5 Dade’s conjecture . 11
3.6 Alperin's weight conjecture . 13
3.7 The gluing problem. 14

4 The case $r=s>1$ 14
4.1 The B-subsections . 14
4.2 The gluing problem . 17
4.3 Special cases . 18

1 Introduction

Let R be a discrete complete valuation ring with quotient field K of characteristic 0 . Moreover, let (π) be the maximal ideal of R and $F:=R /(\pi)$. We assume that F is algebraically closed of characteristic 2 . We fix a finite group G, and assume that K contains all $|G|$-th roots of unity. Let B be a block of $R G$ with defect group D. We
denote the number of irreducible ordinary characters of B by $k(B)$. These characters split in $k_{i}(B)$ characters of height $i \in \mathbb{N}_{0}$. Similarly, let $k^{i}(B)$ be the number of characters of defect $i \in \mathbb{N}_{0}$. Finally, let $l(B)$ be the number of irreducible Brauer characters of B. The defect group D is called minimal nonabelian if every proper subgroup of D is abelian, but not D itself. Rédei has shown that D is isomorphic to one of the following groups (see 41]):
(i) $\left\langle x, y \mid x^{2^{r}}=y^{2^{s}}=1, x y x^{-1}=y^{1+2^{s-1}}\right\rangle$, where $r \geq 1$ and $s \geq 2$,
(ii) $\left\langle x, y \mid x^{2^{r}}=y^{2^{s}}=[x, y]^{2}=[x, x, y]=[y, x, y]=1\right\rangle$, where $r \geq s \geq 1,[x, y]:=x y x^{-1} y^{-1}$ and $[x, x, y]:=$ $[x,[x, y]]$,
(iii) Q_{8}.

In the first and last case D is also metacyclic. In this case B is well understood (see 43). Thus, we may assume that D has the form (iii).

2 Fusion systems

To analyse the possible fusion systems on D we start with a group theoretical lemma.
Lemma 2.1. Let $z:=[x, y]$. Then the following hold:
(i) $|D|=2^{r+s+1}$.
(ii) $\Phi(D)=\mathrm{Z}(D)=\left\langle x^{2}, y^{2}, z\right\rangle \cong C_{2^{r-1}} \times C_{2^{s-1}} \times C_{2}$.
(iii) $D^{\prime}=\langle z\rangle \cong C_{2}$.
(iv) $|\operatorname{Irr}(D)|=5 \cdot 2^{r+s-2}$.
(v) If $r=s=1$, then $D \cong D_{8}$. For $r \geq 2$ the maximal subgroups of D are given by

$$
\begin{aligned}
\left\langle x^{2}, y, z\right\rangle & \cong C_{2^{r-1}} \times C_{2^{s}} \times C_{2} \\
\left\langle x, y^{2}, z\right\rangle & \cong C_{2^{r}} \times C_{2^{s-1}} \times C_{2} \\
\left\langle x y, x^{2}, z\right\rangle & \cong C_{2^{r}} \times C_{2^{s-1}} \times C_{2}
\end{aligned}
$$

We omit the (elementary) proof of this lemma. However, notice that $\left|P^{\prime}\right|=2$ and $|P: \Phi(P)|=|P: \mathrm{Z}(P)|=p^{2}$ hold for every minimal nonabelian p-group P. Rédei has also shown that for different pairs (r, s) one gets nonisomorphic groups. This gives precisely $\left[\frac{n-1}{2}\right]$ isomorphism classes of these groups of order 2^{n}. For $r \neq 1$ (that is $|D| \geq 16$) the structure of the maximal subgroups shows that all these groups are nonmetacyclic.
Now we investigate the automorphism groups.
Lemma 2.2. The automorphism group $\operatorname{Aut}(D)$ is a 2 -group, if and only if $r \neq s$ or $r=s=1$.
Proof. If $r \neq s$ or $r=s=1$, then there exists a characteristic maximal subgroup of D by Lemma 2.1 V). In these cases $\operatorname{Aut}(D)$ must be a 2 -group. Thus, we may assume $r=s \geq 2$. Then one can show that the map $x \mapsto y, y \mapsto x^{-1} y^{-1}$ is an automorphism of order 3 .

Lemma 2.3. Let $P \cong C_{2^{n_{1}}} \times \ldots \times C_{2^{n_{k}}}$ with $n_{1}, \ldots, n_{k}, k \in \mathbb{N}$. Then $\operatorname{Aut}(P)$ is a 2 -group, if and only if the n_{i} are pairwise distinct.

Proof. See for example Lemma 2.7 in 34.

Now we are able to decide, when a fusion system on D is nilpotent.
Theorem 2.4. Let \mathcal{F} be a fusion system on D. Then \mathcal{F} is nilpotent or $s=1$ or $r=s$. If $r=s \geq 2$, then \mathcal{F} is controlled by D.

Proof. We assume $s \neq 1$. Let $Q<D$ be an \mathcal{F}-essential subgroup. Since Q is also \mathcal{F}-centric, we get $\mathrm{C}_{P}(Q)=Q$. This shows that Q is a maximal subgroup of D. By Lemma 2.1 v) and Lemma 2.3, one of the following holds:
(i) $r=2(=s)$ and $Q \in\left\{\left\langle x^{2}, y, z\right\rangle,\left\langle x, y^{2}, z\right\rangle,\left\langle x y, x^{2}, z\right\rangle\right\}$,
(ii) $r>s=2$ and $Q \in\left\{\left\langle x, y^{2}, z\right\rangle,\left\langle x y, x^{2}, z\right\rangle\right\}$,
(iii) $r=s+1$ and $Q=\left\langle x^{2}, y, z\right\rangle$.

In all cases $\Omega(Q) \subseteq \mathrm{Z}(P)$. Let us consider the action of $\operatorname{Aut}_{\mathcal{F}}(Q)$ on $\Omega(Q)$. The subgroup $1 \neq P / Q=$ $\mathrm{N}_{P}(Q) / \mathrm{C}_{P}(Q) \cong \operatorname{Aut}_{P}(Q) \leq \operatorname{Aut}_{\mathcal{F}}(Q)$ acts trivially on $\Omega(Q)$. On the other hand every nontrivial automorphism of odd order acts nontrivially on $\Omega(Q)$ (see for example 8.4.3 in [19]). Hence, the kernel of this action is a nontrivial normal 2-subgroup of $\operatorname{Aut}_{\mathcal{F}}(Q)$. In particular $\mathrm{O}_{2}\left(\operatorname{Aut}_{\mathcal{F}}(Q)\right) \neq 1$. But then $\operatorname{Aut}_{\mathcal{F}}(Q)$ cannot contain a strongly 2 -embedded subgroup.

This shows that there are no \mathcal{F}-essential subgroups. Now the claim follows from Lemma 2.2 and Alperin's fusion theorem.

Now we consider a kind of converse. If $r=s=1$, then there are nonnilpotent fusion systems on D. In the case $r=s \geq 2$ one can construct a nonnilpotent fusion system with a suitable semidirect product (see Lemma 2.2). We show that there is also a nonnilpotent fusion system in the case $r>s=1$.

Proposition 2.5. If $s=1$, then there exists a nonnilpotent fusion system on D.
Proof. We may assume $r \geq 2$. Let A_{4} be the alternating group of degree 4, and let $H:=\langle\widetilde{x}\rangle \cong C_{2^{r}}$. Moreover, let $\varphi: H \rightarrow \operatorname{Aut}\left(A_{4}\right) \cong S_{4}$ such that $\varphi_{\tilde{x}} \in \operatorname{Aut}\left(A_{4}\right)$ has order 4 . Write $\widetilde{y}:=(12)(34) \in A_{4}$ and choose φ such that $\varphi_{\widetilde{x}}(\widetilde{y}):=(13)(24)$. Finally, let $G:=A_{4} \rtimes_{\varphi} H$. Since all 4-cycles in S_{4} are conjugate, G is uniquely determined up to isomorphism. Because $[\widetilde{x}, \widetilde{y}]=(13)(24)(12)(34)=(14)(23)$, we get $\langle\widetilde{x}, \widetilde{y}\rangle \cong D$. The fusion system $\mathcal{F}_{G}(D)$ is nonnilpotent, since A_{4} (and therefore G) is not 2-nilpotent.

3 The case $r>s=1$

Now we concentrate on the case $r>s=1$, i.e.

$$
D:=\left\langle x, y \mid x^{2^{r}}=y^{2}=[x, y]^{2}=[x, x, y]=[y, x, y]=1\right\rangle
$$

with $r \geq 2$. As before $z:=[x, y]$. We also assume that B is a nonnilpotent block. By Lemma 2.2, Aut (D) is a 2 -group, and the inertial index $t(B)$ of B equals 1 .

3.1 The B-subsections

Olsson has already obtained the conjugacy classes of so called B-subsections (see [34). However, his results contain errors. For example he missed the necessary relations $[x, x, y]$ and $[y, x, y]$ in the definition of D.

In the next lemma we denote by $\mathrm{Bl}(R H)$ the set of blocks of a finite group H. If $H \leq G$ and $b \in \mathrm{Bl}(R H)$, then b^{G} is the Brauer correspondent of b (if exists). Moreover, we use the notion of subpairs and subsections (see [36]).
Lemma 3.1. Let $b \in \operatorname{Bl}\left(R D \mathrm{C}_{G}(D)\right)$ be a Brauer correspondent of B. For $Q \leq D$ let $b_{Q} \in \operatorname{Bl}\left(R Q \mathrm{C}_{G}(Q)\right)$ such that $\left(Q, b_{Q}\right) \leq(D, b)$. Set $\mathcal{T}:=Z(D) \cup\left\{x^{i} y^{j}: i, j \in \mathbb{Z}, i\right.$ odd $\}$. Then

$$
\bigcup_{a \in \mathcal{T}}\left\{\left(a, b_{\mathrm{C}_{D}(a)}^{\mathrm{C}_{G}(a)}\right)\right\}
$$

is a system of representatives for the conjugacy classes of B-subsections. Moreover, $|\mathcal{T}|=2^{r+1}$.
Proof. If $r=2$, then the claim follows from Proposition 2.14 in 34. For $r \geq 3$ the same argument works. However, Olsson refers wrongly to Proposition 2.11 (the origin of this mistake already lies in Lemma 2.8).

From now on we write $b_{a}:=b_{\mathrm{C}_{D}(a)}^{\mathrm{C}_{G}(a)}$ for $a \in \mathcal{T}$.
Lemma 3.2. Let $P \cong C_{2^{s}} \times C_{2}^{2}$ with $s \in \mathbb{N}$, and let α be an automorphism of P of order 3 . Then $\mathrm{C}_{P}(\alpha):=$ $\{b \in P: \alpha(b)=b\} \cong C_{2}$.

Proof. We write $P=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$ with $|\langle a\rangle|=2^{s}$. It is well known that the kernel of the restriction map $\operatorname{Aut}(P) \rightarrow \operatorname{Aut}(P / \Phi(P))$ is a 2-group. Since $|\operatorname{Aut}(P / \Phi(P))|=|\mathrm{GL}(3,2)|=168=2^{3} \cdot 3 \cdot 7$, it follows that $|\operatorname{Aut}(P)|$ is divisible by 3 only once. In particular every automorphism of P of order 3 is conjugate to α or α^{-1}. Thus, we may assume $\alpha(a)=a, \alpha(b)=c$ and $\alpha(c)=b c$. Then $\mathrm{C}_{P}(\alpha)=\langle a\rangle \cong C_{2}$.

3.2 The numbers $k(B), k_{i}(B)$ and $l(B)$

The next step is to determine the numbers $l\left(b_{a}\right)$. The case $r=2$ needs special attention, because in this case D contains an elementary abelian maximal subgroup of order 8 . We denote the inertial group of a block $b \in \operatorname{Bl}(R H)$ with $H \unlhd G$ by $\mathrm{T}_{G}(b)$.

Lemma 3.3. There is an element $c \in \mathbb{Z}(D)$ of order 2^{r-1} such that $l\left(b_{a}\right)=1$ for all $a \in \mathcal{T} \backslash\langle c\rangle$.

Proof.

Case 1: $a \in \mathrm{Z}(D)$.
Then $b_{a}=b_{D}^{\mathrm{C}_{G}(a)}$ is a block with defect group D and Brauer correspondent $b_{D} \in \operatorname{Bl}\left(R D \mathrm{C}_{\mathrm{C}_{G}(a)}(D)\right)$. Let $M:=\left\langle x^{2}, y, z\right\rangle \cong C_{2^{r-1}} \times C_{2}^{2}$. Since B is nonnilpotent, there exists an element $\alpha \in \mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right)$ such that $\alpha \mathrm{C}_{G}(M) \in \mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M)$ has order $q \in\{3,7\}$. We will exclude the case $q=7$. In this case $r=2$ and $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M)$ is isomorphic to a subgroup of $\operatorname{Aut}(M) \cong \mathrm{GL}(3,2)$. Since

$$
\left(M,{ }^{d} b_{M}\right)={ }^{d}\left(M, b_{M}\right) \leq{ }^{d}\left(D, b_{D}\right)=\left(D, b_{D}\right)
$$

for all $d \in D$, we have $D \subseteq \mathrm{~T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right)$. This implies $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M) \cong \mathrm{GL}(3,2)$, because $\mathrm{GL}(3,2)$ is simple. By Satz 1 in [2], this contradicts the fact that $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M)$ contains a strongly 2-embedded subgroup (of course this can be shown "by hand" without invoking [2]). Thus, we have shown $q=3$. Now

$$
\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M) \cong S_{3}
$$

follows easily. By Lemma 3.2 there is an element $c:=x^{2 i} y^{j} z^{k} \in \mathrm{C}_{M}(\alpha)(i, j, k \in \mathbb{Z})$ of order 2^{r-1}. Let us assume that j is odd. Since $x \alpha x \equiv x \alpha x^{-1} \equiv \alpha^{-1}\left(\bmod C_{G}(M)\right)$ we get

$$
\begin{aligned}
\alpha\left(x^{2 i} y^{j} z^{k+1}\right) \alpha^{-1} & =\alpha x\left(x^{2 i} y^{j} z^{k}\right) x^{-1} \alpha^{-1}=x \alpha^{-1}\left(x^{2 i} y^{j} z^{k}\right) \alpha x^{-1} \\
& =x\left(x^{2 i} y^{j} z^{k}\right) x^{-1}=x^{2 i} y^{j} z^{k+1} .
\end{aligned}
$$

But this contradicts Lemma 3.2. Hence, we have proved that j is even. In particular $c \in \mathrm{Z}(D)$. For $a \notin\langle c\rangle$ we have $\alpha \notin \mathrm{C}_{G}(a)$ and $l\left(b_{a}\right)=1$. While in the case $a \in\langle c\rangle$ we get $\alpha \in \mathrm{C}_{G}(a)$, and b_{a} is nonnilpotent. Thus, in this case $l\left(b_{a}\right)$ remains unknown.

Case 2: $a \notin \mathrm{Z}(D)$.
Let $\mathrm{C}_{D}(a)=\langle\mathrm{Z}(D), a\rangle=: M$. Since $\left(M, b_{M}\right)$ is a Brauer subpair, b_{M} has defect group M. It follows from $\left(M, b_{M}\right) \unlhd\left(D, b_{D}\right)$ that also b_{a} has defect group M and Brauer correspondent b_{M}. In case $M \cong C_{2^{r}} \times C_{2}$ we get $l\left(b_{a}\right)=1$. Now let us assume $M \cong C_{2^{r-1}} \times C_{2}^{2}$. As in the first case, we choose $\alpha \in \mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right)$ such that $\alpha \mathrm{C}_{G}(M) \in \mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) / \mathrm{C}_{G}(M)$ has order 3 . Since $a \notin \mathrm{Z}(D)$, we derive $\alpha \notin \mathrm{C}_{G}(a)$ and $t\left(b_{a}\right)=l\left(b_{a}\right)=1$.

We denote by $\operatorname{IBr}\left(b_{u}\right):=\left\{\varphi_{u}\right\}$ for $u \in \mathcal{T} \backslash\langle c\rangle$ the irreducible Brauer character of b_{u}. Then the generalized decomposition numbers $d_{\chi \varphi_{u}}^{u}$ for $\chi \in \operatorname{Irr}(B)$ form a column $d(u)$. Let 2^{k} be the order of u, and let $\zeta:=\zeta_{2^{k}}$ be a primitive 2^{k}-th root of unity. Then the entries of $d(u)$ lie in the ring of integers $\mathbb{Z}[\zeta]$. Hence, there exist integers $a_{i}^{u}(\chi) \in \mathbb{Z}$ such that

$$
d_{\chi \varphi_{u}}^{u}=\sum_{i=0}^{2^{k-1}-1} a_{i}^{u}(\chi) \zeta^{i} .
$$

We expand this by

$$
a_{i+2^{k-1}}^{u}:=-a_{i}^{u}
$$

for all $i \in \mathbb{Z}$.
Let $|G|=2^{a} m$ where $2 \nmid m$. We may assume $\mathbb{Q}\left(\zeta_{|G|}\right) \subseteq K$. Then $\mathbb{Q}\left(\zeta_{|G|}\right) \mid \mathbb{Q}\left(\zeta_{m}\right)$ is a Galois extension, and we denote the corresponding Galois group by

$$
\mathcal{G}:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{|G|}\right) \mid \mathbb{Q}\left(\zeta_{m}\right)\right)
$$

Restriction gives an isomorphism

$$
\mathcal{G} \cong \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{2^{a}}\right) \mid \mathbb{Q}\right)
$$

In particular $|\mathcal{G}|=2^{a-1}$. For every $\gamma \in \mathcal{G}$ there is a number $\widetilde{\gamma} \in \mathbb{N}$ such that $\operatorname{gcd}(\widetilde{\gamma},|G|)=1, \widetilde{\gamma} \equiv 1(\bmod m)$, and $\gamma\left(\zeta_{|G|}\right)=\zeta_{|G|}^{\widetilde{\gamma}}$ hold. Then \mathcal{G} acts on the set of subsections by

$$
{ }^{\gamma}(u, b):=\left(u^{\widetilde{\gamma}}, b\right) .
$$

For every $\gamma \in \mathcal{G}$ we get

$$
d\left(u^{\widetilde{\gamma}}\right)=\sum_{s \in \mathcal{S}} a_{s}^{u} \zeta_{2^{k}}^{s \tilde{\gamma}}
$$

for every system \mathcal{S} of representatives of the cosets of $2^{k-1} \mathbb{Z}$ in \mathbb{Z}. It follows that

$$
\begin{equation*}
a_{s}^{u}=2^{1-a} \sum_{\gamma \in \mathcal{G}} d\left(u^{\widetilde{\gamma}}\right) \zeta_{2^{k}}^{-\widetilde{\gamma} s} \tag{1}
\end{equation*}
$$

for $s \in \mathcal{S}$.
Now let $u \in \mathcal{T} \backslash \mathrm{Z}(D)$ and $M:=\mathrm{C}_{D}(u)$. Then b_{u} and $b_{M}^{\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) \cap \mathrm{N}_{G}(\langle u\rangle)}$ have M as defect group, because $D \nsubseteq \mathrm{~N}_{G}(\langle u\rangle)$. By (6B) in [6] it follows that the 2^{r-1} distinct B-subsections of the form ${ }^{\gamma}\left(u, b_{u}\right)$ with $\gamma \in \mathcal{G}$ are pairwise nonconjugate. The same holds for $u \in \mathrm{Z}(D) \backslash\{1\}$. Using this and equation (1) we can adapt Lemma 3.9 in 33:

Lemma 3.4. Let $c \in \mathrm{Z}(D)$ as in Lemma 3.3, and let $u, v \in \mathcal{T} \backslash\langle c\rangle$ with $|\langle u\rangle|=2^{k}$ and $|\langle v\rangle|=2^{l}$. Moreover, let $i \in\left\{0,1, \ldots, 2^{k-1}-1\right\}$ and $j \in\left\{0,1, \ldots, 2^{l-1}-1\right\}$. If there exist $\gamma \in \mathcal{G}$ and $g \in G$ such that ${ }^{g}\left(u, b_{u}\right)={ }^{\gamma}\left(v, b_{v}\right)$, then

$$
\left(a_{i}^{u}, a_{j}^{v}\right)=\left\{\begin{array}{ll}
2^{d(B)-k+1} & \text { if } u \in \mathrm{Z}(D) \text { and } j \widetilde{\gamma}-i \equiv 0 \quad\left(\bmod 2^{k}\right) \\
-2^{d(B)-k+1} & \text { if } u \in \mathrm{Z}(D) \text { and } j \widetilde{\gamma}-i \equiv 2^{k-1} \quad\left(\bmod 2^{k}\right) \\
2^{d(B)-k} & \text { if } u \notin \mathrm{Z}(D) \text { and } j \widetilde{\gamma}-i \equiv 0 \quad\left(\bmod 2^{k}\right) \\
-2^{d(B)-k} & \text { if } u \notin \mathrm{Z}(D) \text { and } j \widetilde{\gamma}-i \equiv 2^{k-1} \quad\left(\bmod 2^{k}\right) \\
0 & \text { otherwise }
\end{array} .\right.
$$

Otherwise $\left(a_{i}^{u}, a_{j}^{v}\right)=0$. In particular $\left(a_{i}^{u}, a_{j}^{v}\right)=0$ if $k \neq l$.
Using the theory of contributions we can also carry over Lemma (6.E) in 20]:
Lemma 3.5. Let $u \in \mathrm{Z}(D)$ with $l\left(b_{u}\right)=1$. If u has order 2^{k}, then for every $\chi \in \operatorname{Irr}(B)$ holds:
(i) $2^{h(\chi)} \mid a_{i}^{u}(\chi)$ for $i=0, \ldots, 2^{k-1}-1$,
(ii) $\sum_{i=0}^{2^{k-1}-1} a_{i}^{u}(\chi) \equiv 2^{h(\chi)}\left(\bmod 2^{h(\chi)+1}\right)$.

By Lemma 1.1 in [39] we have

$$
\begin{equation*}
k(B) \leq \sum_{i=0}^{\infty} 2^{2 i} k_{i}(B) \leq|D| . \tag{2}
\end{equation*}
$$

In particular Brauer's $k(B)$-conjecture holds. Olsson's conjecture

$$
\begin{equation*}
k_{0}(B) \leq\left|D: D^{\prime}\right|=2^{r+1} \tag{3}
\end{equation*}
$$

follows by Theorem 3.1 in [39]. Now we are able to calculate the numbers $k(B), k_{i}(B)$ and $l(B)$.

Theorem 3.6. We have

$$
k(B)=5 \cdot 2^{r-1}=|\operatorname{Irr}(D)|, \quad k_{0}(B)=2^{r+1}=\left|D: D^{\prime}\right|, \quad k_{1}(B)=2^{r-1}, \quad l(B)=2 .
$$

Proof. We argue by induction on r. Let $r=2$, and let $c \in Z(D)$ as in Lemma 3.3. By way of contradiction we assume $c=z$. If α and M are defined as in the proof of Lemma 3.3 then α acts nontrivially on $M /\langle z\rangle \cong C_{2}^{2}$. On the other hand x acts trivially on $M /\langle z\rangle$. This contradicts $x \alpha x^{-1} \alpha \in \mathrm{C}_{G}(M)$.
This shows $c \in\left\{x^{2}, x^{2} z\right\}$ and $D /\langle c\rangle \cong D_{8}$. Thus, we can apply Theorem 2 in [8]. For this let

$$
M_{1}:=\left\{\begin{array}{ll}
\langle x, z\rangle & \text { if } c=x^{2} \\
\langle x y, z\rangle & \text { if } c=x^{2} z
\end{array} .\right.
$$

Then $M \neq M_{1} \cong C_{4} \times C_{2}$ and $\bar{M}:=M /\langle c\rangle \cong C_{2}^{2} \cong M_{1} /\langle c\rangle=: \overline{M_{1}}$. Let β be the block of $R \overline{\mathrm{C}_{G}(c)}:=R\left[\mathrm{C}_{G}(c) /\langle c\rangle\right]$ which is dominated by b_{c}. By Theorem 1.5 in [33] we have

$$
3\left|\left|\mathrm{~T}_{\mathrm{N}_{\overline{\mathrm{C}_{G}(c)}}}(\bar{M})\left(\beta_{\bar{M}}\right) / \mathrm{C}_{\overline{\mathrm{C}_{G}(c)}}(\bar{M})\right|\right.
$$

and

$$
3 \nmid\left|\mathrm{~T}_{\mathrm{N}_{\overline{\mathrm{C}_{G}(c)}}\left(\overline{M_{1}}\right)}\left(\beta_{\overline{M_{1}}}\right) / \mathrm{C}_{\overline{\mathrm{C}_{G}(c)}}\left(\overline{M_{1}}\right)\right|
$$

where $\left(\bar{M}, \beta_{\bar{M}}\right)$ and $\left(\overline{M_{1}}, \beta_{\overline{M_{1}}}\right)$ are β-subpairs. This shows that case $(a b)$ in Theorem 2 in 8 occurs. Hence, $l\left(b_{c}\right)=l(\beta)=2$. Now Lemma 3.3 yields

$$
k(B) \geq 1+k(B)-l(B)=9
$$

It is well known that $k_{0}(B)$ is divisible by 4 . Thus, the equations (2) and (3) imply $k_{0}(B)=8$. Moreover,

$$
d_{\chi \varphi_{z}}^{z}=a_{0}^{z}(\chi)= \pm 1
$$

holds for every $\chi \in \operatorname{Irr}(B)$ with $h(\chi)=0$. This shows $4 k_{1}(B) \leq|D|-k_{0}(B)=8$. It follows that $k_{1}(B)=l(B)=2$.
Now we consider the case $r \geq 3$. Since z is not a square in D, we have $z \notin\langle c\rangle$. Let $a \in\langle c\rangle$ such that $|\langle a\rangle|=2^{k}$. If $k=r-1$, then $l\left(b_{a}\right)=2$ as before. Now let $k<r-1$. Then $D /\langle a\rangle$ has the same isomorphism type as D, but one has to replace r by $r-k$. By induction we get $l\left(b_{a}\right)=2$ for $k \geq 1$. This shows

$$
k(B) \geq 1+k(B)-l(B)=2^{r+1}+2^{r-1}-1
$$

Equation (2) yields

$$
\begin{aligned}
2^{r+2}-4 & =2^{r+1}+4\left(2^{r-1}-1\right) \leq k_{0}(B)+4\left(k(B)-k_{0}(B)\right) \\
& \leq \sum_{i=0}^{\infty} 2^{2 i} k_{i}(B) \leq|D|=2^{r+2}
\end{aligned}
$$

Now the conclusion follows easily.
As a consequence, Brauer's height zero conjecture and the Alperin-McKay-conjecture hold for B.

3.3 Generalized decomposition numbers

Now we will determine some of the generalized decomposition numbers. Again let $c \in \mathrm{Z}(D)$ as in Lemma 3.3 , and let $u \in \mathrm{Z}(D) \backslash\langle c\rangle$ with $|\langle u\rangle|=2^{k}$. Then $\left(a_{i}^{u}, a_{i}^{u}\right)=2^{r+3-k}$ and $2 \mid a_{i}^{u}(\chi)$ for $h(\chi)=1$ and $i=0, \ldots, 2^{k-1}-1$. This gives

$$
\left|\left\{\chi \in \operatorname{Irr}(B): a_{i}^{u}(\chi) \neq 0\right\}\right| \leq 2^{r+3-k}-3\left|\left\{\chi \in \operatorname{Irr}(B): h(\chi)=1, a_{i}^{u}(\chi) \neq 0\right\}\right|
$$

Moreover, for every character $\chi \in \operatorname{Irr}(B)$ there exists $i \in\left\{0, \ldots, 2^{k-1}-1\right\}$ such that $a_{i}^{u}(\chi) \neq 0$. Hence,

$$
k(B) \leq \sum_{i=0}^{2^{k-1}-1} \sum_{\substack{\chi \in \operatorname{Irr}(B), a_{i}^{u}(\chi) \neq 0}} 1 \leq \sum_{i=0}^{2^{k-1}-1}\left(2^{r+3-k}-3 \sum_{\substack{\chi \in \operatorname{Irr}(B), h(\chi)=1, a_{i}^{u}(\chi) \neq 0}} 1\right)=|D|-3 \sum_{i=0}^{2^{k-1}-1} \sum_{\substack{\chi \in \operatorname{Irr}(B), h(x)=1, a_{i}^{u}(\chi) \neq 0}} 1
$$

$$
\leq|D|-3 k_{1}(B)=k(B)
$$

This shows that for every $\chi \in \operatorname{Irr}(B)$ there exists $i(\chi) \in\left\{0, \ldots, 2^{k-1}-1\right\}$ such that

$$
d_{\chi \varphi_{u}}^{u}= \begin{cases} \pm \zeta_{2^{k}}^{i(\chi)} & \text { if } h(\chi)=0 \\ \pm 2 \zeta_{2^{k}}^{i(\chi)} & \text { if } h(\chi)=1\end{cases}
$$

In particular

$$
d_{\chi \varphi_{u}}^{u}=a_{0}^{u}(\chi)= \begin{cases} \pm 1 & \text { if } h(\chi)=0 \\ \pm 2 & \text { if } h(\chi)=1\end{cases}
$$

for $k=1$.
By Lemma 3.4 we have $\left(a_{i}^{u}, a_{i}^{u}\right)=4$ for $u \in \mathcal{T} \backslash \mathrm{Z}(D)$ and $i=0, \ldots, 2^{r-1}-1$. If a_{i}^{u} has only one nonvanishing entry, then a_{i}^{u} would not be orthogonal to a_{0}^{z}. Hence, a_{i}^{u} has up to ordering the form

$$
(\pm 1, \pm 1, \pm 1, \pm 1,0, \ldots, 0)^{\mathrm{T}}
$$

where the signs are independent of each other. The proof of Theorem 3.1 in [39] gives

$$
\left|d_{\chi \varphi_{u}}^{u}\right|=1
$$

for $u \in \mathcal{T} \backslash \mathrm{Z}(D)$ and $\chi \in \operatorname{Irr}(B)$ with $h(\chi)=0$. In particular $d_{\chi \varphi_{u}}^{u}=0$ for characters $\chi \in \operatorname{Irr}(B)$ of height 1 . By suitable ordering we get

$$
a_{i}^{u}\left(\chi_{j}\right)=\left\{\begin{array}{ll}
\pm 1 & \text { if } j-4 i \in\{1, \ldots, 4\} \\
0 & \text { otherwise }
\end{array} \text { and } d_{\chi_{j} \varphi_{u}}^{u}= \begin{cases} \pm \zeta_{2^{r}}^{\left[\frac{j-1}{4}\right]} & \text { if } 1 \leq j \leq k_{0}(B) \\
0 & \text { if } k_{0}(B)<j \leq k(B)\end{cases}\right.
$$

for $i=0, \ldots, 2^{r-1}-1$, where $\chi_{1}, \ldots, \chi_{k_{0}(B)}$ are the characters of height 0 .
Now let $\operatorname{IBr}\left(b_{c}\right):=\left\{\varphi_{1}, \varphi_{2}\right\}$. We determine the numbers $d_{\chi \varphi_{1},}^{c}, d_{\chi \varphi_{2}}^{c} \in \mathbb{Z}\left[\zeta_{2^{r-1}}\right]$. By (4C) in [6] we have $d_{\chi \varphi_{1}}^{c} \neq 0$ or $d_{\chi \varphi_{2}}^{c} \neq 0$ for all $\chi \in \operatorname{Irr}(B)$. As in the proof of Theorem 3.6. b_{c} dominates a block $\overline{b_{c}} \in \operatorname{Bl}\left(R\left[\mathrm{C}_{G}(c) /\langle c\rangle\right]\right)$ with defect group D_{8}. The table at the end of [14] shows that the Cartan matrix of $\overline{b_{c}}$ has the form

$$
\left(\begin{array}{ll}
8 & 4 \\
4 & 3
\end{array}\right) \text { or }\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right)
$$

We label these possibilities as the "first" and the "second" case. The Cartan matrix of b_{c} is

$$
2^{r-1}\left(\begin{array}{ll}
8 & 4 \\
4 & 3
\end{array}\right) \text { or } 2^{r-1}\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right)
$$

respectively. The inverses of these matrices are

$$
2^{-r-2}\left(\begin{array}{cc}
3 & -4 \\
-4 & 8
\end{array}\right) \text { and } 2^{-r-2}\left(\begin{array}{cc}
3 & -2 \\
-2 & 4
\end{array}\right) .
$$

Let $m_{\chi \psi}^{\left(c, b_{c}\right)}$ be the contribution of $\chi, \psi \in \operatorname{Irr}(B)$ with respect to the subsection $\left(c, b_{c}\right)$ (see [6]). Then we have

$$
\begin{gather*}
|D| m_{\chi \psi}^{\left(c, b_{c}\right)}=3 d_{\chi \varphi_{1}}^{c} \overline{d_{\psi \varphi_{1}}^{c}}-4\left(d_{\chi \varphi_{1}}^{c} \overline{d_{\psi \varphi_{2}}^{c}}+d_{\chi \varphi_{2}}^{c} \overline{d_{\psi \varphi_{1}}^{c}}\right)+8 d_{\chi \varphi_{2}}^{c} \overline{d_{\psi \varphi_{2}}^{c}} \\
\quad \text { or } \\
|D| m_{\chi \psi}^{\left(c, b_{c}\right)}=3 d_{\chi \varphi_{1}}^{c} \overline{d_{\psi \varphi_{1}}^{c}}-2\left(d_{\chi \varphi_{1}}^{c} \overline{\bar{d}_{\psi \varphi_{2}}^{c}}+d_{\chi \varphi_{2}}^{c} \overline{d_{\psi \varphi_{1}}^{c}}\right)+4 d_{\chi \varphi_{2}}^{c} \overline{d_{\psi \varphi_{2}}^{c}} \tag{4}
\end{gather*}
$$

respectively. For a character $\chi \in \operatorname{Irr}(B)$ with height 0 we get

$$
0=h(\chi)=\nu\left(|D| m_{\chi \chi}^{\left(c, b_{c}\right)}\right)=\nu\left(3 d_{\chi \varphi_{1}}^{c} \overline{d_{\chi \varphi_{1}}^{c}}\right)=\nu\left(d_{\chi \varphi_{1}}^{c}\right)
$$

by (5H) in [6]. In particular $d_{\chi \varphi_{1}}^{c} \neq 0$. We define $c_{i}^{j} \in \mathbb{Z}^{k(B)}$ by

$$
d_{\chi \varphi_{j}}^{c}=\sum_{i=0}^{2^{r-2}-1} c_{i}^{j}(\chi) \zeta_{2^{r-1}}^{i}
$$

for $j=1,2$. Then

$$
\left(c_{i}^{1}, c_{j}^{1}\right)=\left\{\begin{array}{ll}
\delta_{i j} 16 & \text { first case } \\
\delta_{i j} 8 & \text { second case }
\end{array},\left(c_{i}^{1}, c_{j}^{2}\right)=\left\{\begin{array}{ll}
\delta_{i j} 8 & \text { first case } \\
\delta_{i j} 4 & \text { second case }
\end{array},\left(c_{i}^{2}, c_{j}^{2}\right)=\delta_{i j} 6\right.\right.
$$

as in Lemma 3.4. (Since the $2^{r-2} B$-subsections of the form ${ }^{\gamma}\left(c, b_{c}\right)$ for $\gamma \in \mathcal{G}$ are pairwise nonconjugate, one can argue like in Lemma 3.4.) Hence, in the second case

$$
d_{\chi_{i} \varphi_{1}}^{c}=\left\{\begin{array}{ll}
\pm \zeta_{2^{r-1}}^{\left[\frac{i-1}{8}\right]} & \text { if } 1 \leq i \leq k_{0}(B) \\
0 & \text { if } k_{0}(B)<i \leq k(B)
\end{array}\right. \text { (second case) }
$$

holds for a suitable arrangement. Again $\chi_{1}, \ldots, \chi_{k_{0}(B)}$ are the characters of height 0 . In the first case

$$
1=h(\psi)=\nu\left(|D| m_{\chi \psi}^{\left(c, b_{c}\right)}\right)=\nu\left(3 d_{\chi \varphi_{1}}^{c} \overline{d_{\psi \varphi_{1}}^{c}}\right)=\nu\left(d_{\psi \varphi_{1}}^{c}\right)
$$

by (5G) in 6] for $h(\psi)=1$ and $h(\chi)=0$. As in Lemma 3.5 we also have $2 \mid c_{i}^{1}(\psi)$ for $h(\psi)=1$ and $i=0, \ldots, 2^{r-2}-1$. Analogously as in the case $u \in \mathrm{Z}(D) \backslash\langle c\rangle$ we conclude

$$
d_{\chi \varphi_{1}}^{c}=\left\{\begin{array}{ll}
\pm \zeta_{2^{r-1}}^{i(\chi)} & \text { if } h(\chi)=0 \tag{5}\\
\pm 2 \zeta_{2^{r-1}}^{i(\chi)} & \text { if } h(\chi)=1
\end{array}\right. \text { (first case) }
$$

for suitable indices $i(\chi) \in\left\{0, \ldots, 2^{r-2}-1\right\}$. Since $\left(c_{i}^{2}, c_{j}^{2}\right)=\delta_{i j} 6$, in both cases c_{i}^{2} has the form

$$
(\pm 1, \pm 1, \pm 1, \pm 1, \pm 1, \pm 1,0, \ldots, 0)^{\mathrm{T}} \text { or }(\pm 2, \pm 1, \pm 1,0, \ldots, 0)^{\mathrm{T}}
$$

We show that the latter possibility does not occur. In the second case for every character $\chi \in \operatorname{Irr}(B)$ with height 1 there exists $i \in\left\{0, \ldots, 2^{r-2}-1\right\}$ such that $c_{i}^{2}(\chi) \neq 0$. In this case we get

$$
d_{\chi_{i} \varphi_{2}}^{c}=\left\{\begin{array}{ll}
\pm \zeta_{2^{r-1}}^{\left[\frac{i-1}{4}\right]} & \text { if } 1 \leq i \leq 2^{r} \\
0 & \text { if } 2^{r}<i \leq k_{0}(B) \quad \text { (second case) }, ~ \\
\pm \zeta_{2^{r-1}}^{\left[\frac{i-k_{0}(B)-1}{2}\right]} & \text { if } k_{0}(B)<i \leq k(B)
\end{array} \quad\right. \text {, }
$$

where $\chi_{1}, \ldots, \chi_{k_{0}(B)}$ are again the characters of height 0 . Now let us consider the first case. Since $\left(c_{i}^{1}, c_{j}^{2}\right)=\delta_{i j} 8$, the value ± 2 must occur in every column c_{i}^{1} for $i=0, \ldots, 2^{r-2}-1$ at least twice. Obviously exactly two entries have to be ± 2. Thus, one can improve equation (5) to

$$
d_{\chi_{i} \varphi_{1}}^{c}=\left\{\begin{array}{ll}
\pm \zeta_{2^{2-1}}^{\left[\frac{i-1}{8}\right]} & \text { if } 1 \leq i \leq k_{0}(B) \\
\pm 2 \zeta_{2^{r-1}}^{\left[\frac{i-k_{0}(B)-1}{2}\right]} & \text { if } k_{0}(B)<i \leq k(B)
\end{array} \quad\right. \text { (first case) }
$$

It follows

$$
d_{\chi_{i} \varphi_{2}}^{c}=\left\{\begin{array}{ll}
\pm \zeta_{2^{r-1}}^{\left[\frac{i-1}{4}\right]} & \text { if } 1 \leq i \leq 2^{r} \\
0 & \text { if } 2^{r}<i \leq k_{0}(B) \quad \text { (first case) } . ~ \\
\pm \zeta_{2^{r-1}}^{\left[\frac{i-k_{0}(B)-1}{2}\right]} & \text { if } k_{0}(B)<i \leq k(B)
\end{array} \quad\right. \text {. }
$$

Hence, the numbers $d_{\chi \varphi_{2}}^{c}$ are independent of the case. Of course, one gets similar results for $d_{\chi \varphi_{i}}^{u}$ with $\langle u\rangle=\langle c\rangle$.

3.4 The Cartan matrix

Now we investigate the Cartan matrix of B.
Lemma 3.7. The elementary divisors of the Cartan matrix of B are 2^{r-1} and $|D|$.
Proof. Let C be the Cartan matrix of B. Since $l(B)=2$, it suffices to show that 2^{r-1} occurs as elementary divisor of C at least once. In order to proof this, we use the notion of lower defect groups (see [35]). Let (u, b) be a B-subsection with $|\langle u\rangle|=2^{r-1}$ and $l(b)=2$. Let $b_{1}:=b^{\mathrm{N}_{G}(\langle u\rangle)}$. Then b_{1} has also defect group D, and $l\left(b_{1}\right)=2$ holds. Moreover, $u^{2^{r-2}} \in \mathrm{Z}\left(\mathrm{N}_{G}(\langle u\rangle)\right)$. Let $\overline{b_{1}} \in \operatorname{Bl}\left(R\left[\mathrm{~N}_{G}(u) /\left\langle u^{2^{r-2}}\right\rangle\right]\right)$ be the block which is covered by b_{1}. Then $\overline{b_{1}}$ has defect group $D /\left\langle u^{2^{r-2}}\right\rangle$. We argue by induction on r. Thus, let $r=2$. Then $b=b_{1}$ and $D /\left\langle u^{2^{r-2}}\right\rangle=D /\langle u\rangle \cong D_{8}$. By Proposition (5G) in [8] the Cartan matrix of \bar{b} has the elementary divisors 1 and 8. Hence, $2=2^{r-1}$ and $16=|D|$ are the elementary divisors of the Cartan matrix of b. Hence, the claim follows from Theorem 7.2 in (35].

Now assume that the claim already holds for $r-1 \geq 2$. By induction the elementary divisors of the Cartan matrix of $\overline{b_{1}}$ are 2^{r-2} and $|D| / 2$. The claim follows easily as before.

Now we are in a position to calculate the Cartan matrix C up to equivalence of quadratic forms. Here we call two matrices $M_{1}, M_{2} \in \mathbb{Z}^{l \times l}$ equivalent if there exists a matrix $S \in \mathrm{GL}(l, \mathbb{Z})$ such that $A=S B S^{\mathrm{T}}$, where S^{T} denotes the transpose of S.
By Lemma 3.7 all entries of C are divisible by 2^{r-1}. Thus, we can consider $\widetilde{C}:=2^{1-r} C \in \mathbb{Z}^{2 \times 2}$. Then $\operatorname{det} \widetilde{C}=8$ and the elementary divisors of \widetilde{C} are 1 and 8 . If we write

$$
\widetilde{C}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{2} & c_{3}
\end{array}\right)
$$

then \widetilde{C} corresponds to the positive definite binary quadratic form $q\left(x_{1}, x_{2}\right):=c_{1} x_{1}^{2}+2 c_{2} x_{1} x_{2}+c_{3} x_{2}^{2}$. Obviously $\operatorname{gcd}\left(c_{1}, c_{2}, c_{3}\right)=1$. If one reduces the entries of \widetilde{C} modulo 2 , then one gets a matrix of rank 1 (this is just the multiplicity of the elementary divisor 1). This shows that c_{1} or c_{3} must be odd. Hence, $\operatorname{gcd}\left(c_{1}, 2 c_{2}, c_{3}\right)=1$, i. e. q is primitive (see [10] for example). Moreover, $\Delta:=-4 \operatorname{det} \widetilde{C}=-32$ is the discriminant of q. Now it is easy to see that q (and \widetilde{C}) is equivalent to exactly one of the following matrices (see page 20 in [10]):

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right) \text { or }\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) .
$$

The Cartan matrices for the block $\overline{b_{c}}$ with defect group D_{8} (used before) satisfy

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
8 & 4 \\
4 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Hence, only the second matrix occurs up to equivalence. We show that this holds also for the block B.
Theorem 3.8. The Cartan matrix of B is equivalent to

$$
2^{r-1}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Proof. We argue by induction on r. The smallest case was already considered by b_{c} (this would correspond to $r=1$). Thus, we may assume $r \geq 2$ (as usual). First, we determine the generalized decomposition numbers $d_{\chi \varphi}^{u}$ for $u \in\langle c\rangle \backslash\{1\}$ with $|\langle u\rangle|=2^{k}<2^{r-1}$. As in the proof of Theorem 3.6, the group $D /\langle u\rangle$ has the same isomorphism type as D, but one has to replace r by $r-k$. Hence, by induction we may assume that b_{u} has a Cartan matrix which is equivalent to the matrix given in the statement of the theorem. Let C_{u} be the Cartan matrix of b_{u}, and let $S_{u} \in \operatorname{GL}(2, \mathbb{Z})$ such that

$$
C_{u}=2^{r-1} S_{u}^{\mathrm{T}}\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right) S_{u}
$$

i. e. with the notations of the previous section, we assume that the "second case" occurs. (This is allowed, since we can only compute the generalized decomposition numbers up to multiplication with S_{u} anyway.) As before we write $\operatorname{IBr}\left(b_{u}\right)=\left\{\varphi_{1}, \varphi_{2}\right\}, D_{u}:=\left(d_{\chi \varphi_{i}}^{u}\right)$ and $\left(\widetilde{d_{\chi \varphi_{i}}^{u}}\right):=D_{u} S_{u}^{-1}$. The consideration in the previous section carries over, and one gets

$$
\widetilde{d}_{\chi \varphi_{1}}^{u}= \begin{cases} \pm \zeta_{2 k}^{\left[\frac{i-1}{2 r+2-k}\right]} & \text { if } 1 \leq i \leq k_{0}(B) \\ 0 & \text { if } k_{0}(B)<i \leq k(B)\end{cases}
$$

and

$$
\widetilde{d}_{\chi \varphi_{2}}^{u}= \begin{cases} \pm \zeta_{2^{k}}^{\left[\frac{i-1}{2^{r-k+1}}\right]} & \text { if } 1 \leq i \leq 2^{r} \\ 0 & \text { if } 2^{r}<i \leq k_{0}(B) \\ \pm \zeta_{2^{k}}^{\left[\frac{i-k_{0}(B)-1}{2^{r-k}}\right]} & \text { if } k_{0}(B)<i \leq k(B)\end{cases}
$$

where $\chi_{1}, \ldots, \chi_{k_{0}(B)}$ are the characters of height 0 . But notice that the ordering of those characters for φ_{1} and φ_{2} is different.
Now assume that there is a matrix $S \in \operatorname{GL}(2, \mathbb{Z})$ such that

$$
C=2^{r-1} S^{\mathrm{T}}\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right) S
$$

If Q denotes the decomposition matrix of B, we set $\left(\widetilde{d}_{\chi \varphi_{i}}\right):=Q S^{-1}$ for $\operatorname{IBr}(B)=\left\{\varphi_{1}, \varphi_{2}\right\}$. Then we have

$$
|D| m_{\chi \psi}^{(1, B)}=8 \widetilde{d}_{\chi \varphi_{1}} \widetilde{d}_{\psi \varphi_{1}}+\widetilde{d}_{\chi \varphi_{2}} \widetilde{d}_{\psi \varphi_{2}} \text { for } \chi, \psi \in \operatorname{Irr}(B)
$$

In particular $|D| m_{\chi \chi}^{(1, B)} \equiv 1(\bmod 4)$ for a character $\chi \in \operatorname{Irr}(B)$ of height 0 . For $u \in \mathcal{T} \backslash \mathrm{Z}(D)$ we have $|D| m_{\chi \chi}^{\left(u, b_{u}\right)}=2$, and for $u \in \mathrm{Z}(D) \backslash\langle c\rangle$ we have $|D| m_{\chi \chi}^{\left(u, b_{u}\right)}=1$. Let $u \in\langle c\rangle \backslash\{1\}$. Equation (4) and the considerations above imply $|D| m_{\chi \chi}^{\left(u, b_{u}\right)} \equiv 3(\bmod 4)$. Now (5B) in [6] reveals the contradiction

$$
|D|=\sum_{u \in \mathcal{T}}|D| m_{\chi \chi}^{\left(u, b_{u}\right)} \equiv|D| m_{\chi \chi}^{(1, B)}+2^{r+1}+2^{r-1}+3 \cdot\left(2^{r-1}-1\right) \equiv 2 \quad(\bmod 4) .
$$

With the proof of the last theorem we can also obtain the ordinary decomposition numbers (up to multiplication with an invertible matrix):

$$
d_{\chi \varphi_{1}}=\left\{\begin{array}{ll}
\pm 1 & \text { if } h(\chi)=0 \\
0 & \text { if } h(\chi)=1
\end{array}, \quad d_{\chi_{i} \varphi_{2}}= \begin{cases} \pm 1 & \text { if } 0 \leq i \leq 2^{r} \\
0 & \text { if } 2^{r}<i \leq k_{0}(B) \\
\pm 1 & \text { if } k_{0}(B)<i \leq k(B)\end{cases}\right.
$$

Again $\chi_{1}, \ldots, \chi_{k_{0}(B)}$ are the characters of height 0 .
Since we know how \mathcal{G} acts on the B-subsections, we can investigate the action of \mathcal{G} on $\operatorname{Irr}(B)$.
Theorem 3.9. The irreducible characters of height 0 of B split in $2(r+1)$ families of 2 -conjugate characters. These families have sizes $1,1,1,1,2,2,4,4, \ldots, 2^{r-1}, 2^{r-1}$ respectively. The characters of height 1 split in r families with sizes $1,1,2,4, \ldots, 2^{r-2}$ respectively. In particular there are exactly six 2 -rational characters in $\operatorname{Irr}(B)$.

Proof. We start by determining the number of orbits of the action of \mathcal{G} on the columns of the generalized decomposition matrix. The columns $\left\{d_{\chi \varphi_{u}}^{u}: \chi \in \operatorname{Irr}(B)\right\}$ with $u \in \mathcal{T} \backslash \mathrm{Z}(D)$ split in two orbits of length 2^{r-1}. For $i=1,2$ the columns $\left\{d_{\chi \varphi_{i}}^{u}: \chi \in \operatorname{Irr}(B)\right\}$ with $u \in\langle c\rangle$ split in r orbits of lengths $1,1,2,4, \ldots, 2^{r-2}$ respectively. Finally, the columns $\left\{d_{\chi \varphi_{u}}^{u}: \chi \in \operatorname{Irr}(B)\right\}$ with $u \in \mathrm{Z}(D) \backslash\langle c\rangle$ consist of r orbits of lengths $1,1,2,4, \ldots, 2^{r-2}$ respectively. This gives $3 r+2$ orbits altogether. By Theorem 11 in [3] there also exist exactly $3 r+2$ families of 2 -conjugate characters. (Since \mathcal{G} is noncyclic, one cannot conclude a priori that also the lengths of the orbits of these two actions coincide.)
By considering the column $\left\{d_{\chi \varphi_{x}}^{x}: \chi \in \operatorname{Irr}(B)\right\}$, we see that the irreducible characters of height 0 split in at most $2(r+1)$ orbits of lengths $1,1,1,1,2,2,4,4, \ldots, 2^{r-1}, 2^{r-1}$ respectively. Similarly the column $\left\{d_{\chi \varphi_{2}}^{c}: \chi \in \operatorname{Irr}(B)\right\}$ shows that there are at most r orbits of lengths $1,1,2,4, \ldots, 2^{r-2}$ of characters of height 1 . Since $2(r+1)+r=$ $3 r+2$, these orbits do not merge further, and the claim is proved.

Let $M=\left\langle x^{2}, y, z\right\rangle$ as in Lemma 3.3. Then $D \subseteq \mathrm{~T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right)$. Since $e(B)=1$, Alperin's fusion theorem implies that $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right)$ controls the fusion of B-subpairs. By Lemma 3.3 we also have $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) \subseteq \mathrm{C}_{G}(c)$ for a $c \in \mathrm{Z}(D)$. This shows that B is a so called "centrally controlled block" (see [22]). In [22] it was shown that then the centers of the blocks B and b_{c} (regarded as blocks of $F G$) are isomorphic.

3.5 Dade's conjecture

In this section we will verify Dade's (ordinary) conjecture for the block B (see [12]). First, we need a lemma.
Lemma 3.10. Let \widetilde{B} be a block of $R G$ with defect group $\widetilde{D} \cong C_{2^{s}} \times C_{2}^{2}\left(s \in \mathbb{N}_{0}\right)$ and inertial index 3. Then $k(\widetilde{B})=k_{0}(\widetilde{B})=|\widetilde{D}|=2^{s+2}$ and $l(\widetilde{B})=3$ hold.

Proof. Let α be an automorphism of \widetilde{D} of order 3 which is induced by the inertial group. By Lemma 3.2 we have $\mathrm{C}_{\widetilde{D}}(\alpha) \cong C_{2^{s}}$. We choose a system of representatives x_{1}, \ldots, x_{k} for the orbits of $\widetilde{D} \backslash \mathrm{C}_{\widetilde{D}}(\alpha)$ under α. Then $k=2^{s}$. If $b_{i} \in \operatorname{Bl}\left(R \mathrm{C}_{G}\left(x_{i}\right)\right)$ for $i=1, \ldots, k$ and $b_{u} \in \operatorname{Bl}\left(R \mathrm{C}_{G}(u)\right)$ for $u \in \mathrm{C}_{\widetilde{D}}(\alpha)$ are Brauer correspondents of \widetilde{B}, then

$$
\bigcup_{i=1}^{k}\left\{\left(x_{i}, b_{i}\right)\right\} \cup \bigcup_{u \in \mathrm{C}_{\widetilde{D}}(\alpha)}\left\{\left(u, b_{u}\right)\right\}
$$

is a system of representatives for the conjugacy classes of \widetilde{B}-subsections. Since $\alpha \notin \mathrm{C}_{G}\left(x_{i}\right)$, we have $l\left(b_{i}\right)=1$ for $i=1, \ldots, k$. In particular $k(\widetilde{B}) \leq 2^{s+2}$ holds. Now we show the opposite inequality by induction on s.
For $s=0$ the claim is well known. Let $s \geq 1$. By induction $l\left(b_{u}\right)=3$ for $u \in \mathrm{C}_{\widetilde{D}}(\alpha) \backslash\{1\}$. This shows $k(\widetilde{B})-l(\widetilde{B})=k+\left(2^{s}-1\right) 3=2^{s+2}-3$ and $l(\widetilde{B}) \leq 3$. An inspection of the numbers $d_{\chi \varphi}^{x_{1}}$ implies $k(\widetilde{B})=k_{0}(\widetilde{B})=$ $2^{s+2}=|\widetilde{D}|$ and $l(\widetilde{B})=3$. (This would also follow from Theorem 1 in [46].)

Now assume $\mathrm{O}_{2}(G)=1$ (this is a hypothesis of Dade's conjecture). In order to prove Dade's conjecture it suffices to consider chains

$$
\sigma: P_{1}<P_{2}<\ldots<P_{n}
$$

of nontrivial elementary abelian 2-subgroups of G (see [12). (Note that also the empty chain is allowed.) In particular $P_{i} \unlhd P_{n}$ and $P_{n} \unlhd \mathrm{~N}_{G}(\sigma)$ for $i=1, \ldots, n$. Hence, for a block $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(\sigma)\right)$ with $b^{G}=B$ and defect group Q we have $P_{n} \leq Q$. Moreover, there exists a $g \in G$ such that ${ }^{g} Q \leq D$. Thus, by conjugation with g we may assume $P_{n} \leq Q \leq D$ (see also Lemma 6.9 in [12]). This shows $n \leq 3$.
In the case $\left|P_{n}\right|=8$ we have $P_{n}=\left\langle x^{2^{r-1}}, y, z\right\rangle=: E$, because this is the only elementary abelian subgroup of order 8 in D. Let $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(\sigma)\right)$ with $b^{G}=B$. We choose a defect group Q of $\widetilde{B}:=b^{\mathrm{N}_{G}(E)}$. Since $\Omega(Q)=P_{n}$, we get $\mathrm{N}_{G}(Q) \leq \mathrm{N}_{G}(E)$. Then Brauer's first main theorem implies $Q=D$. Hence, \widetilde{B} is the unique Brauer correspondent of B in $R \mathrm{~N}_{G}(E)$. For $M:=\left\langle x^{2}, y, z\right\rangle \leq D$ we also have $\mathrm{N}_{G}(M) \leq \mathrm{N}_{G}(\Omega(M))=\mathrm{N}_{G}(E)$. Hence, \widetilde{B} is nonnilpotent. Now consider the chain

$$
\widetilde{\sigma}: \begin{cases}\varnothing & \text { if } n=1 \\ P_{1} & \text { if } n=2 \\ P_{1}<P_{2} & \text { if } n=3\end{cases}
$$

for the group $\widetilde{G}:=\mathrm{N}_{G}(E)$. Then $\mathrm{N}_{G}(\sigma)=\mathrm{N}_{\widetilde{G}}(\widetilde{\sigma})$ and

$$
\sum_{\substack{b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(\sigma)\right), b^{G}=B}} k^{i}(b)=\sum_{\substack{b \in \operatorname{Bl}\left(R \mathrm{~N}_{\tilde{G}}(\widetilde{\sigma})\right), b^{G}=\widetilde{B}}} k^{i}(b) .
$$

The chains σ and $\widetilde{\sigma}$ account for all possible chains of G. Moreover, the lengths of σ and $\widetilde{\sigma}$ have opposite parity. Thus, it seems plausible that the contributions of σ and $\widetilde{\sigma}$ in the alternating sum cancel out each other (this would imply Dade's conjecture). The question which remains is: Can we replace $(\widetilde{G}, \widetilde{B}, \widetilde{\sigma})$ by $(G, B, \widetilde{\sigma})$? We make this more precise in the following lemma.

Lemma 3.11. Let \mathcal{Q} be a system of representatives for the G-conjugacy classes of pairs (σ, b), where σ is a chain (of G) of length n with $P_{n}<E$ and $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(\sigma)\right)$ is a Brauer correspondent of B. Similarly, let $\widetilde{\mathcal{Q}}$ be a system of representatives for the \widetilde{G}-conjugacy classes of pairs $(\widetilde{\sigma}, \widetilde{b})$, where $\widetilde{\sigma}$ is a chain (of $\widetilde{G})$ of length n with $P_{n}<E$ and $\widetilde{b} \in \operatorname{Bl}\left(R \mathrm{~N}_{\widetilde{G}}(\widetilde{\sigma})\right)$ is a Brauer correspondent of \widetilde{B}. Then there exists a bijection between \mathcal{Q} and $\widetilde{\mathcal{Q}}$ which preserves the numbers $k^{i}(b)$.

Proof. Let $b_{D} \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(D)\right)$ be a Brauer correspondent of B. We consider chains of B-subpairs

$$
\sigma:\left(P_{1}, b_{1}\right)<\left(P_{2}, b_{2}\right)<\ldots<\left(P_{n}, b_{n}\right)<\left(D, b_{D}\right)
$$

where the P_{i} are nontrivial elementary abelian 2-subgroups such that $P_{n}<E$. Then σ is uniquely determined by these subgroups P_{1}, \ldots, P_{n} (see Theorem 1.7 in [36]). Moreover, the empty chain is also allowed. Let \mathcal{U} be a system of representatives for G-conjugacy classes of such chains. For every chain $\sigma \in \mathcal{U}$ we define

$$
\widetilde{\sigma}:\left(P_{1}, \tilde{b_{1}}\right)<\left(P_{2}, \widetilde{b_{2}}\right)<\ldots<\left(P_{n}, \widetilde{b_{n}}\right)<\left(D, b_{D}\right)
$$

with $\widetilde{b}_{i} \in \operatorname{Bl}\left(R \mathrm{C}_{\widetilde{G}}\left(P_{i}\right)\right)$ for $i=1, \ldots, n$. Finally we set $\widetilde{\mathcal{U}}:=\{\widetilde{\sigma}: \sigma \in \mathcal{U}\}$. By Alperin's fusion theorem $\widetilde{\mathcal{U}}$ is a system of representatives for the \widetilde{G}-conjugacy classes of corresponding chains for the group \widetilde{B}. Hence, it suffices to show the existence of bijections f (resp. \widetilde{f}) between \mathcal{U} (resp. $\widetilde{\mathcal{U}}$) and \mathcal{Q} (resp. $\widetilde{\mathcal{Q}}$) such that the following property is satisfied: If $f(\sigma)=(\tau, b)$ and $\widetilde{f}(\widetilde{\sigma})=(\widetilde{\tau}, \widetilde{b})$, then $k^{i}(b)=k^{i}(\widetilde{b})$ for all $i \in \mathbb{N}_{0}$.
Let $\sigma \in \mathcal{U}$. Then we define the chain τ by only considering the subgroups of σ, i. e. τ : $P_{1}<\ldots<P_{n}$. This gives $\mathrm{C}_{G}\left(P_{n}\right) \subseteq \mathrm{N}_{G}(\tau)$, and we can define

$$
f: \mathcal{U} \rightarrow \mathcal{Q}, \sigma \mapsto\left(\tau, b_{n}^{\mathrm{N}_{G}(\tau)}\right)
$$

Now let $(\sigma, b) \in \mathcal{Q}$ arbitrary. We write $\sigma: P_{1}<\ldots<P_{n}$. By Theorem 5.5.15 in 29] there exists a Brauer correspondent $\beta_{n} \in \operatorname{Bl}\left(R \mathrm{C}_{G}\left(P_{n}\right)\right)$ of b. Since $\left(P_{n}, \beta_{n}\right)$ is a B-subpair, we may assume $\left(P_{n}, \beta_{n}\right)<\left(D, b_{D}\right)$ after a suitable conjugation. Then there are uniquely determined blocks $\beta_{i} \in \operatorname{Bl}\left(R \mathrm{C}_{G}\left(P_{i}\right)\right)$ for $i=1, \ldots, n-1$ such that

$$
\left(P_{1}, \beta_{1}\right)<\left(P_{2}, \beta_{2}\right)<\ldots<\left(P_{n}, \beta_{n}\right)<\left(D, b_{D}\right)
$$

This shows that f is surjective.
Now let $\sigma_{1}, \sigma_{2} \in \mathcal{U}$ be given. We write

$$
\sigma_{i}:\left(P_{1}^{i}, \beta_{1}^{i}\right)<\ldots<\left(P_{n}^{i}, \beta_{n}^{i}\right)
$$

for $i=1,2$. Let us assume that $f\left(\sigma_{1}\right)=\left(\tau_{1}, b_{1}\right)$ and $f\left(\sigma_{2}\right)=\left(\tau_{2}, b_{2}\right)$ are conjugate in G, i.e. there is a $g \in G$ such that

$$
\left(\tau_{2},\left({ }^{g} \beta_{n}^{1}\right)^{\mathrm{N}_{G}\left(\tau_{2}\right)}\right)={ }^{g}\left(\tau_{1}, b_{1}\right)=\left(\tau_{2}, b_{2}\right)=\left(\tau_{2},\left(\beta_{n}^{2}\right)^{\mathrm{N}_{G}\left(\tau_{2}\right)}\right)
$$

Since ${ }^{g} \beta_{n}^{1} \in \operatorname{Bl}\left(R \mathrm{C}_{G}\left(P_{n}^{2}\right)\right)$ and β_{n}^{2} are covered by b_{2}, there is $h \in \mathrm{~N}_{G}\left(\tau_{2}\right)$ with ${ }^{h g} \beta_{n}^{1}=\beta_{n}^{2}$. Then

$$
{ }^{h g}\left(P_{n}^{1}, \beta_{n}^{1}\right)=\left(P_{n}^{2}, \beta_{n}^{2}\right)
$$

Since the blocks β_{j}^{i} for $i=1,2$ and $j=1, \ldots, n-1$ are uniquely determined by P_{j}^{i}, we also have ${ }^{g h} \sigma_{1}=\sigma_{2}=\sigma_{1}$. This proves the injectivity of f. Analogously, we define the map \tilde{f}.
It remains to show that f and \tilde{f} satisfy the property given above. For this let $\sigma \in \mathcal{U}$ with $\sigma:\left(P_{1}, b_{1}\right)<$ $\ldots<\left(P_{n}, b_{n}\right), \widetilde{\sigma}:\left(P_{1}, \widetilde{b_{1}}\right)<\ldots<\left(P_{n}, \widetilde{b_{n}}\right), f(\sigma)=\left(\tau, b_{n}^{\mathrm{N}_{G}(\tau)}\right)$ and $\widetilde{f}(\widetilde{\sigma})=\left(\tau,{\widetilde{b_{n}}}^{\mathrm{N}_{\tilde{G}}(\tau)}\right)$. We have to prove $k^{i}\left(b_{n}^{\mathrm{N}_{G}(\tau)}\right)=k^{i}\left({\widetilde{b_{n}}}^{\mathrm{N}_{\widetilde{G}}(\tau)}\right)$ for $i \in \mathbb{N}_{0}$.
Let Q be a defect group of $b_{n}^{\mathrm{N}_{G}(\tau)}$. Then $Q \mathrm{C}_{G}(Q) \subseteq \mathrm{N}_{G}(\tau)$, and there is a Brauer correspondent $\beta_{n} \in$ $\operatorname{Bl}\left(R Q \mathrm{C}_{G}(Q)\right)$ of $b_{n}^{\mathrm{N}_{G}(\tau)}$. In particular $\left(Q, \beta_{n}\right)$ is a B-Brauer subpair. As in Lemma 3.1 we may assume $Q \in$ $\{D, M,\langle x, z\rangle,\langle x y, z\rangle\}$. The same considerations also work for the defect group \widetilde{Q} of ${\widetilde{b_{n}}}^{\mathbb{N}_{\widetilde{G}}}(\tau)$. Since $b_{n}^{D \mathrm{C}_{G}\left(P_{n}\right)}=$ $b_{D}^{D \mathrm{C}_{G}\left(P_{n}\right)}={\widetilde{b_{n}}}^{D \mathrm{C}_{G}\left(P_{n}\right)}$, we get:

$$
Q=D \Longleftrightarrow D \subseteq \mathrm{~N}_{G}(\tau) \Longleftrightarrow D \subseteq \mathrm{~N}_{\widetilde{G}}(\tau) \Longleftrightarrow \widetilde{Q}=D
$$

Let us consider the case $Q=D(=\widetilde{Q})$. Let $b_{M} \in \operatorname{Bl}\left(R \mathrm{C}_{G}(M)\right)$ such that $\left(M, b_{M}\right) \leq\left(D, b_{D}\right)$ and $\alpha \in$ $\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{M}\right) \backslash D \mathrm{C}_{G}(M) \subseteq \mathrm{N}_{G}(M) \subseteq \widetilde{G}$. Then:

$$
b_{n}^{\mathrm{N}_{G}(\tau)} \text { is nilpotent } \Longleftrightarrow \alpha \notin \mathrm{N}_{G}(\tau) \Longleftrightarrow \alpha \notin \mathrm{N}_{\widetilde{G}}(\tau) \Longleftrightarrow{\widetilde{b_{n}}}^{\mathrm{N}_{\widetilde{G}}(\tau)} \text { is nilpotent. }
$$

Thus, the claim holds in this case. Now let $Q<D$ (and $\widetilde{Q}<D)$. Then we have $Q \mathrm{C}_{G}(Q)=\mathrm{C}_{G}(Q) \subseteq \mathrm{C}_{G}\left(P_{n}\right)$. Since $\beta_{n}^{\mathrm{C}_{G}\left(P_{n}\right)}$ is also a Brauer correspondent of $b_{n}^{\mathbf{N}_{G}(\tau)}$, the blocks $\beta_{n}^{\mathrm{C}_{G}\left(P_{n}\right)}$ and b_{n} are conjugate. In particular b_{n} (and $\widetilde{b_{n}}$) has defect group Q. Hence, we obtain $Q=\widetilde{Q}$. If $Q \in\{\langle x, z\rangle,\langle x y, z\rangle\}$, then $b_{n}^{\mathrm{N}_{G}(\tau)}$ and ${\widetilde{b_{n}}}_{\widetilde{G}}{ }^{(\tau)}$ are nilpotent, and the claim holds. Thus, we may assume $Q=M$. Then as before:

$$
b_{n}^{\mathrm{N}_{G}(\tau)} \text { is nilpotent } \Longleftrightarrow \alpha \notin \mathrm{N}_{G}(\tau) \Longleftrightarrow \alpha \notin \mathrm{N}_{\widetilde{G}}(\tau) \Longleftrightarrow{\widetilde{b_{n}}}_{\widetilde{G}}^{\mathrm{N}_{\widetilde{G}}(\tau)} \text { is nilpotent. }
$$

We may assume that the nonnilpotent case occurs. Then $t\left(b_{n}^{\mathrm{N}_{G}(\tau)}\right)=t\left({\widetilde{b_{n}}}^{\mathrm{N}_{\tilde{G}}}(\tau)\right)=3$, and the claim follows from Lemma 3.10

As explained in the beginning of the section, the Dade conjecture follows.
Theorem 3.12. The Dade conjecture holds for B.

3.6 Alperin's weight conjecture

In this section we prove Alperin's weight conjecture for B. Let (P, β) be a weight for B, i. e. P is a 2-subgroup of G and β is a block of $R\left[\mathrm{~N}_{G}(P) / P\right]$ with defect 0 . Moreover, β is dominated by a Brauer correspondent $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(P)\right)$ of B. As usual, one can assume $P \leq D$. If $\operatorname{Aut}(P)$ is a 2-group, then $\mathrm{N}_{G}(P) / \mathrm{C}_{G}(P)$ is also a 2 -group. Then P is a defect group of b, since β has defect 0 . Moreover, β is uniquely determined by b. By Brauer's first main theorem we have $P=D$. Thus, in this case there is exactly one weight for B up to conjugation.
Now let us assume that $\operatorname{Aut}(P)$ is not a 2 -group (in particular $P<D$). As usual, β covers a block $\beta_{1} \in$ $\operatorname{Bl}\left(R\left[\mathrm{C}_{G}(P) / P\right]\right)$. By the Fong-Reynolds theorem (see [29] for example) also β_{1} has defect 0 . Hence, β_{1} is dominated by exactly one block $b_{1} \in \operatorname{Bl}\left(R \mathrm{C}_{G}(P)\right)$ with defect group P. Since $\beta \beta_{1} \neq 0$, we also have $b b_{1} \neq 0$, i. e. b covers b_{1}. Thus, the situation is as follows:

By Theorem 5.5.15 in [29] we have $b_{1}^{\mathrm{N}_{G}(P)}=b$ and $b_{1}^{G}=B$. This shows that $\left(P, b_{1}\right)$ is a B-Brauer subpair. Then $P=M\left(=\left\langle x^{2}, y, z\right\rangle\right)$ follows. By Brauer's first main theorem b is uniquely determined (independent of β). Now we prove that also β is uniquely determined by b.

In order to do so it suffices to show that β is the only block with defect 0 which covers β_{1}. By the Fong-Reynolds theorem it suffices to show that β_{1} is covered by only one block of $R \mathrm{~T}_{\mathrm{N}_{G}(M) / M}\left(\beta_{1}\right)=R\left[\mathrm{~T}_{\mathrm{N}_{G}(M)}\left(b_{1}\right) / M\right]$ with defect 0 . For convenience we write $\overline{\mathrm{C}_{G}(M)}:=\mathrm{C}_{G}(M) / M, \overline{\mathrm{~N}_{G}(M)}:=\mathrm{N}_{G}(M) / M$ and $\overline{\mathrm{T}}:=\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{1}\right) / M$. Let $\chi \in \operatorname{Irr}\left(\beta_{1}\right)$. The irreducible constituents of $\operatorname{Ind} \frac{\overline{\bar{C}}}{\bar{C}_{G}(M)}(\chi)$ belong to blocks which covers β_{1} (where Ind denote induction). Conversely, every block of $R \overline{\mathrm{~T}}$ which covers β_{1} arises in this way (see Lemma 5.5.7 in [29]). Let

$$
\operatorname{Ind} \frac{\overline{\mathrm{T}}}{\overline{\mathrm{C}}_{G}(M)}(\chi)=\sum_{i=1}^{t} e_{i} \psi_{i}
$$

with $\psi_{i} \in \operatorname{Irr}(\overline{\mathrm{~T}})$ and $e_{i} \in \mathbb{N}$ for $i=1, \ldots, t$. Then

$$
\sum_{i=1}^{t} e_{i}^{2}=\left|\overline{\mathrm{T}}: \overline{\mathrm{C}_{G}(M)}\right|=\left|\mathrm{T}_{\mathrm{N}_{G}(M)}\left(b_{1}\right): \mathrm{C}_{G}(M)\right|=6
$$

(see page 84 in [17]). Thus, there is some $i \in\{1, \ldots, t\}$ with $e_{i}=1$, i. e. χ is extendible to $\overline{\mathrm{T}}$. We may assume $e_{1}=1$. By Corollary 6.17 in [17] it follows that $t=\left|\operatorname{Irr}\left(\overline{\mathrm{T}} / \overline{\mathrm{C}_{G}(M)}\right)\right|=\left|\operatorname{Irr}\left(S_{3}\right)\right|=3$ and

$$
\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}=\left\{\psi_{1} \tau: \tau \in \operatorname{Irr}\left(\overline{\mathrm{T}} / \overline{\mathrm{C}_{G}(M)}\right)\right\}
$$

where the characters in $\operatorname{Irr}\left(\overline{\mathrm{T}} / \overline{\mathrm{C}_{G}(M)}\right)$ were identified with their inflations in $\operatorname{Irr}(\overline{\mathrm{T}})$. Thus, we may assume $e_{2}=1$ and $e_{3}=2$. Then it is easy to see that ψ_{1} and ψ_{2} belong to blocks with defect at least 1 . Hence, only the block with contains ψ_{3} is allowed. This shows uniqueness.
Finally we show that there is in fact a weight of the form (M, β). For this we choose $b, b_{1}, \beta_{1}, \chi$ and ψ_{i} as above. Then χ vanishs on all nontrivial 2-elements. Moreover, ψ_{1} is an extension of χ. Let $\tau \in \operatorname{Irr}\left(\overline{\mathrm{T}} / \overline{\mathrm{C}_{G}(M)}\right)$ be the character of degree 2. Then τ vanishs on all nontrivial 2-elements of $\overline{\mathrm{T}} / \overline{\mathrm{C}_{G}(M)}$. Hence, $\psi_{3}=\psi_{1} \tau$ vanishs on all nontrivial 2-elements of $\overline{\mathrm{T}}$. This shows that ψ_{3} belongs in fact to a block $\widetilde{\beta} \in \operatorname{Bl}(R \overline{\mathrm{~T}})$ with defect 0 . Then $\left(M, \widetilde{\beta}^{\bar{N}_{G}(M)}\right)$ is the desired weight for B.

Hence, we have shown that there are exactly two weights for B up to conjugation. Since $l(B)=2$, Alperin's weight conjecture is satisfied.

Theorem 3.13. Alperin's weight conjecture holds for B.

3.7 The gluing problem

Finally we show that the gluing problem (see Conjecture 4.2 in [26]) for the block B has a unique solution. We will not recall the very technical statement of the gluing problem. Instead we refer to [37] for most of the notations. Observe that the field F is denoted by k in [37].

Theorem 3.14. The gluing problem for B has a unique solution.
Proof. As in [37] we denote the fusion system induced by B with \mathcal{F}. Then the \mathcal{F}-centric subgroups of D are given by $M_{1}:=\left\langle x^{2}, y, z\right\rangle, M_{2}:=\langle x, z\rangle, M_{3}:=\langle x y, z\rangle$ and D. We have seen so far that $\operatorname{Aut}_{\mathcal{F}}\left(M_{1}\right) \cong \operatorname{Out}_{\mathcal{F}}\left(M_{1}\right) \cong S_{3}$, $\operatorname{Aut}_{\mathcal{F}}\left(M_{i}\right) \cong D / M_{i} \cong C_{2}$ for $i=2,3$ and $\operatorname{Aut}_{\mathcal{F}}(D) \cong D / \mathrm{Z}(D) \cong C_{2}^{2}$ (see proof of Lemma 3.3). Using this, we get $\mathrm{H}^{i}\left(\operatorname{Aut}_{\mathcal{F}}(\sigma), F^{\times}\right)=0$ for $i=1,2$ and every chain σ of \mathcal{F}-centric subgroups (see proof of Corollary 2.2 in [37]). Hence, $\mathrm{H}^{0}\left(\left[S\left(\mathcal{F}^{c}\right)\right], \mathcal{A}_{\mathcal{F}}^{2}\right)=\mathrm{H}^{1}\left(\left[S\left(\mathcal{F}^{c}\right)\right], \mathcal{A}_{\mathcal{F}}^{1}\right)=0$. Now the claim follows from Theorem 1.1 in 37].

4 The case $r=s>1$

In the section we assume that B is a nonnilpotent block of $R G$ with defect group

$$
D:=\left\langle x, y \mid x^{2^{r}}=y^{2^{r}}=[x, y]^{2}=[x, x, y]=[y, x, y]=1\right\rangle
$$

for $r \geq 2$. As before we define $z:=[x, y]$. Since $|D / \Phi(D)|=4,2$ and 3 are the only prime divisors of $|\operatorname{Aut}(D)|$. In particular $t(B) \in\{1,3\}$. If $t(B)=1$, then B would be nilpotent by Theorem 2.4 . Thus, we have $t(B)=3$.

4.1 The B-subsections

We investigate the automorphism group of D.
Lemma 4.1. Let $\alpha \in \operatorname{Aut}(D)$ be an automorphism of order 3 . Then z is the only nontrivial fixed-point of $\mathrm{Z}(D)$ under α.

Proof. Since $D^{\prime}=\langle z\rangle, z$ remains fixed under all automorphisms of D. Moreover, $\alpha(x) \in y \mathrm{Z}(D) \cup x y \mathrm{Z}(D)$, because α acts nontrivially on $D / \mathrm{Z}(D)$. In both cases we have $\alpha\left(x^{2}\right) \neq x^{2}$. This shows that $\left.\alpha\right|_{\mathrm{Z}(D)} \in \operatorname{Aut}(\mathrm{Z}(D))$ is also an automorphism of order 3 . Obviously α induces an automorphism of order 3 on $\mathrm{Z}(D) /\langle z\rangle \cong C_{2^{r-1}}^{2}$. But this automorphism is fixed-point-free (see Lemma 1 in [27]). The claim follows.

Using this, we can find a system of representatives for the conjugacy classes of B-subsections.
Lemma 4.2. Let $b \in \operatorname{Bl}\left(R D \mathrm{C}_{G}(D)\right)$ be a Brauer correspondent of B, and for $Q \leq D$ let b_{Q} be the unique block of $R Q \mathrm{C}_{G}(Q)$ with $\left(Q, b_{Q}\right) \leq(D, b)$. We choose a system $\mathcal{S} \subseteq \mathrm{Z}(D)$ of representatives for the orbits of $\mathrm{Z}(D)$ under the action of $\mathrm{T}_{\mathrm{N}_{G}(D)}(b)$. We set $\mathcal{T}:=\mathcal{S} \cup\left\{y^{i} x^{2 j}: i, j \in \mathbb{Z}\right.$, i odd $\}$. Then

$$
\bigcup_{a \in \mathcal{T}}\left\{\left(a, b_{\mathrm{C}_{D}(a)}^{\mathrm{C}_{G}(a)}\right)\right\}
$$

is a system of representatives for the conjugacy classes of B-subsections. Moreover,

$$
|\mathcal{T}|=\frac{5 \cdot 2^{2(r-1)}+4}{3} .
$$

Proof. Proposition 2.12.(ii) in [34 states the desired system wrongly. More precisely the claim $I_{D}=\mathrm{Z}(D)$ in the proof is false. Indeed Lemma 4.1 shows $I_{D}=\mathcal{S}$. Now the claim follows easily.

From now on we write $b_{a}:=b_{\mathrm{C}_{D}(a)}^{\mathrm{C}_{G}^{(a)}}$ for $a \in \mathcal{T}$. We are able to determine the difference $k(B)-l(B)$.
Proposition 4.3. We have

$$
k(B)-l(B)=\frac{5 \cdot 2^{2(r-1)}+7}{3}
$$

Proof. Consider $l\left(b_{a}\right)$ for $1 \neq a \in \mathcal{T}$.
Case 1: $a \in \mathrm{Z}(D)$.
Then b_{a} is a block with defect group D. Moreover, b_{a} and B have a common Brauer correspondent in $\mathrm{Bl}\left(R D \mathrm{C}_{\mathrm{C}_{G}(a)}(D)\right)=\operatorname{Bl}\left(R D \mathrm{C}_{G}(D)\right)$. In case $a \neq z$ we have $t\left(b_{a}\right)=1$ by Lemma 4.1. Hence, b_{a} is nilpotent and $l\left(b_{a}\right)=1$. Now let $a=z$. Then there exists a block $\overline{b_{z}}$ of $\mathrm{C}_{G}(z) /\langle z\rangle$ with defect group $D /\langle z\rangle \cong C_{2^{r}}^{2}$ and $l\left(\overline{b_{z}}\right)=l\left(b_{z}\right)$. By Theorem 1.5(iv) in [33], $t\left(\overline{b_{z}}\right)=t\left(b_{z}\right)=3$ holds. Thus, Theorem 2 in 43] implies $l\left(b_{z}\right)=l\left(\overline{b_{z}}\right)=3$.
Case 2: $a \notin \mathrm{Z}(D)$.
Then $b_{\mathrm{C}_{P}(a)}=b_{M}$ is a block with defect group $M:=\left\langle x^{2}, y, z\right\rangle$. Since $b_{M}^{D \mathrm{C}_{G}(M)}=b_{D}^{D \mathrm{C}_{G}(M)}$, also $b_{M}^{\mathrm{C}_{G}(a)}=b_{a}$ has defect group M. For every automorphism $\alpha \in \operatorname{Aut}(D)$ of order 3 we have $\alpha(M) \neq M$. Since D controls the fusion of B-subpairs, we get $t\left(b_{a}\right)=l\left(b_{a}\right)=1$.

Now the conclusion follows from $k(B)=\sum_{a \in \mathcal{T}} l\left(b_{a}\right)$.

The next result concerns the Cartan matrix of B.
Lemma 4.4. The elementary divisors of the Cartan matrix of B are contained in $\{1,2,|D|\}$. The elementary divisor 2 occurs twice and $|D|$ occurs once (as usual). In particular $l(B) \geq 3$.

Proof. Let C be the Cartan matrix of B. As in Lemma 3.7 we use the notion of lower defect groups. For this let $P<D$ such that $|P| \geq 4$, and let $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(P)\right)$ be a Brauer correspondent of B with defect group $Q \leq D$. Brauer's first main theorem implies $P<Q$. By Proposition 1.3 in 33 there exists a block $\beta \in \operatorname{Bl}\left(R \mathrm{C}_{G}(P)\right)$ with $\beta^{\mathrm{N}_{G}(P)}=b$ such that at most $l(\beta)$ lower defect groups of b contain a conjugate of P. Let $S \leq Q$ be a defect group of β. First, we consider the case $S=D$. Then $P \subseteq \mathrm{Z}(D)$. By Lemma 4.1 we have $l(\beta)=1$, since $|P| \geq 4$. It follows that $m_{b}^{1}(P)=m_{b}(P)=0$, because P is contained in the (lower) defect group Q of b.
Now assume $S<D$. In particular S is abelian. If S is even metacyclic, then $l(\beta)=1$ and $m_{b}^{1}(P)=0$, since $P \subseteq \mathrm{Z}\left(\mathrm{C}_{G}(P)\right)$. Thus, let us assume that S is nonmetacyclic. By (3C) in 5, $x^{2} \in \mathrm{Z}(D)$ is conjugate to an element of $\mathrm{Z}(S)$. This shows $S \cong C_{2^{k}} \times C_{2^{l}} \times C_{2}$ with $k \in\{r, r-1\}$ and $1 \leq l \leq r$. If $1, k, l$ are pairwise distinct, then $l(\beta)=1$ and $m_{b}^{1}(P)=0$ follow from Lemma 2.3. Let $k=l$. Then every automorphism of S of order 3 has only one nontrivial fixed-point. Since $|P| \geq 4$, it follows again that $l(\beta)=1$ and $m_{b}^{1}(P)=0$.
Now let $S \cong C_{2^{k}} \times C_{2}^{2}$ with $2 \leq k \in\{r-1, r\}$. Assume first that P is noncyclic. Then S / P is metacyclic. If S / P is not a product of two isomorphic cyclic groups, then $l(\beta)=1$ and $m_{b}^{1}(P)=0$. Hence, we may assume
$S / P \cong C_{2}^{2}$. It is easy to see that there exists a subgroup $P_{1} \leq P$ with $S / P_{1} \cong C_{4} \times C_{2}$. We get $l(\beta)=1$ and $m_{b}^{1}(P)=0$ also in this case.
Finally, let $P=\langle u\rangle$ be cyclic. Then (u, β) is a B-subsection. Since $|P| \geq 4, u$ is not conjugate to z. As in the proof of Proposition 4.3 we have $l(\beta)=1$ and $m_{b}^{1}(P)=0$. This shows $m_{B}^{1}(P)=0$. Since P was arbitrary, the multiplicity of $|P|$ as an elementary divisor of C is 0 .

It remains to consider the case $|P|=2$. We write $P=\langle u\rangle \leq D$. As before let $b \in \operatorname{Bl}\left(R \mathrm{~N}_{G}(P)\right)$ be a Brauer correspondent of B. Then (u, b) is a B-subsection. If (u, b) is not conjugate to $\left(z, b_{z}\right)$, then $l(b)=1$ and $m_{b}^{1}(P)=0$ as in the proof of Proposition 4.3. Since we can replace P by a conjugate, we may assume $P=\langle z\rangle$ and $(u, b)=\left(z, b_{z}\right)$. Then $l(b)=3$ and D is a defect group of b. Now let $\bar{b} \in \operatorname{Bl}\left(R\left[\mathrm{~N}_{G}(P) / P\right]\right)$ be the block which is dominated by b. By Corollary 1 in [16] the elementary divisors of the Cartan matrix of \bar{b} are $1,1,|D| / 2$. Hence, the elementary divisors of the Cartan matrix of b are $2,2,|D|$. This shows

$$
2=\sum_{\substack{Q \in \mathcal{P}\left(\mathrm{~N}_{G}(P)\right) \\|Q|=2}} m_{b}^{1}(Q)
$$

where $\mathcal{P}\left(\mathrm{N}_{G}(P)\right)$ is a system of representatives for the conjugacy classes of p-subgroups of $\mathrm{N}_{G}(P)$. The same arguments applied to b instead of B imply $m_{b}^{1}(Q)=0$ for $P \neq Q \leq \mathrm{N}_{G}(P)$ with $|Q|=2$. Hence, $2=m_{b}^{1}(P)=$ $m_{B}^{1}(P)$, and 2 occurs as elementary divisors of C twice.

As in Section 3 we write $\operatorname{IBr}\left(b_{u}\right)=\left\{\varphi_{u}\right\}$ for $u \in \mathcal{T} \backslash\langle z\rangle$. In a similar manner we define the integers a_{i}^{u}. If $u \in \mathcal{T} \backslash\langle z\rangle$ with $|\langle u\rangle|=2^{k}>2$, then the 2^{k-1} distinct subsections of the form ${ }^{\gamma}\left(u, b_{u}\right)$ for $\gamma \in \mathcal{G}$ are pairwise nonconjugate (same argument as in the case $r>s=2$). Hence, Lemma 3.4 carries over in a corresponding form. Apart from that we can also carry over Lemma (6.B) in [20]:

Lemma 4.5. Let $\chi \in \operatorname{Irr}(B)$ and $u \in \mathcal{T} \backslash \mathrm{Z}(D)$. Then χ has height 0 if and only if the sum

$$
\sum_{i=0}^{2^{r-1}-1} a_{i}^{u}(\chi)
$$

is odd.
Proof. If χ has height 0 , the sum is odd by Proposition 1 in 9 . The other implication follows easily from (5G) in [6].

The next lemma is the analogon to Lemma 3.5
Lemma 4.6. Let $u \in \mathrm{Z}(D) \backslash\langle z\rangle$ of order 2^{k}. Then for all $\chi \in \operatorname{Irr}(B)$ we have:
(i) $2^{h(\chi)} \mid a_{i}^{u}(\chi)$ for $i=0, \ldots, 2^{k-1}-1$,
(ii) $\sum_{i=0}^{2^{k-1}-1} a_{i}^{u}(\chi) \equiv 2^{h(\chi)}\left(\bmod 2^{h(\chi)+1}\right)$.

As in the case $r>s=1$, Lemma 1.1 in [39] implies

$$
\begin{equation*}
k(B) \leq \sum_{i=0}^{\infty} 2^{2 i} k_{i}(B) \leq|D| \tag{6}
\end{equation*}
$$

In particular Brauer's $k(B)$-conjecture holds. Moreover, Theorem 3.1 in [39] gives $k_{0}(B) \leq|D| / 2=\left|D: D^{\prime}\right|$, i. e. Olsson's conjecture is satisfied. Using this, we can improve the inequality (6) to

$$
|D| \geq k_{0}(B)+4\left(k(B)-k_{0}(B)\right)=4 k(B)-3 k_{0}(B) \geq 4 k(B)-\frac{3|D|}{2}
$$

and

$$
\frac{5 \cdot 2^{2(r-1)}+16}{3} \leq k(B)-l(B)+l(B)=k(B) \leq \frac{5|D|}{8}=5 \cdot 2^{2(r-1)}
$$

We will improve this further. Let $\overline{b_{z}}$ be the block of $\operatorname{Bl}\left(R \mathrm{C}_{G}(z) /\langle z\rangle\right)$ which is dominated by b_{z}. Then $\overline{b_{z}}$ has defect group $D /\langle z\rangle \cong C_{2^{r}}^{2}$. Using the existence of a perfect isometry (see [44, 45, 38), one can show that the Cartan matrix of $\overline{b_{z}}$ is equivalent to

$$
\bar{C}:=\frac{1}{3}\left(\begin{array}{lll}
2^{2 r}+2 & 2^{2 r}-1 & 2^{2 r}-1 \\
2^{2 r}-1 & 2^{2 r}+2 & 2^{2 r}-1 \\
2^{2 r}-1 & 2^{2 r}-1 & 2^{2 r}+2
\end{array}\right) .
$$

Hence, the Cartan matrix of b_{z} is equivalent to $2 \bar{C}$. Now inequality ($* *$) in [24] yields

$$
k(B) \leq 2 \frac{2^{2 r}+8}{3}=\frac{|D|+16}{3}
$$

(Notice that the proof of Theorem A in [24] also works for b_{z} instead of B, since the generalized decomposition numbers corresponding to $\left(z, b_{z}\right)$ are integral. See also Lemma 3 in [42].)

In addition we have

$$
k_{i}(B)=0 \text { for } i \geq 4
$$

by Corollary $(6 \mathrm{D})$ in [7]. This means that the heights of the characters in $\operatorname{Irr}(B)$ are bounded independently of r. We remark also that Alperin's weight conjecture is equivalent to

$$
l(B)=l(b)
$$

for the Brauer correspondent $b \in \mathrm{Bl}\left(R \mathrm{~N}_{G}(D)\right)$ of B (see Consequence 5 in [1). Since $z \in \mathrm{Z}\left(\mathrm{N}_{G}(D)\right), l(B)=$ $l(b)=3$ and $k(B)=\left(5 \cdot 2^{2(r-1)}+16\right) / 3$ would follow in this case (see proof of Proposition 4.3).

4.2 The gluing problem

As in section 3.7 we use the notations of 37.
Theorem 4.7. The gluing problem for B has a unique solution.
Proof. Let \mathcal{F} be the fusion system induced by B. Then the \mathcal{F}-centric subgroups of D are given by $M:=$ $\left\langle x^{2}, y, z\right\rangle$ and D (up to conjugation in \mathcal{F}). We have $\operatorname{Aut}_{\mathcal{F}}(M) \cong D / M \cong C_{2}$ and $\operatorname{Aut}_{\mathcal{F}}(D) \cong A_{4}$. This shows $\mathrm{H}^{2}\left(\operatorname{Aut}_{\mathcal{F}}(\sigma), F^{\times}\right)=0$ for every chain σ of \mathcal{F}-centric subgroups. Consequently, $\mathrm{H}^{0}\left(\left[S\left(\mathcal{F}^{c}\right)\right], \mathcal{A}_{\mathcal{F}}^{2}\right)=0$. On the other hand, we have $\mathrm{H}^{1}\left(\operatorname{Aut}_{\mathcal{F}}(D), F^{\times}\right) \cong \mathrm{H}^{1}\left(C_{3}, F^{\times}\right) \cong C_{3}$ and $\mathrm{H}^{1}\left(\operatorname{Aut}_{\mathcal{F}}(\sigma), F^{\times}\right)=0$ for all chains $\sigma \neq D$. Hence, the situation is as in Case 3 of the proof of Theorem 1.2 in [37. However, the proof in [37] is pretty short. For the convenience of the reader, we give a more complete argument.
Since $\left[S\left(\mathcal{F}^{c}\right)\right]$ is partially ordered by taking subchains, one can view $\left[S\left(\mathcal{F}^{c}\right)\right]$ as a category, where the morphisms are given by the pairs of ordered chains. In particular $\left[S\left(\mathcal{F}^{c}\right)\right]$ has exactly five morphisms. With the notations of [47] the functor $\mathcal{A}_{\mathcal{F}}^{1}$ is a representation of $\left[S\left(\mathcal{F}^{c}\right)\right]$ over \mathbb{Z}. Hence, we can view $\mathcal{A}_{\mathcal{F}}^{1}$ as a module \mathcal{M} over the incidence algebra of $\left[S\left(\mathcal{F}^{c}\right)\right]$. More precisely, we have

$$
\mathcal{M}:=\bigoplus_{a \in \operatorname{Ob}\left[S\left(\mathcal{F}^{c}\right)\right]} \mathcal{A}_{\mathcal{F}}^{1}(a)=\mathcal{A}_{\mathcal{F}}^{1}(D) \cong C_{3} .
$$

Now we can determine $\mathrm{H}^{1}\left(\left[S\left(\mathcal{F}^{c}\right)\right], \mathcal{A}_{\mathcal{F}}^{1}\right)$ using Lemma 6.2(2) in [47. For this let $d: \operatorname{Hom}\left[S\left(\mathcal{F}^{c}\right)\right] \rightarrow \mathcal{M}$ a derivation. Then we have $d(\alpha)=0$ for all $\alpha \in \operatorname{Hom}\left[S\left(\mathcal{F}^{c}\right)\right]$ with $\alpha \neq(D, D)=: \alpha_{1}$. However,

$$
d\left(\alpha_{1}\right)=d\left(\alpha_{1} \alpha_{1}\right)=\left(\mathcal{A}_{\mathcal{F}}^{1}\left(\alpha_{1}\right)\right)\left(d\left(\alpha_{1}\right)\right)+d\left(\alpha_{1}\right)=2 d\left(\alpha_{1}\right)=0
$$

Hence, $\mathrm{H}^{1}\left(\left[S\left(\mathcal{F}^{c}\right)\right], \mathcal{A}_{\mathcal{F}}^{1}\right)=0$.

4.3 Special cases

Since the general methods do not suffice to compute the invariants of B, we restrict ourself to certain special situations.

Proposition 4.8. If $\mathrm{O}_{2}(G) \neq 1$, then

$$
k(B)=\frac{5 \cdot 2^{2(r-1)}+16}{3}, \quad k_{0}(B) \geq \frac{2^{2 r}+8}{3}, \quad l(B)=3
$$

Proof. Let $1 \neq Q:=\mathrm{O}_{2}(G)$. Then $Q \subseteq D$. In the case $Q=D^{\prime}$ we have $\mathrm{C}_{G}(z)=\mathrm{N}_{G}(Q)=G$ and $B=b_{z}$. Then the assertions on $k(B)$ and $l(B)$ are clear. Moreover, b_{z} dominates a block $\overline{b_{z}} \in \operatorname{Bl}\left(R \mathrm{C}_{G}(z) /\langle z\rangle\right)$ with defect group $C_{2^{r}}^{2}$. By Theorem 2 in [43] we have

$$
k_{0}(B) \geq k_{0}\left(\overline{b_{z}}\right)=k\left(\overline{b_{z}}\right)=\frac{2^{2 r}+8}{3}
$$

Hence, we may assume $Q \neq D^{\prime}$. With the same argument we may also assume $Q<D$. In particular Q is abelian. We consider a B-subpair $\left(Q, b_{Q}\right)$. Then D or M is a defect group of b_{Q} (see proof of Lemma 4.2). If D is a defect group of b_{Q}, then $D \subseteq \mathrm{C}_{G}(Q)$ and $Q \subseteq \mathrm{Z}(D)$. By Lemma 4.1 it follows that b_{Q} is nilpotent.
Now let us assume that M is a defect group of b_{Q}. Since D controls the fusions of B-subpairs, we have $t\left(b_{Q}\right)=1$ (see Case 2 in the proof of Proposition 4.3). Hence, again b_{Q} is nilpotent. Thus, in both cases B is an extension of a nilpotent block of $\operatorname{Bl}\left(R \mathrm{C}_{G}(Q)\right)$. In this situation the Külshammer-Puig theorem applies. In particular we can replace B by a block with normal defect group (see [23). Hence, $B=b_{z}$, and the claim follows as before.

Since $\mathrm{N}_{G}(D) \subseteq \mathrm{C}_{G}(z), B$ is a "centrally controlled block" (see [22]). In [22] it was shown that then an epimorphism $\mathrm{Z}(B) \rightarrow \mathrm{Z}\left(b_{z}\right)$ exists, where one has to regard B (resp. b_{z}) as blocks of $F G$ (resp. $F \mathrm{C}_{G}(z)$). Moreover, we conjecture that the blocks B and b_{z} are Morita-equivalent. For the similar defect group Q_{8} this holds in fact (see [18]). In this context the work [11] is also interesting. There is was shown that there is a perfect isometry between any two blocks with the same quaternion group as defect group and the same fusion of subpairs. Thus, it would be also possible that there is a perfect isometry between B and b_{z}.

Proposition 4.9. In order to determine $k(B)$ (and thus also $l(B)$), we may assume that $\mathrm{O}_{2}(G)$ is trivial and $\mathrm{O}_{2^{\prime}}(G)=\mathrm{Z}(G)=\mathrm{F}(G)$ is cyclic. Moreover, we can assume that G is an extension of a solvable group by a quasisimple group. In particular G has only one nonabelian composition factor.

Proof. By Proposition 4.8 we may assume $\mathrm{O}_{2}(G)=1$. Now we consider $\mathrm{O}(G):=\mathrm{O}_{2^{\prime}}(G)$. Using Clifford theory we may assume that $\overline{\mathrm{O}(G)}$ is central and cyclic (see e.g. Theorem X.1.2 in [15]). Since $\mathrm{O}_{2}(G)=1$, we get $\mathrm{O}(G)=\mathrm{Z}(G)$. Let $\mathrm{E}(G)$ be the normal subgroup of G generated by the components. As usual, B covers a block b of $\mathrm{E}(G)$. By Fong-Reynolds we can assume that b is stable in G. Then $d:=D \cap \mathrm{E}(G)$ is a defect group of b. By the Külshammer-Puig result we may assume that b is nonnilpotent. In particular d has rank at least 2 . Let C_{1}, \ldots, C_{n} be the components of G. Then $\mathrm{E}(G)$ is the central product of C_{1}, \ldots, C_{n}. Since $\left[C_{i}, C_{j}\right]=1$ for $i \neq j, b$ covers exactly one block β_{i} of $R C_{i}$ for $i=1, \ldots, n$. Then b is dominated by the block $\beta_{1} \otimes \ldots \otimes \beta_{n}$ of $R\left[C_{1} \times \ldots \times C_{n}\right]$. Since $\mathrm{Z}\left(C_{1}\right)$ is abelian and subnormal in G, it must have odd order. Hence, we may identify b with $\beta_{1} \otimes \ldots \otimes \beta_{n}$ (see Proposition 1.5 in [13). In particular $d=\delta_{1} \times \ldots \times \delta_{n}$, where $\delta_{i}:=d \cap C_{i}$ is a defect group of β_{i} for $i=1, \ldots, n$. Assume that δ_{1} is cyclic. Then β_{1} is nilpotent and isomorphic to $\left(R \delta_{1}\right)^{m \times m}$ for some $m \in \mathbb{N}$ by Puig. Let $\left\{C_{1}, \ldots, C_{k}\right\}$ be the orbit of C_{1} under the conjugation action of $G(k \leq n)$. Then $\beta_{1} \otimes \ldots \otimes \beta_{k} \cong\left(R \delta_{1}\right)^{m_{1} \times m_{1}}$ (for some $m_{1} \in \mathbb{N}$) is a block of $R\left[C_{1} \ldots C_{k}\right]$ with $l\left(\beta_{1} \otimes \ldots \otimes \beta_{k}\right)=1$. Lemma 2.1 v) implies $k \leq 2$ or $k=3$ and $\left|\delta_{1}\right|=2$. In the first case Theorem 2 in [43] shows that $\beta_{1} \otimes \ldots \otimes \beta_{k}$ is nilpotent. This also holds in the second case by [25]. Since $C_{1} \ldots C_{k} \unlhd G, B$ is an extension of a nilpotent block. This shows that we can assume that the groups δ_{i} are noncyclic for $i=1, \ldots, n$. By Lemma 2.1V v, d has rank at most 3 . Hence, $n=1$ and $\mathrm{E}(G)=C_{1}$.

That means in order to determine the invariants of the block B we may assume that G contains only one component. Let $\mathrm{F}(G)$ (resp. $\left.\mathrm{F}^{*}(G)\right)$ be the Fitting subgroup (resp. generalized Fitting subgroup) of G. Since $\mathrm{F}(G)=\mathrm{Z}(G)$, we have $\mathrm{C}_{G}(\mathrm{E}(G))=\mathrm{C}_{G}\left(\mathrm{~F}^{*}(G)\right) \leq \mathrm{F}(G)$. Hence, $\mathrm{C}_{G}(\mathrm{E}(G))$ is nilpotent. On the other hand, the quotient $G / \mathrm{C}_{G}(\mathrm{E}(G))$ is isomorphic to a subgroup of the automorphism group of the quasisimple group $\mathrm{E}(G)$.

Consider the canonical map $f: \operatorname{Aut}(\mathrm{E}(G)) \rightarrow \operatorname{Aut}(\mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G)))$. Let $\alpha \in \operatorname{ker} f$. Then $\alpha(g) g^{-1} \in \mathrm{Z}(\mathrm{E}(G))$ for all $g \in \mathrm{E}(G)$. Hence, we get a map $\beta: \mathrm{E}(G) \rightarrow \mathrm{Z}(\mathrm{E}(G)), g \mapsto \alpha(g) g^{-1}$. Moreover, it is easy to see that β is a homomorphism. Since $\mathrm{E}(G)$ is perfect, we get $\beta=1$ and thus $\alpha=1$. This shows $\operatorname{Aut}(\mathrm{E}(G)) \leq \operatorname{Aut}(\mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G)))$. By Schreier's conjecture (which can be proven using the classification) Aut($\mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G))$) is an extension of the solvable group $\operatorname{Out}(\mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G))$) by the simple group $\operatorname{Inn}(\mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G))) \cong \mathrm{E}(G) / \mathrm{Z}(\mathrm{E}(G))$. Taking these facts together, we see that G has only one nonabelian composition factor. In particular G is an extension of a solvable group by a quasisimple group.

Now we consider blocks of maximal defect, i. e. D is a Sylow 2-subgroup of G. These include principal blocks.
Proposition 4.10. If B has maximal defect, then G is solvable. In particular Alperin's weight conjecture is satisfied, and we have

$$
\begin{aligned}
k(B) & =\frac{5 \cdot 2^{2(r-1)}+16}{3} \\
k_{0}(B) & =\frac{2^{2 r}+8}{3} \\
k_{1}(B) & =\frac{2^{2(r-1)}+8}{3} \\
l(B) & =3
\end{aligned}
$$

Proof. By Feit-Thompson we may assume $\mathrm{O}_{2^{\prime}}(G)=1$ in order to show that G is solvable. We apply the Z ${ }^{*}$ theorem. For this let $g \in G$ such that ${ }^{g} z \in D$. Since all involutions of D are central (in D), we get ${ }^{g} z \in \mathrm{Z}(D)$. By Burnside's fusion theorem there exists $h \in \mathrm{~N}_{G}(D)$ such that ${ }^{h} z={ }^{g} z$. (For principal blocks this would also follow from the fact that D controls fusion.) Since $D^{\prime}=\langle z\rangle$, we have ${ }^{g} z=z$. Now the Z^{*}-theorem implies $z \in \mathrm{Z}(G)$. Then $D /\langle z\rangle \cong C_{2^{r}}^{2}$ is a Sylow 2-subgroup of $G /\langle z\rangle$. By Theorem 1 in [4], $G /\langle z\rangle$ is solvable. Hence, also G is solvable. Since Alperin's weight conjecture holds for solvable groups, we obtain the numbers $k(B)$ and $l(B)$.
It is also known that the Alperin-McKay-conjecture holds for solvable groups (see [32]). Thus, in order to determine $k_{0}(B)$ we may assume $D \unlhd G$. Then we can apply the results of 21]. For this let $L:=D \rtimes C_{3}$. Then $B \cong(R L)^{n \times n}$ for some $n \in \mathbb{N}$. Hence, $k_{0}(B)$ is just the number of irreducible characters of L with odd degree. By Clifford, every irreducible character of L is an extension or an induction of a character of D. Thus, it suffices to count the characters of L which arise from linear characters of D. These linear characters of D are just the inflations of $\operatorname{Irr}\left(D / D^{\prime}\right)$. They spilt into the trivial character and orbits of length 3 under the action of L by Brauer's permutation lemma. The three inflations of $\operatorname{Irr}(L / D)$ are the extensions of the trivial character of D. The other linear characters of D remain irreducible after induction. Characters in the same orbit amount to the same character of L. This shows

$$
k_{0}(B)=3+\frac{\left|D / D^{\prime}\right|-1}{3}=\frac{2^{2 r}+8}{3}
$$

By Theorem 1.4 in [28] we have $k_{i}(B)=0$ for $i \geq 2$. We conclude

$$
k_{1}(B)=k(B)-k_{0}(B)=\frac{5 \cdot 2^{2(r-1)}+16}{3}-\frac{2^{2 r}+8}{3}=\frac{2^{2(r-1)}+8}{3}
$$

The last result implies that Brauer's height zero conjecture is also satisfied for blocks of maximal defect. Moreover, the Dade-conjecture holds for solvable groups (see [40]).

Finally we consider the case $r=2$ (i.e. $|D|=32$) for arbitrary groups G.
Proposition 4.11. If $r=2$, we have

$$
k(B)=12, \quad k_{0}(B)=8, \quad k_{1}(B)=4, \quad l(B)=3 .
$$

There are two pairs of 2-conjugate characters of height 0 . The remaining characters are 2 -rational. Moreover, the Cartan matrix of B is equivalent to

$$
\left(\begin{array}{ccc}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 12
\end{array}\right)
$$

Proof. The proof is somewhat lengthy and consists entirely of technical calculations. For this reason we will only outline the argumenation. Since $k_{0}(B)$ is divisible by 4 , inequality (6) implies $k_{0}(B) \geq 8$. Since there are exactly two pairs of 2 -conjugate B-subsections, Brauer's permutation lemma implies that we also have two pairs of 2 -conjugate characters. Hence, the column a_{1}^{y} contains at most four nonvanishing entries. Since $\left(a_{1}^{y}, a_{1}^{y}\right)=8$, there are just two nonvanishing entries, both are ± 2. Now Lemma 4.5 implies $k_{0}(B)=8$. This shows $\left(k(B), k_{1}(B), l(B)\right) \in\{(12,4,3),(14,6,5)\}$.

By way of contradiction, we assume $k(B)=14$. Then one can determine the numbers $d_{\chi \varphi}^{u}$ for $u \neq 1$ with the help of the contributions. However, there are many possibilities. The ordinary decomposition matrix Q can be computed as the orthogonal space of the other columns of the generalized decomposition matrix. Finally we obtain the Cartan matrix of B as $C=Q^{\mathrm{T}} Q$. In all cases is turns out that C has the wrong determinant (see Lemma 4.4. This shows $k(B)=12, k_{1}(B)=4$ and $l(B)=3$.

Again we can determine the numbers $d_{\chi \varphi}^{u}$ for $u \neq 1$. This yields the heights of the 2-conjugate characters. We also obtain some informations about the Cartan invariants in this way. We regard the Cartan matrix C as a quadratic form. Using the tables [31, 30] we conclude that C has the form given in the statement of the proposition.

Acknowledgment

The author thanks his advisor Burkhard Külshammer for his encouragement. Proposition 4.9 was his idea.

References

[1] J. L. Alperin, Weights for finite groups, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 369-379, Amer. Math. Soc., Providence, RI, 1987.
[2] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527-554.
[3] R. Brauer, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math. (2) 42 (1941), 926-935.
[4] R. Brauer, Some applications of the theory of blocks of characters of finite groups. II, J. Algebra 1 (1964), 307-334.
[5] R. Brauer, On blocks and sections in finite groups. I, Amer. J. Math. 89 (1967), 1115-1136.
[6] R. Brauer, On blocks and sections in finite groups. II, Amer. J. Math. 90 (1968), 895-925.
[7] R. Brauer, Some applications of the theory of blocks of characters of finite groups. IV, J. Algebra 17 (1971), 489-521.
[8] R. Brauer, On 2-blocks with dihedral defect groups, in Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), 367-393, Academic Press, London, 1974.
[9] M. Broué, On characters of height zero, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), 393-396, Amer. Math. Soc., Providence, R.I., 1980.
[10] D. A. Buell, Binary quadratic forms, Springer-Verlag, New York, 1989.
[11] M. Cabanes and C. Picaronny, Types of blocks with dihedral or quaternion defect groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39 (1992), 141-161.
[12] E. C. Dade, Counting characters in blocks. I, Invent. Math. 109 (1992), 187-210.
[13] O. Düvel, On Donovan's conjecture, J. Algebra 272 (2004), 1-26.
[14] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1990.
[15] W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1982.
[16] M. Fujii, On determinants of Cartan matrices of p-blocks, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 401-403.
[17] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.
[18] R. Kessar and M. Linckelmann, On perfect isometries for tame blocks, Bull. London Math. Soc. 34 (2002), 46-54.
[19] H. Kurzweil and B. Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004.
[20] B. Külshammer, On 2-blocks with wreathed defect groups, J. Algebra 64 (1980), 529-555.
[21] B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147168.
[22] B. Külshammer and T. Okuyama, On centrally controlled blocks of finite groups, unpublished.
[23] B. Külshammer and L. Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17-71.
[24] B. Külshammer and T. Wada, Some inequalities between invariants of blocks, Arch. Math. (Basel) 79 (2002), 81-86.
[25] P. Landrock, On the number of irreducible characters in a 2-block, J. Algebra 68 (1981), 426-442.
[26] M. Linckelmann, Fusion category algebras, J. Algebra 277 (2004), 222-235.
[27] V. D. Mazurov, Finite groups with metacyclic Sylow 2-subgroups, Sibirsk. Mat. Ž. 8 (1967), 966-982.
[28] A. Moretó and G. Navarro, Heights of characters in blocks of p-solvable groups, Bull. London Math. Soc. 37 (2005), 373-380.
[29] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989.
[30] G. Nebe and N. Sloane, The Brandt-Intrau-Schiemann table of even ternary quadratic forms, http:// www2.research.att.com/ ${ }^{\sim}$ njas/lattices/Brandt_2.html.
[31] G. Nebe and N. Sloane, The Brandt-Intrau-Schiemann table of odd ternary quadratic forms, http://www2. research.att.com/ ${ }^{\sim}$ njas/lattices/Brandt_1.html.
[32] T. Okuyama and M. Wajima, Irreducible characters of p-solvable groups, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 309-312.
[33] J. B. Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), 212-241.
[34] J. B. Olsson, On the subsections for certain 2-blocks, J. Algebra 46 (1977), 497-510.
[35] J. B. Olsson, Lower defect groups, Comm. Algebra 8 (1980), 261-288.
[36] J. B. Olsson, On subpairs and modular representation theory, J. Algebra 76 (1982), 261-279.
[37] S. Park, The gluing problem for some block fusion systems, J. Algebra 323 (2010), 1690-1697.
[38] L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order 4, J. Algebra 172 (1995), 205-213.
[39] G. R. Robinson, On Brauer's $k(B)$ problem, J. Algebra 147 (1992), 450-455.
[40] G. R. Robinson, Dade's projective conjecture for p-solvable groups, J. Algebra 229 (2000), 234-248.
[41] L. Rédei, Das „schiefe Produkt" in der Gruppentheorie, Comment. Math. Helv. 20 (1947), 225-264.
[42] B. Sambale, Cartan matrices and Brauer's $k(B)$-conjecture, Journal of Algebra (to appear), http://www. sciencedirect.com/science/article/B6WH2-51H1NP7-1/2/591ade320b5d95adf75b60f4fadb8ada.
[43] B. Sambale, Fusion systems on metacyclic 2-groups, http://arxiv.org/abs/0908.0783.
[44] Y. Usami, On p-blocks with abelian defect groups and inertial index 2 or 3. I, J. Algebra 119 (1988), 123-146.
[45] Y. Usami, On p-blocks with abelian defect groups and inertial index 2 or 3. II, J. Algebra 122 (1989), 98-105.
[46] A. Watanabe, Notes on p-blocks of characters of finite groups, J. Algebra 136 (1991), 109-116.
[47] P. Webb, An introduction to the representations and cohomology of categories, in Group representation theory, 149-173, EPFL Press, Lausanne, 2007.

