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Abstract
We give a short and self-contained proof of a theorem of Ledermann and Neumann stating that
there are only finitely many finite groups with a given number of automorphisms. We also discuss
the history of related conjectures.
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1 Introduction

Obviously, every finite group G has only finitely many automorphisms. In fact,

|Aut(G)| ≤ (|G| − 1)! (1.1)

as every automorphism permutes the non-trivial elements of G (an optimal bound will be given at the
end of the paper).

It is far less obvious, if conversely the order of G is bounded by a function depending only on |Aut(G)|.
Ledermann and Neumann [11, Theorem 6.6] affirmatively answered this question in 1956 by construct-
ing an explicit (but crude) bound. Unfortunately, their proof is rather long and complicated. In a
second paper [12, Theorem 8.6] the authors provided a local version by bounding the p-part |G|p in
terms of |Aut(G)|p where p is a prime (this resolved a conjecture of Scott [24] and is now presented
in the recent book [18, Chapter 3]). Ledermann and Neumann’s original theorem was rediscovered
by Nagrebeckĭı [14] in 1970 and (presumably) independently by Iyer [8, Theorem 3.1] in 1979. The
former proof is somewhat opaque and the latter implicitly relies on [12] via the PhD thesis of Hyde [7].
However, Nagrebeckĭı [16, Theorem 4] gave a more transparent second proof within a generalized
framework dealing with infinite groups. It seems that his work was not widely recognized (the English
translation is not mentioned on MathSciNet for instance). The purpose of the present paper is to give
a self-contained proof of the following version of the Ledermann–Neumann theorem based on some
ideas from [16].

Theorem A. For every integer n there exist only finitely many finite groups with at most n automor-
phisms.

Our proof of Theorem A uses only first principles of elementary group theory, which are summarized
in the next section. In the final section we discuss some related conjectures. The reader interested in
infinite groups can find several generalizations of Theorem A in [1, 15, 17, 19, 20, 21].
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2 Preliminaries

All groups considered in this paper are finite. Every element g of a group G induces an inner auto-
morphism fg of G by sending x to gxg−1. The map G → Aut(G), g 7→ fg is a homomorphism whose
kernel is the center Z(G) = {g ∈ G : gx = xg ∀x ∈ G} of G. In particular,

|G/Z(G)| ≤ |Aut(G)| (2.1)

by the first isomorphism theorem.

For x, y ∈ G we define the commutator [x, y] := xyx−1y−1 ∈ G. A direct computation reveals

g[x, y]g−1 = [gxg−1, gyg−1], [x, y2] = [x, y]y[x, y]y−1 = [x, y][yxy−1, y] (2.2)

for g ∈ G. The commutators of G generate the commutator subgroup G′ of G. By (2.2), G′ is normal
in G and G/G′ is abelian.

The exponent exp(G) of G is the smallest positive integer e such that ge = 1 for all g ∈ G. Clearly,
the exponent of every subgroup or quotient of G divides exp(G). The smallest integer d such that G
can be generated by d elements is denoted by d(G).

Now assume that G is abelian. Then clearly

|G| ≤ exp(G)d(G). (2.3)

By the main theorem of finite abelian groups there exists a decomposition

G = 〈x1〉 × . . .× 〈xk〉 (2.4)

such that the order of xi is a prime power for i = 1, . . . , k. This yields a factorization into primary
components G = Gp1 × . . . × Gpn where p1, . . . , pn are the prime divisors of |G| and Gpi is the set of
pi-elements of G for i = 1, . . . , n. Suppose that x1 in (2.4) is a p-element and r ∈ Z is a primitive root
modulo p. Then the map x1 7→ xr1 defines an automorphism α of 〈x1〉 whose order is divisible by p− 1.
Since α extends to G, we obtain

p− 1 ≤ |Aut(G)| (2.5)

whenever p divides |G|.

Finally we need a rather special case of the famous Schur–Zassenhaus theorem, which is at the same
time a special case of Burnside’s transfer theorem.

Proposition 1. Let p be a prime such that |G|p = |Z(G)|p. Then G = Z(G)p ×Q for some Q ≤ G.

Proof. See [10, Theorem 3.3.1 or Theorem 7.2.1].

3 Proof of Theorem A

In the following let G be a finite group and n := |Aut(G)|. We prove Theorem A by bounding |G| in
terms of n. This is done in a series of lemmas.

Lemma 2 (Schur [23]). |G′| ≤ n2n3 .
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Proof (Rosenlicht [22]). Let g1, . . . , gm ∈ G be representatives for the cosets of G/Z(G). Then m =
|G/Z(G)| ≤ n by (2.1). Arbitrary elements g, h ∈ G can be written as g = giz and h = gjw with
z, w ∈ Z(G). It follows that [g, h] = [gi, gj ]. Hence, the set of commutators

Γ :=
{

[g, h] : g, h ∈ G
}

=
{

[gi, gj ] : 1 ≤ i, j ≤ m
}

has at most m2 elements. It suffices therefore to show that every element g ∈ G′ is a product of at
most m3 commutators. Let g = γ1 . . . γs such that γ1, . . . , γs ∈ Γ and s is as small as possible. By
way of contradiction suppose that s > m3. Then some commutator γ = [x, y] appears more than m
times among the γi. Since γiγi+1 = γi+1δ where δ := γ−1i+1γiγi+1 ∈ Γ by (2.2), we may assume that
γ = γ1 = . . . = γm+1. Since γm = γ|G/Z(G)| ∈ Z(G), we have

γm+1 = γγm = γyγmy−1 = γ(yγy−1)m = γyγy−1 · (yγy−1)m−1 = [x, y2][yxy−1, y]m−1

according to (2.2). But now g = γm+1γm+2 . . . γs is a product of s−1 commutators. Contradiction.

Lemma 2 shifts the focus to the abelian group G/G′. It is however not clear if and how automorphisms
of G/G′ lift to G.

Lemma 3. Every prime divisor p of |G| is at most n+ 1.

Proof. If |G/Z(G)|p 6= 1, then p ≤ n by (2.1). Otherwise, |Z(G)|p = |G|p and G = Z(G)p × Q by
Proposition 1. Since every automorphism of Z(G)p extends to G, we obtain p− 1 ≤ n by (2.5).

A careful analysis of the proof shows that p2 | |G| implies p | n. This observation of Herstein–Adney [6]
is however not needed below.

Lemma 4. The exponent exp(G) is bounded in terms of n.

Proof. By Lemma 2 it suffices to show that exp(G/G′) is bounded in terms of n. By (2.4) we may
write G/G′ = H/G′ × 〈gG′〉 with g ∈ G and H EG. Then G = H〈g〉 and H ∩ 〈g〉 ≤ G′. Note that

N := |G/Z(G)| · |G′| ·
∏
p | |G|

p ≤ n · n2n3 · (n+ 1)!

by (2.5), Lemma 2 and Lemma 3. Let h1, h2 ∈ H and i, j ∈ Z such that h1gi = h2g
j . Then h−12 h1 =

gj−i ∈ H ∩ 〈g〉 ≤ G′. Since |G′| divides N we conclude that h−12 h1 = (gj−i)1+N . Therefore the map

α : G→ G, hgi 7→ hgi(1+N) (h ∈ H, i ∈ Z)

is well-defined. Since gN ∈ 〈g|G/Z(G)|〉 ⊆ Z(G), we obtain

α(h1g
ih2g

j) = α(h1(g
ih2g

−i)gi+j) = h1(g
ih2g

−i)g(i+j)(1+N) = h1g
ih2g

−i+i(1+N)gj(1+N)

= h1g
i+iNh2g

j(1+N) = α(h1g
i)α(h2g

j)

for all h1, h2 ∈ H and i, j ∈ Z. Hence, α is a homomorphism. Every prime divisor of |〈g〉| divides |G|
and is therefore coprime to 1 +N . Consequently, 〈g1+N 〉 = 〈g〉 and α is surjective. Now α ∈ Aut(G),
since G is finite. In particular, g = αn(g) = g(1+N)n . Since 〈gG′〉 was an arbitrary direct factor of
G/G′, it follows that

exp(G/G′) ≤ (1 +N)n − 1.
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Lemma 5. Let A be an abelian group and a ∈ A of prime order p. Then there exists a decomposition
A = B × C such that B is cyclic and a ∈ B.

Proof. By (2.4) we may assume that A = Ap. Let A = B × C such that a ∈ B and |B| is as small as
possible (B = A may do). Let

B = 〈x1〉 × . . .× 〈xn〉

such that |〈xi〉| = pαi and α1 ≥ . . . ≥ αn. The choice of B implies that a = xβ1p
α1−1

1 . . . xβnp
αn−1

n where
βi 6≡ 0 (mod p) for i = 1, . . . , n. We define

b := xβ1p
α1−αn

1 xβ2p
α2−αn

2 . . . xβnn .

Then a = bp
αn−1 ∈ 〈b〉 and B = 〈x1〉 × . . .× 〈xn−1〉 × 〈b〉. Now the minimality of B yields B = 〈b〉 as

desired.

Lemma 6. Let B ≤ A be abelian groups. Then there exists a decomposition A = C × D such that
B ≤ C and d(C) ≤ |B|.

Proof. We argue by induction on |B|. If |B| = 1, then we take C = 1 and D = A. Now assume that
|B| > 1 and pick a subgroup B0 ≤ B of prime index p. By induction there exists a decomposition
A = C0 ×D0 such that B0 ≤ C0 and d(C0) ≤ |B0|. Let b ∈ B \ B0 and write b = cd with c ∈ C0 and
d ∈ D0. Then

dp = bpc−p ∈ B0C0 ∩D0 ≤ C0 ∩D0 = 1.

By Lemma 5 there exists a decomposition D0 = D1 ×D2 such that D1 is cyclic and d ∈ D1. Now we
define C := C0 ×D1. Then B = B0〈b〉 ≤ C, A = C0 ×D0 = C0 ×D1 ×D2 = C ×D2 and

d(C) ≤ d(C0) + 1 ≤ |B0|+ 1 ≤ |B|

as desired.

Proof of Theorem A. By (2.5) it suffices to bound |Z(G)| in terms of n. Let g1, . . . , gm ∈ G be repre-
sentatives for the cosets of G/Z(G)G′. Let U := 〈g1, . . . , gm〉G′. Then

d(U/G′) ≤ m = |G : Z(G)G′| ≤ |G : Z(G)| ≤ n.

By Lemma 2 and (2.3),

|U | = |U/G′||G′| ≤ exp(U/G′)d(U/G
′)n2n

3 ≤ exp(G)nn2n
3
.

Hence by Lemma 4, |U | is bounded by a function on n. By Lemma 6 we have Z(G) = C × D such
that U ∩ Z(G) ≤ C and d(C) ≤ |U ∩ Z(G)| ≤ |U |. Now also |C| is bounded and it remains to
prove that |D| can be bounded in terms of n. Let d = uc ∈ UC ∩ D with u ∈ U and c ∈ C. Then
u = dc−1 ∈ U ∩ Z(G) ≤ C and it follows that d = dc−1c ∈ D ∩ C = 1. This shows

G = UZ(G) = U(C ×D) = UC ×D.

Since every automorphism of D extends to G, we may assume that G = D is abelian. By Lemma 3 we
may assume that G = Gp is a p-group, say

G = 〈x1〉 × . . .× 〈xk〉

with |〈x1〉| ≥ . . . ≥ |〈xk〉|. It is easily checked that the map

x1 7→ x1xl, xi 7→ xi (2 ≤ i ≤ k)

defines an automorphism of G whenever 2 ≤ l ≤ k. Hence, k ≤ n and |G| is bounded in terms of n by
Lemma 4.
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4 The reverse bound

As promised at the very beginning, we now give an optimal bound on |Aut(G)| in terms of |G|. Recall
that a group G is called boolean if exp(G) ≤ 2. In this case G is abelian, since gh = (gh)−1 = h−1g−1 =
hg for all g, h ∈ G. The following improves (1.1).

Proposition 7. For every finite group G we have d(G) ≤ log2 |G| and

|Aut(G)| ≤
d(G)−1∏
k=0

(
|G| − 2k

)
with equality if and only if |G| is a prime or G is boolean.

Proof. If G = 1, then d(G) = 0 and equality holds by interpreting the empty product as 1 (note that the
trivial group is boolean). Now let G 6= 1 with a minimal generating set g1, . . . , gd ∈ G where d = d(G).
For α ∈ Aut(G), also α(g1), . . . , α(gd) is a (minimal) generating set and α is uniquely determined by
those images. Since α(g1) 6= 1, there are at most |G| − 1 choices for α(g1). Since α(g2) /∈ 〈α(g1)〉, there
are at most |G \ 〈α(g1)〉| ≤ |G| − 2 possibilities for α(g2) and so on. This proves d(G) ≤ log2 |G| and
the inequality on |Aut(G)|.

If equality holds, then for every g 6= 1 there exists an automorphism mapping g1 to g. In particular, all
non-trivial elements of G have the same order, which necessarily must be a prime p (if not, consider a
power of g). If additionally d = 1, then |G| = |〈g1〉| = p. On the other hand, if d ≥ 2, then there are
|G| − 2 = |G \ 〈α(g1)〉| choices for α(g2). Hence p = |〈α(g1)〉| = 2 and G is boolean.

Conversely, every group of prime order p has p− 1 automorphisms by (2.5). Moreover, every boolean
group G is an F2-vector space and Aut(G) ∼= GL(d, 2) where d = d(G). Counting matrices with linearly
independent rows yields the well-known formula

|GL(d, 2)| = (2d − 1)(2d − 2) . . . (2d − 2d−1).

Thus, we have shown equality.

The proof above actually shows slightly more: If |G| = p1 . . . pn with primes p1 ≤ . . . ≤ pn, then
d(G) ≤ n and

|Aut(G)| ≤
d(G)−1∏
k=0

(
|G| − p1 . . . pk

)
.

5 Some related conjectures

A complete classification of all finite groups with less than 48 automorphisms was given by MacHale
and Sheehy [13] (see also [25]). They noticed that ϕ(|G|) ≤ |Aut(G)| holds in these small cases where
ϕ is Euler’s totient function. In fact, this inequality was conjectured in general by Deaconescu [4] who
also conjectured that equality holds if and only if G is cyclic (it is Problem 15.43 in the Kourovka
Notebook [9]). If true, this would yield a bound on |G| as well (e.g., |G| ≤ |Aut(G)|1+ε provided |G|
is large enough with respect to ε > 0). However, Bray and Wilson [2, 3] constructed solvable and
nonsolvable counterexamples.
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Similarly, the long-standing Problem 12.77 in [9] proposed that |G| divides |Aut(G)| for every non-
abelian p-group G. This was disproved recently by González-Sánchez and Jaikin-Zapirain [5] using
pro-p group techniques. In fact, |Aut(G)|/|G| can be arbitrarily small.

Yet another conjecture, this time from [13], reads |G| ≤ |End(G)| where End(G) is the set of en-
domorphisms of G. However, the triple cover G = 3.A7 of the alternating group of degree 7 is a
counterexample. Since A7 is a simple group, G has only three normal subgroups: 1, Z(G) and G. Here,
Z(G) cannot occur as a kernel of an endomorphism, because as a perfect group G does not contain sub-
groups of index 3. Hence, every nontrivial endomorphism is an automorphism. Moreover, it is known
that Aut(G) acts faithfully on G/Z(G) ∼= A7 (this holds for any quasisimple group). Since Aut(A7) is
isomorphic to the symmetric group S7, we finally conclude that

|End(G)| = 1 + |Aut(G)| ≤ 1 + |Aut(G/Z(G))| = 1 + |S7| = 1 + 7! <
3

2
7! = |G|.
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