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Abstract

For a p-block B of a finite group G with defect group D Olsson conjectured that k0(B) ≤ |D : D′|, where
k0(B) is the number of characters in B of height 0 and D′ denotes the commutator subgroup of D. Brauer
deduced Olsson’s Conjecture in the case whereD is a dihedral 2-group using the fact that certain algebraically
conjugate subsections are also conjugate in G. We generalize Brauer’s argument for arbitrary primes p and
arbitrary defect groups. This extends two results by Robinson. For p > 3 we show that Olsson’s Conjecture
is satisfied for defect groups of p-rank 2 and for minimal non-abelian defect groups.

1 Introduction

In order to state Olsson’s Conjecture we need some notations. Let R be a complete discrete valuation ring with
quotient fieldK of characteristic 0. Moreover, let (π) be the maximal ideal ofR and F := R/(π). We assume that
F is algebraically closed of characteristic p > 0. We fix a finite group G, and assume that K contains all |G|-th
roots of unity. Let B be a p-block of RG (or simply of G) with defect group D. We denote the set of irreducible
ordinary characters by Irr(B) and its cardinality by k(B). These characters split in ki(B) characters of height
i ∈ N0. Here the height of a character χ in B is the largest integer h(χ) ≥ 0 such that ph(χ)|G : D|p

∣∣ χ(1),
where |G : D|p denotes the highest p-power dividing |G : D|. We set Irr0(B) := {χ ∈ Irr(B) : h(χ) = 0}. Finally,
let IBr(B) be the set of irreducible Brauer characters and l(B) := |IBr(B)|.

In the situation above, Olsson conjectured in 1975 that we always have k0(B) ≤ |D : D′|, where D′ denotes
the derived subgroup of D (see [42]). This conjecture has been verified in some cases, but remains open in
general. For example it was shown in [30] that Olsson’s Conjecture for B would follow from the Alperin-McKay
Conjecture for B (see also [56, 21]). Recall that the Alperin-McKay Conjecture predicts that k0(B) = k0(b),
where b is the Brauer correspondent of B in RNG(D). In particular Olsson’s Conjecture holds for p-solvable,
symmetric or alternating groups by [41, 44, 36]. If D is abelian, Olsson’s Conjecture follows from Brauer’s k(B)-
Conjecture k(B) ≤ |D|. Moreover, Olsson’s Conjecture is satisfied if D is metacyclic (see [55, 61]) or if p = 2
and D is minimal non-abelian (see [52]). Hendren verified Olsson’s Conjecture for some, but not all p-blocks
with a non-abelian defect group of order p3 (see [24, 23]).

This paper is organized as follows. In the second section we introduce two results by Robinson and extend
them in some sense using ideas of [53, 54]. In the third and fourth sections we generalize an argument of Brauer
regarding a Galois action on subsections. In Section 5 we show that Olsson’s Conjecture is fulfilled for controlled
blocks with certain defect groups. In the last section we use the classification of finite simple groups to prove
Olsson’s Conjecture for defect groups of p-rank 2 and for minimal non-abelian defect groups if p > 3 (in both
cases). In particular, our results here settle most of the cases of Olsson’s Conjecture left open in Hendren’s
papers [24, 23].
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2 Subsection

The notion of B-subsections provides one tool in order to attack Olsson’s Conjecture. Here a B-subsection is a
pair (u, bu), where u ∈ D and bu is a Brauer correspondent of B in RCG(u). Robinson showed the following
proposition (see [47]).

Proposition 2.1 (Robinson). If bu has defect d, then k0(B) ≤ pd
√
l(bu).

We mention another result by Robinson which will be improved later (see Theorem 3.4 in [46]). Recall that a
B-subsection (u, bu) is called major if bu and B have the same defect.

Proposition 2.2 (Robinson). If (u, bu) is a major B-subsection such that l(bu) = 1, then

∞∑
i=0

p2iki(B) ≤ |D|.

In order to make these propositions clearer, we introduce the fusion system F of B. For this we use the notation
of [43, 34], and we assume that the reader is familiar with these articles. Let bD be a Brauer correspondent of
B in RDCG(D). Then for every subgroup Q ≤ D there is a unique block bQ of RQCG(Q) such that (Q, bQ) ≤
(D, bD). We denote the inertial group of bQ in NG(Q) by NG(Q, bQ). Then AutF (Q) ∼= NG(Q, bQ)/CG(Q).

The fusion of subsections is given by the following proposition (see [51]).

Proposition 2.3. Let R be a set of representatives for the F-conjugacy classes of elements of D such that 〈u〉
is fully F-normalized for u ∈ R (R always exists). Then{

(u, bu) : u ∈ R
}

is a set of representatives for the G-conjugacy classes of B-subsections, where bu := b〈u〉 has defect group CD(u).

Brauer proved Olsson’s Conjecture for 2-blocks with dihedral defect groups using a Galois action on the gen-
eralized decomposition numbers (see [10]). We provide the necessary definitions for that purpose. Let pk be
the order of u, and let ζ := ζpk be a primitive pk-th root of unity. Then the generalized decomposition
numbers duχϕ for χ ∈ Irr(B) and ϕ ∈ IBr(bu) lie in the ring of integers Z[ζ]. Hence, there exist integers
aϕi := (aϕi (χ))χ∈Irr(B) ∈ Zk(B) such that

duχϕ =

ϕ(pk)−1∑
i=0

aϕi (χ)ζi (2.1)

(see Satz I.10.2 in [39]). Here ϕ(pk) denotes Euler’s totient function.

Let G be the Galois group of the cyclotomic field Q(ζ) over Q. Then G ∼= Aut(〈u〉) ∼= (Z/pkZ)× and we will
often identify these groups. We will also interpret the elements of G as integers in {1, . . . , pk} by a slight abuse
of notation. Then (uγ , bu) for γ ∈ G is also a (algebraically conjugate) subsection and

γ(duχϕ) = du
γ

χϕ =

ϕ(pk)−1∑
i=0

aϕi (χ)ζiγ .

We use the opportunity to present a slight generalization of Lemma 1 in [54]. Here we call two matrices
A,B ∈ Zl×l equivalent if there exists a matrix S ∈ GL(l,Z) with A = STBS, where ST denotes the transpose
of S. This is just Brauer’s notion of basic sets.

Theorem 2.4. Let B be a p-block of G, and let (u, bu) be a B-subsection. Let Cu = (cij) be the Cartan
matrix of bu up to equivalence. Then for every positive definite, integral quadratic form q(x1, . . . , xl(bu)) =∑

1≤i≤j≤l(bu) qijxixj we have

k0(B) ≤
∑

1≤i≤j≤l(bu)

qijcij .
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In particular

k0(B) ≤
l(bu)∑
i=1

cii −
l(bu)−1∑
i=1

ci,i+1.

If (u, bu) is major, we can replace k0(B) by k(B) in these formulas.

Proof. 1 First of all assume, that Cu is the Cartan matrix of bu (not only up to equivalence!). Let ϕ1, . . . , ϕl
(l := l(bu)) be the irreducible Brauer characters of bu. Then we have rows dχ := (duχϕ1

, . . . , duχϕl) for χ ∈ Irr(B).
Let Q = (q̃ij)

l
i,j=1 with

q̃ij :=

{
qij if i = j,

qij/2 if i 6= j
.

Then we have ∑
1≤i≤j≤l

qijcij =
∑

1≤i,j≤l

q̃ijcij =
∑

1≤i,j≤l

∑
χ∈Irr(B)

q̃ijd
u
χid

u
χj

=
∑

χ∈Irr(B)

dχQdχ
T ≥

∑
χ∈Irr0(B)

dχQdχ
T
,

since Q is positive definite. Thus, it suffices to show∑
χ∈Irr0(B)

dχQdχ
T ≥ k0(B).

For this, let pn be the order of u, and let f := pn−1(p− 1)− 1. We fix a character χ ∈ Irr0(B) and set d := dχ.
Then there are integral rows am ∈ Zl (m = 0, . . . , f) such that d =

∑f
m=0 amζ

m. By Corollary 2 in [11] at least
one of the rows am does not vanish.

It is known that for every γ ∈ G there is a character χ′ ∈ Irr(B) such that γ(d) = dχ′ . Thus, it suffices to show∑
γ∈G

γ(d)Qγ(d)
T

=
∑
γ∈G

γ(dQd
T

) ≥ |G| = f + 1.

We have ∑
γ∈G

γ(dQd
T

) =
∑
γ∈G

γ

(
f∑
i=0

aiQa
T
i +

f∑
j=1

f−j∑
m=0

amQa
T
m+j(ζ

j + ζ
j
)

)

= (f + 1)

f∑
i=0

aiQa
T
i + 2

f∑
j=1

f−j∑
m=0

amQa
T
m+j

∑
γ∈G

γ(ζj).

The pm-th cyclotomic polynomial Φpm has the form

Φpm = Xpm−1(p−1) +Xpm−1(p−2) + . . .+Xpm−1

+ 1.

This gives ∑
γ∈G

γ(ζj) =

{
−pn−1 if pn−1 | j
0 otherwise

for j ∈ {1, . . . , f}. It follows that

∑
γ∈G

γ(dQd
T

) = (f + 1)

f∑
i=0

aiQa
T
i − 2pn−1

p−2∑
j=1

f−jpn−1∑
m=0

amQa
T
m+pn−1j

= pn−1

(
(p− 1)

f∑
i=0

aiQa
T
i − 2

p−2∑
j=1

f−jpn−1∑
m=0

amQa
T
m+pn−1j

)
. (2.2)

1Proof corrected on March 31, 2013
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For p = 2 the claim follows immediately, since then f + 1 = 2n−1. Thus, suppose p > 2. Then we have{
0, 1, . . . , f − jpn−1

}
∪̇
{

(p− 1− j)pn−1, (p− 1− j)pn−1 + 1, . . . , f
}

= {0, 1, . . . , f}

for all j ∈ {1, . . . , p− 2}. This shows that every row am occurs exactly p− 2 times in the second sum of (2.2).
Hence, ∑

γ∈G
γ(dQd

T
) = pn−1

(
f∑
i=0

aiQa
T
i +

p−2∑
j=1

f−jpn−1∑
m=0

(am − am+jpn−1)Q(am − am+jpn−1)T

)
.

Now assume that am does not vanish for some m ∈ {0, . . . , f}. Then we have amQaT
m ≥ 1, since Q is positive

definite. Again, am occurs exactly p − 2 times in the second sum. Let am − am′ (resp. am′ − am) be such an
occurrence. Then we have

am′Qa
T
m′ + (am − am′)Q(am − am′)T ≥ 1.

Now the first inequality of the theorem follows easily.

The result does not depend on the basic set for Cu, since changing the basic set is essentially the same as
taking another quadratic form q (see [32]). For the second claim we take the quadratic form corresponding to
the Dynkin diagram of type Al for q. If (u, bu) is major, then all rows dχ for χ ∈ Irr(B) do not vanish (see
Theorem V.9.5 in [18]). Hence, we can replace k0(B) by k(B).

We present an application.

Proposition 2.5. Let (u, bu) be a B-subsection such that bu has defect group Q. Then the following hold:

(i) If Q/〈u〉 is cyclic, we have

k0(B) ≤
(
|Q/〈u〉| − 1

l(bu)
+ l(bu)

)
|〈u〉| ≤ |Q|.

(ii) If |Q/〈u〉| ≤ 9, we have k0(B) ≤ |Q|.

(iii) Suppose p = 2. If Q/〈u〉 is metacyclic or minimal non-abelian or isomorphic to C4 oC2, we have k0(B) ≤
|Q|.

Proof.

(i) It is well-known that bu dominates a block bu of CG(u)/〈u〉 with cyclic defect group Q/〈u〉 and l(bu) =
l(bu). By [14, 48] the Cartan matrix bu has the form |〈u〉|(m + δij)1≤i,j≤l(bu) up to equivalence, where
m := (|Q/〈u〉| − 1)/l(bu) is the multiplicity of bu. Now the claim follows from Theorem 2.4.

(ii) See Theorem 1 in [54].

(iii) If Q/〈u〉 is metacyclic, the claim follows as in Theorem 2 of [53]. If Q/〈u〉 is minimal non-abelian, the
claim can easily deduced from the results in [52, 16]. Finally, for D/〈u〉 ∼= C4 o C2 the result follows from
[29].

Since u ∈ Z(Q) in Proposition 2.5(i), the condition implies that Q is abelian of rank at most 2. It is known that
the number l(bu) in Proposition 2.5(i) equals the inertial index of bu (see [14]).
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3 The case p = 2

Let p = 2, and let (u, bu) be a B-subsection for a block B of G. Then by Proposition 2.3 we may assume
that 〈u〉 is fully F-normalized, where F is the fusion system of B. By Proposition 2.5 in [34] 〈u〉 is also fully
F-centralized and

AutF (〈u〉) = AutD(〈u〉) = ND(〈u〉) CG(u)/CG(u) ∼= ND(〈u〉)/CD(u).

Hence, Theorem 2.4(ii) in [33] implies that CD(u) is a defect group of bu.

Theorem 3.1. Let B be a 2-block of a finite group G with defect group D and fusion system F , and let (u, bu)
be a B-subsection such that 〈u〉 is fully F-normalized and bu has Cartan matrix Cu = (cij). Let IBr(bu) =
{ϕ1, . . . , ϕl(bu)} such that ϕ1, . . . , ϕm are stable under ND(〈u〉) and ϕm+1, . . . , ϕl(bu) are not. Then m ≥ 1.
Suppose further that u is conjugate to u−5n for some n ∈ Z in D. Then

k0(B) ≤ |ND(〈u〉)/CD(u)|
ϕ
(
|〈u〉|

) ∑
1≤i≤j≤m

qijcij (3.1)

for every positive definite, integral quadratic form q(x1, . . . , xm) =
∑

1≤i≤j≤m qijxixj. In particular if l(bu) = 1,
we get

k0(B) ≤ |ND(〈u〉)|
ϕ
(
|〈u〉|

) . (3.2)

If l(bu) = 2, we may replace Cu by an equivalent matrix such that |CD(u)|c11/detCu is even and as small as
possible. In this case (with the hypothesis above) we have

k0(B) ≤ |ND(〈u〉)/CD(u)|c11

ϕ
(
|〈u〉|

) ≤ |ND(〈u〉)|
ϕ
(
|〈u〉|

) . (3.3)

Proof. Let χ ∈ Irr0(B) and |〈u〉| = 2k for some k ≥ 0. We write duχ := (duχϕ1
, . . . , duχϕl), where l := l(bu). Then

we have |CD(u)|m(u,bu)
χχ = duχ|CD(u)|C−1

u duχ for the contribution m(u,bu)
χχ (see Eq. (5.2) in [9]). By Corollary 2 in

[11] it follows that
|CD(u)|m(u,bu)

χχ = |CD(u)|
(
χ(u,bu), χ

)
G
6≡ 0 (mod (π)).

Since ζ ≡ 1 (mod (π)), we see that

duχϕi ≡ γ(duχϕi) ≡
ϕ(2k)−1∑
j=0

aij(χ) (mod (π))

for γ ∈ G. In particular duχϕi ≡ duχϕi (mod (π)). We write |CD(u)|C−1
u = (c̃ij). Then it follows that

0 6≡ |CD(u)|m(u,bu)
χχ ≡

∑
1≤i,j≤l

c̃ijd
u
χϕid

u
χϕj ≡

∑
1≤i≤l

c̃ii(d
u
χϕi)

2

≡
∑

1≤i≤l

c̃ii

ϕ(2k)−1∑
j=0

aij(χ)2 ≡
∑

1≤i≤l

c̃ii

ϕ(2k)−1∑
j=0

aij(χ) (mod (π))

Now every g ∈ ND(〈u〉) induces a permutation on IBr(bu). Let Pg be the corresponding permutation matrix.
Then g also acts on the rows dui := (duχϕi : χ ∈ Irr(B)) for i = 1, . . . , l, and it follows that CuPg = PgCu. Hence,
we also have C−1

u Pg = PgC
−1
u for all g ∈ ND(〈u〉). If {ϕm1 , . . . , ϕm2} (m < m1 < m2 ≤ l) is an orbit under

ND(〈u〉), it follows that duχϕm1
≡ . . . ≡ duχϕm2

(mod (π)) and c̃m1m1
= . . . = c̃m2m2

. Since the length of this
orbit is even, we get ∑

1≤i≤m

c̃ii

ϕ(2k)−1∑
j=0

aij(χ) 6≡ 0 (mod 2).
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In particular m ≥ 1. In case |〈u〉| ≤ 2 this simplifies to∑
1≤i≤m

c̃iia
i
0(χ) 6≡ 0 (mod 2).

We show that this holds in general. Thus, let k ≥ 2 and i ∈ {1, . . . ,m}. Since (u, bu) is conjugate to (u−5n , bu)
and ϕi is stable, we have

ϕ(2k)−1∑
j=0

aij(χ)ζj = duχϕi = du
−5n

χϕi =

2k−1−1∑
j=0

aij(χ)ζ−5nj .

Moreover, for every j ∈ {0, . . . , ϕ(2k) − 1} there is some j1 ∈ {0, . . . , ϕ(2k) − 1} such that ζ−5nj = ±ζj1 . In
order to compare coefficients observe that

ζj = ζ−5nj =⇒ j ≡ −5nj (mod 2k) =⇒ 1 ≡ −5n (mod 2k/ gcd(2k, j)) =⇒ j = 0.

Hence, the set {±ζj : j = 1, . . . , ϕ(2k) − 1} splits under the action of 〈−5n + 2kZ〉 into orbits of even length.
This shows

∑ϕ(2k)−1
j=0 aij(χ) ≡ ai0(χ) (mod 2). Hence,∑

1≤i≤m

c̃iia
i
0(χ) 6≡ 0 (mod 2) (3.4)

for every χ ∈ Irr0(B). In particular, there is an i ∈ {1, . . . ,m} such that ai0(χ) 6= 0. This gives

k0(B) ≤
∑

1≤i≤j≤m

qij(a
i
0, a

j
0)

(see proof of Theorem 2.4).

Now let k again be arbitrary. Observe that ai0 = ϕ(2k)−1
∑
γ∈G γ(dui ) for i ∈ {1, . . . ,m}. By the orthogonality

relations for generalized decomposition numbers we have (du
γ

i , du
δ

j ) = cij for γ, δ ∈ G if uγ and uδ are conjugate
under ND(〈u〉) (see Theorem 5.4.11 in [37] for example). Otherwise we have (du

γ

i , du
δ

j ) = 0. This implies

(ai0, a
j
0) =

1

ϕ(2k)2

∑
γ,δ∈G

(du
γ

i , du
δ

j ) =
|ND(〈u〉)/CD(u)|

ϕ(2k)
cij ,

and (3.1) follows. In case l = 1 we have C = (|CD(u)|), and (3.2) is also clear.

Now assume l = 2. Here we can use (3.4) in a stronger sense. We havem = 2. Since |CD(u)| occurs as elementary
divisor of Cu exactly once, we see that the rank of |CD(u)|

detCu
Cu (mod 2) is 1. Hence, |CD(u)|

detCu
Cu (mod 2) has the

form (
1 0
0 0

)
(mod 2),

(
0 0
0 1

)
(mod 2), or

(
1 1
1 1

)
(mod 2).

Now it is easy to see that we may replace Cu by an equivalent matrix (still denoted by Cu = (cij)) such that
|CD(u)|c11/detCu is even and as small as possible. Then we also have to replace the rows du1 and du2 by linear
combinations of each other. This gives rows d̂ui and âij for i = 1, 2 and j = 0, . . . , ϕ(2k) − 1. Observe that the
contributions do not depend on the representative of the equivalence class of Cu. Moreover, c̃11 is odd and c̃22

is even. Hence, (3.4) takes the form
â1

0(χ) 6≡ 0 (mod 2)

for all χ ∈ Irr0(B). Since both ϕ1 and ϕ2 are stable under ND(〈u〉), we have γ(d̂u1 ) = d̂u1 for all γ ∈ AutF (〈u〉).
Hence,

k0(B) ≤ (â1
0, â

1
0) =

|ND(〈u〉)/CD(u)|c11

ϕ(2k)

as above. It remains to show that c11 ≤ |CD(u)|. The reduction theory of quadratic forms gives an equivalent
matrix C ′u = (c′ij) such that 0 ≤ 2c′12 ≤ min{c′11, c

′
22} (see [12] for example). In case c′12 = 0 we may assume
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c11 ≤ c′11 = |CD(u)|, since |CD(u)| is the largest elementary divisor of C ′u. Hence, let c′12 > 0. Since the entries
of Cu and thus also of C ′u are divisible by α := detCu/|CD(u)|, we even have c′12 ≥ α. It follows that

3α2 ≤ 3(c′12)2 ≤ c′11c
′
22 − (c′12)2 = detC ′u ≤

|CD(u)|2

2

and α ≤ |CD(u)|/4. It was shown in the proof of Theorem 1 of [53] that

max{c′11, c
′
22} ≤ c′11 + c′22 − c′12 ≤ c′11 + c′22 − α ≤ α

|CD(u)|/α+ 3

2
=
|CD(u)|+ 3α

2
≤ |CD(u)|.

If α−1c′11 or α−1c′22 is even, the result follows from the minimality of c11. Otherwise we replace C ′u by(
1 −1
0 1

)
C ′u

(
1 0
−1 1

)
=

(
c′11 + c′22 − 2c′12 c′12 − c′22

c′12 − c′22 c′22

)
.

Then c11 ≤ c′11 + c′22 − 2c′12 ≤ |CD(u)|. This finishes the proof.

In the situation of Theorem 3.1 we have u ∈ Z(CG(u)). Hence, all Cartan invariants cij are divisible by |〈u〉|.
This shows that the right hand side of (3.1) is always an integer. It is also known that k0(B) is divisible by 4
unless |D| ≤ 2.

Observe that the subsection (u, bu) in Theorem 3.1 cannot be major unless |〈u〉| ≤ 2, since then u would be
contained in Z(D).

If m = l(bu) in Theorem 3.1, it suffices to know the Cartan matrix Cu only up to equivalence. For, replacing
Cu by an equivalent matrix is essentially the same as taking another quadratic form q. However, for m < l(bu)
we really have to use the “exact” Cartan matrix Cu which is unknown in most cases. For p > 2 there are not
always stable characters in IBr(bu) (see Proposition (2E)(ii) and the example following it in [28]).

We give an example. Let D be a (non-abelian) 2-group of maximal class. Then there is an element x ∈ D such
that |D : 〈x〉| = 2 and x is conjugate to x−5n for some n ∈ {0, |〈x〉|/8} under D. Since 〈x〉 ED, the subgroup
〈x〉 is fully F-normalized, and bx has cyclic defect group CD(x) = 〈x〉. Thus, Dade’s Theorem on blocks with
cyclic defect groups implies l(bx) = 1. Hence, Theorem 3.1 shows Olsson’s Conjecture k0(B) ≤ 4 = |D : D′|.
This was already proved in [10, 42].

On the other hand, we cannot improve Theorem 3.1 or Theorem 2.4 if u is not conjugate to u−5n in D.
Indeed, if D a modular 2-group and x ∈ D such that |D : 〈x〉| = 2, then B is nilpotent (see [17]) and
k0(B) = |D : D′| = |D|/2 = |CD(x)|.

We give a more general example.

Proposition 3.2. Let D be a 2-group and x ∈ D such that |D : 〈x〉| ≤ 4, and suppose that one of the following
holds:

(i) x is conjugate to x−5n in D for some n ∈ Z,

(ii) 〈x〉ED.

Then Olsson’s Conjecture holds for all blocks with defect group D.

Proof. Let B be a block with defect group D and fusion system F . By [55] we may assume that D is non-
metacyclic.

(i) By hypothesis, x is conjugate to x−5n in F . This condition is preserved if we replace x by an F-conjugate.
Hence, we may assume that 〈x〉 is fully F-normalized. Then x is conjugate to x−5n in D. In particular
|CD(x)/〈x〉| ≤ 2. Hence, bx dominates a block of CG(x)/〈x〉 with cyclic defect group CD(x)/〈x〉. This
shows l(bx) = 1. Now we can apply Theorem 3.1 which gives k0(B) ≤ 8. In case |D : D′| = 4 a theorem of
Taussky (see for example Proposition 1.6 in [8]) implies that D has maximal class which was excluded.
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(ii) We consider the order of CD(x).

Case 1: CD(x) = 〈x〉.
Since D is non-metacyclic, D/〈x〉 is non-cyclic. Hence, we are in case (i).

Case 2: x ∈ Z(D).
IfD is abelian, the result follows from Theorem 2 in [53]. Thus, we may assume thatD is non-abelian. Then
every conjugacy class of D has length at most 2. By a result of Knoche (see for example Aufgabe III.24b
in [25]) this is equivalent to |D′| = 2. Let y ∈ D \ Z(D). Then CD(y) is non-cyclic. After replacing y by
xy if necessary, we have |〈x〉| = |〈y〉|. By Proposition 2.5 it suffices to show that 〈y〉 is fully F-normalized.
By Alperin’s Fusion Theorem (see [34]) every F-isomorphism on 〈y〉 is a composition of automorphisms
of F-essential subgroups containing y or of D itself. Assume that E < D is F-essential such that 〈y〉 ≤ E.
Since E is metacyclic and Aut(E) is not a 2-group, Lemma 1 in [35] implies E ∼= Q8 or E ∼= C2 × C2;
in particular |D| ≤ 16. Moreover, Proposition 1.8 and Proposition 10.17 in [8] imply that D has maximal
class, because every F-essential subgroup is self-centralizing. This contradiction shows that there are no
F-essential subgroups containing y. Then of course 〈y〉 is fully F-normalized.

Case 3: |CD(x)/〈x〉| = 2.
Let y ∈ CD(x) \ 〈x〉 be of order 2. If z ∈ D \ CD(x), we may assume that 〈x, z〉 is a modular 2-group by
(i). In particular we have |〈z〉| = 2 after replacing z by zxm for some m ∈ Z if necessary. Let |〈x〉| = 2r

for some r ∈ N. Since 〈x〉ED, we have zyz−1 ∈ {y, yx2r−1}. In case zyz−1 = yx2r−1

it is easy to see that
|D : 〈xy〉| = 4 and xy ∈ Z(D). Then we are done by Case 2. Thus, we may assume that zyz−1 = y and
y ∈ Z(D). Then D is given as follows:

D = 〈x, z〉 × 〈y〉 ∼= M2r+1 × C2,

where M2r+1 denotes the modular 2-group of order 2r+1 and C2 denotes a cyclic group of order 2. Now we
have |D′| = 2 and the claim follows from Proposition 2.5 applied to the subsection (x, bx). Here observe
that 〈x〉 is fully F-normalized, since 〈x〉ED.

We like to point out that every subgroup of D is fully F-normalized whenever F is controlled by AutF (D). The
groups in Proposition 3.2 were given explicitly by generators and relations in [40].

By the propositions in [54] it is easy to see that Olsson’s Conjecture holds for 2-blocks with defect at most 4.
For defect groups D of order 32 one can show with GAP [19] that there is always an element x ∈ D such that
|CD(x)| = |D : D′|. If in addition D is abelian, Olsson’s Conjecture follows from Corollary 2 in [54] for every
block with defect group D. If D is non-abelian, then |CD(x)/〈x〉| ≤ 8. Thus, by Proposition 2.5(ii) Olsson’s
Conjecture also holds for controlled 2-blocks of defect 5.

4 The case p > 2

Now we turn to the case where B is a p-block of G for an odd prime p. We fix some notations for this section.
As before (u, bu) is a B-subsection such that |〈u〉| = pk. Moreover, ζ ∈ C is a primitive pk-th root of unity. Since
the situation is more complicated for odd primes, we assume further that l(bu) = 1. We write IBr(bu) = {ϕu}.
Then the generalized decomposition numbers duχϕu for χ ∈ Irr(B) form a column d(u). Let d be the defect of
bu. Since u ∈ Z(CG(u)), u is contained in every defect group of bu. In particular, k ≤ d. As in the case p = 2 we
can write

d(u) =

ϕ(pk)−1∑
i=0

aui ζ
i

with aui ∈ Zk(B) (change of notation!). We define the following matrix

A :=
(
aui (χ) : i = 0, . . . , ϕ(pk)− 1, χ ∈ Irr(B)

)
∈ Zϕ(pk)×k(B).

The next lemma uses the same idea as in case p = 2.

Lemma 4.1. Let (u, bu) be a B-subsection with |〈u〉| = pk and l(bu) = 1.
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(i) For χ ∈ Irr0(B) we have
ϕ(pk)−1∑
i=0

aui (χ) 6≡ 0 (mod p).

(ii) If (u, bu) is major and χ ∈ Irr(B), then ph(χ) | aui (χ) for i = 0, . . . , ϕ(pk)− 1 and

ϕ(pk)−1∑
i=0

aui (χ) 6≡ 0 (mod ph(χ)+1).

Proof.

(i) Since l(bu) = 1, we have pdm(u,bu)
χχ = duχϕud

u
χϕu for the contribution m

(u,bu)
χχ (see Eq. (5.2) in [9]). By

Corollary 2 in [11] it follows that

pdm(u,bu)
χχ = pd

(
χ(u,bu), χ

)
G
6≡ 0 (mod (π))

and duχϕu 6≡ 0 (mod (π)). Since ζ ≡ 1 (mod (π)), the claim follows from (2.1).

(ii) Let ψ ∈ Irr0(B). Then (5G) in [9] implies

h(χ) = ν
(
|D|m(u,bu)

χψ

)
= ν(duχϕu) + ν(duψϕu),

where ν is the p-adic valuation. Thus, h(χ) = ν(duχϕu) follows from (i). Now the claim is easy to see.

The proof of the main theorem of this section is an application of the next proposition.

Proposition 4.2. For every positive definite, integral quadratic form q(x1, . . . , xϕ(pk)) =
∑

1≤i≤j≤ϕ(pk) qijxixj
we have

k0(B) ≤
∑

1≤i≤j≤ϕ(pk)

qij(a
u
i−1, a

u
j−1). (4.1)

If (in addition) (u, bu) is major, we can replace k0(B) by
∑∞
i=0 p

2iki(B) in (4.1).

Proof. By Lemma 4.1(i) every column au(χ) of A corresponding to a character χ of height 0 does not vanish.
Hence, we have

k0(B) ≤
∑

χ∈Irr(B)

q(au(χ)) =
∑

χ∈Irr(B)

∑
1≤i≤j≤ϕ(pk)

qija
u
i−1(χ)auj−1(χ) =

∑
1≤i≤j≤ϕ(pk)

qij(a
u
i−1, a

u
j−1).

If (u, bu) is major and χ ∈ Irr(B), then p−h(χ)au(χ) is a non-vanishing integral column by Lemma 4.1(ii). In
this case we have

∞∑
i=0

p2iki(B) ≤
∑

χ∈Irr(B)

p2h(χ)q(p−h(χ)au(χ)) =
∑

1≤i≤j≤ϕ(pk)

qij(a
u
i−1, a

u
j−1).

The second claim follows.

Notice that we have used only a weak version of Lemma 4.1 in the proof above.

In order to find a suitable quadratic form it is often very useful to replace A by UA for some integral matrix
U ∈ GL(ϕ(pk),Q) (observe that the argument in the proof of Proposition 4.2 remains correct).

However, we need a more explicit expression of the scalar products (aui , a
u
j ). For this reason we introduce an

auxiliary lemma about inverses of Vandermonde matrices. Let G = {σ1, . . . , σϕ(pk)}. For an integer i ∈ Z there
is i′ ∈ {1, . . . , pk−1} such that −i ≡ i′ (mod pk−1). We will use this notation for the rest of the paper.
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Lemma 4.3. The inverse of the Vandermonde matrix V :=
(
σi(ζ)j−1

)ϕ(pk)

i,j=1
is given by

V −1 = p−k
(
σj(ti−1)

)ϕ(pk)

i,j=1
,

where ti = ζ−i − ζi′ .

Proof. For i, j ∈ {0, . . . , ϕ(pk)− 1} we have

ϕ(pk)∑
l=1

σl(ti)σl(ζ)j =

ϕ(pk)∑
l=1

σl(ζ
j−i − ζj+i

′
).

Assume first that i = j. Then ζj−i = 1 and j + i′ = i + i′ is divisible by pk−1 but not by pk. Hence, ζj+i
′

is a primitive p-th root of unity. Since the second coefficient of the p-th cyclotomic polynomial Φp(X) =

Xp−1 +Xp−2 + . . .+X + 1 is 1, we get
∑ϕ(pk)
l=1 σl(ζ

j+i′) = −pk−1. This shows that

ϕ(pk)∑
l=1

σl(1− ζi+i
′
) = ϕ(pk) + pk−1 = pk.

Now let i 6= j. Then j−i 6≡ 0 (mod pk) and j+i′ 6≡ 0 (mod pk). Moreover, j−i ≡ j+i′ (mod pk−1), since i+i′ ≡
0 (mod pk−1). Assume first that j−i 6≡ 0 (mod pk−1). Then ζj−i is a primitive ps-th root of unity for some s ≥ 2.
Since the second coefficient of the ps-th cyclotomic polynomial Φps(X) = X(p−1)ps−1

+X(p−2)ps−1

+. . .+Xps−1

+1

(see Lemma I.10.1 in [39]) is 0, we have
∑ϕ(pk)
l=1 σl(ζ

j−i) = 0. The same holds for j + i′. Finally let j − i ≡ 0
(mod pk−1). Then we have (as in the first part of the proof)

ϕ(pk)∑
l=1

σl(ζ
j−i − ζj+i

′
) = −pk−1 + pk−1 = 0.

This proves the claim.

Now let A := AutF (〈u〉) ≤ G. The next proposition shows that the scalar products (aui , a
u
j ) only depend on p,

k − d and A.
Proposition 4.4. We have

pk−d(aui , a
u
j ) = |{τ ∈ A : pk | i− jτ}| − |{τ ∈ A : pk | i+ j′τ}|+

|{τ ∈ A : pk | i′ − j′τ}| − |{τ ∈ A : pk | i′ + jτ}|.
(4.2)

Proof. Let W :=
(
d
σi(u)
χϕu : i = 1, . . . , ϕ(pk), χ ∈ Irr(B)

)
be a part of the generalized decomposition matrix. If V

is the Vandermonde matrix in Lemma 4.3, we have V A = W and A = V −1W . This shows(
(aui−1, a

u
j−1)

)ϕ(pk)

i,j=1
= AAT = V −1WWTV −T = V −1WW

T
V
−T
.

Now let S := (sij)
ϕ(pk)
i,j=1 , where

sij :=

{
1 if σiσ−1

j ∈ A,
0 otherwise.

Then the orthogonality relations (see proof of Theorem 3.1) imply WW
T

= pdS. It follows that

p2k−d(aui , a
u
j ) =

ϕ(pk)∑
l=1

σl(ti)

ϕ(pk)∑
m=1

slmσm(tj) =

ϕ(pk)∑
l=1

∑
τ∈A

σl(tiτ(tj))

=
∑
τ∈A

ϕ(pk)∑
l=1

σl((ζ
−i − ζi

′
)τ(ζj − ζ−j

′
))

=
∑
τ∈A

ϕ(pk)∑
l=1

σl(ζ
jτ−i + ζi

′−j′τ − ζ−i−j
′τ − ζi

′+jτ ). (4.3)
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As in the proof of Lemma 4.3 we have

ϕ(pk)∑
l=1

σl(ζ
jτ−i) =


ϕ(pk) if pk | jτ − i,
0 if pk−1 - jτ − i,
−pk−1 otherwise.

This can be combined to

∑
τ∈A

ϕ(pk)∑
l=1

σl(ζ
jτ−i) = pk|{τ ∈ A : pk | jτ − i}| − pk−1|{τ ∈ A : pk−1 | jτ − i}|.

We get similar expressions for the other numbers i′ − j′τ , −i − j′τ and i′ + jτ . Since i + i′ ≡ j + j′ ≡ 0
(mod pk−1), we have jτ − i ≡ i′− j′τ ≡ −i− j′τ ≡ i′+ jτ (mod pk−1). Thus, the terms of the form pk−1|{. . .}|
in (4.3) cancel out each other. This proves the proposition.

Since the group Aut(〈u〉) is cyclic, A is uniquely determined by its order. We introduce a notation.

Definition 4.5. Let A be as in Proposition 4.4. Then we define Γ(d, k, |A|) as the minimum of the expressions∑
1≤i≤j≤ϕ(pk)

qij(a
u
i−1, a

u
j−1),

where q ranges over all positive definite, integral quadratic forms. By Proposition 4.2 we have k0(B) ≤ Γ(d, k, |A|),
and

∑∞
i=0 p

2iki(B) ≤ Γ(d, k, |A|) if (u, bu) is major.

We will calculate Γ(d, k, |A|) by induction on k. First we collect some easy facts.

Lemma 4.6. Let H ≤ (Z/pkZ)× where we regard H as a subset of {1, . . . , pk}. Then |{σ ∈ H : σ ≡ 1
(mod pj)}| = gcd(|H|, pk−j) for 1 ≤ j ≤ k.

Proof. The canonical epimorphism (Z/pkZ)× → (Z/pjZ)× has kernel K of order pk−j . Hence, |{σ ∈ H : σ ≡ 1
(mod pj)}| = |H ∩ K| = gcd(|H|, pk−j), since the p-subgroups of the cyclic group (Z/pkZ)× are totally ordered
by inclusion.

Lemma 4.7. Let |A|p be the order of a Sylow p-subgroup of A. Then we have

(au0 , a
u
0 ) =

(
|A|+ |A|p

)
pd−k

and
pk−d

gcd(|A|p, j)
(aui , a

u
j ) ∈ {0,±1,±2}

for i + j > 0. If aui 6= 0 for some i ≥ 1, then (aui , a
u
i ) = 2pd−k gcd(|A|p, i). Moreover, (aui , a

u
j ) = 0 whenever

gcd(i, pk−1) 6= gcd(j, pk−1).

Proof. For i = j = 0 we have i + j′τ = pk−1τ 6≡ 0 (mod pk) and i′ + jτ = pk−1 6≡ 0 (mod pk) for all τ ∈ A.
Moreover, by Lemma 4.6 there are precisely |A|p elements τ ∈ A such that i′− j′τ = pk−1(1− τ) ≡ 0 (mod pk).
The first claim follows from Proposition 4.4.

Now let i+ j > 0 and τ ∈ A such that i ≡ jτ (mod pk). Then we have j 6= 0. Assume that also τ1 ∈ A satisfies
i ≡ jτ1 (mod pk). Then j(τ − τ1) ≡ 0 (mod pk) and τ−1τ1 ≡ 1 (mod pk/ gcd(pk, j)). Thus, Lemma 4.6 implies

|{τ ∈ A : pk | i− jτ}| ∈ {0, gcd(|A|p, j)}.

The same argument also works for the other summands in (4.2), since gcd(|A|p, j) = gcd(|A|p, j′). This gives

pk−d(aui , a
u
j ) ∈ {0,± gcd(|A|p, j),±2 gcd(|A|p, j)}

whenever i+ j > 0.
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Suppose i ≥ 1 and i ≡ iτ (mod pk) for some τ ∈ A. Then τ ≡ 1 (mod p) and thus i ≡ iτ − (i + i′)(τ − 1) ≡
−i′τ + i + i′ (mod pk). Hence i′ ≡ i′τ (mod pk). This shows |{τ ∈ A : pk | i − iτ}| = |{τ ∈ A : pk | i′ − i′τ}|.
Moreover, we have |{τ ∈ A : pk | i + i′τ}| = |{τ ∈ A : pk | iτ−1 + i′}| = |{τ ∈ A : pk | i′ + iτ}|. This shows
aui = 0 or (aui , a

u
i ) = 2pd gcd(|A|p, i)/pk.

Finally suppose that gcd(i, pk−1) 6= gcd(j, pk−1). Then i 6≡ jτ (mod pk−1) and thus pk - i − jτ for all τ ∈ A.
The same holds for the other terms in (4.2), since i+ i′ ≡ j + j′ ≡ 0 (mod pk−1). The last claim follows.

Proposition 4.8. We have
Γ(d, 1, |A|) =

(
|A|+ (p− 1)/|A|

)
pd−1.

Proof. Since |A| | p − 1, we have |A|p = 1. Hence, (au0 , a
u
0 ) = (|A| + 1)pd−1 and (aui , a

u
j ) ∈ {0,±pd−1,±2pd−1}

for i+ j > 0 by Lemma 4.7. First we determine the indices i such that aui = 0. For this we use Proposition 4.4.
Observe that we always have i′ = 1. In particular for all i, j we have p | i′− j′τ for τ = 1. It follows that aui = 0
if and only if −i ≡ τ (mod p) for some τ ∈ A. We write this condition in the form −i ∈ A. This gives exactly
|A| − 1 vanishing rows and columns. Thus, all the scalar products (aui , a

u
j ) with −i ∈ A or −j ∈ A vanish.

Hence, assume that −i /∈ A and −j /∈ A. Then (aui , a
u
j ) ∈ {pd−1, 2pd−1} for i+ j > 0. In case (aui , a

u
j ) = 2pd−1

we have aui = auj . This happens exactly when j 6= 0 and ij−1 ∈ A. Since −i /∈ A, the coset iA in G does not
contain −1. Hence, there are precisely |A| choices for j such that ij−1 ∈ A.

Hence, we have shown that the rows aui for i = 1, . . . , p− 2 split in |A|− 1 zero rows and (p− 1)/|A|− 1 groups
consisting of |A| equal rows each. If we replace the matrix A by UA for a suitable matrix U ∈ GL(p−1,Z), we get
a new matrix with exactly (p−1)/|A| non-vanishing rows (this is essentially the same as taking another (positive
definite) quadratic form in (4.1), see [32]). After leaving out the zero rows we get a (p − 1)/|A| × (p − 1)/|A|
matrix

AAT = pd−1


|A|+ 1 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2

 .

Now we can apply the quadratic form q corresponding to the Dynkin diagram A(p−1)/|A| in Eq. (4.1). This gives

Γ(d, 1, |A|) ≤
(
|A|+ (p− 1)/|A|

)
pd−1.

On the other hand p1−dAAT is the square of the matrix
1 · · · 1
1 1
...

. . .
1 1


which has exactly |A|+ (p− 1)/|A| columns. This shows that Γ(d, 1, |A|) cannot be smaller.

The next proposition gives an induction step.

Proposition 4.9. If |A|p 6= 1, then

Γ(d, k, |A|) = Γ(d, k − 1, |A|/p).

Proof. Since |A|p 6= 1, we have k ≥ 2. Let i ∈ {1, . . . , ϕ(pk) − 1} such that gcd(i, p) = 1. We will see that
(aui , a

u
i ) = 0 and thus aui = 0. By Lemma 4.7 and Eq. (4.2) it suffices to show that there is some τ ∈ A such

that pk | i′ + iτ . We can write this in the form −i−1i′ ∈ A, since i represents an element of (Z/pkZ)×. Now let
−i′ = i + αpk−1 for some α ∈ Z. Then −i−1i′ = 1 + i−1αpk−1 is an element of order p in G. Since G has only
one subgroup of order p, it follows that −i−1i′ ∈ A.
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Hence, in order to apply Proposition 4.2 it remains to consider the indices which are divisible by p. Let A be
the image of the canonical map (Z/pkZ)× → (Z/pk−1Z)× under A. Then |A| = |A|/p (cf. Lemma 4.6). If i and
j are divisible by p, we have

|{τ ∈ A : pk | i+ jτ}| = p · |{τ ∈ A : pk−1 | (i/p) + (j/p)τ}|.

A similar equality holds for the other summands in (4.2). Here observe that (i/p)′ = i′/p, where the dash on
the left refers to the case pk−1. Thus, the remaining matrix is just the matrix in case pk−1. Hence Γ(d, k, |A|) =
Γ(d, k − 1, |A|) = Γ(d, k − 1, |A|/p).

Now we are in a position to prove the main theorem of this section.

Theorem 4.10. Let B be a p-block of a finite group G where p is an odd prime, and let (u, bu) be a B-subsection
such that l(bu) = 1 and bu has defect d. Moreover, let F be the fusion system of B and |AutF (〈u〉)| = psr, where
p - r and s ≥ 0. Then we have

k0(B) ≤ |〈u〉|+ ps(r2 − 1)

|〈u〉| · r
pd. (4.4)

If (in addition) (u, bu) is major, we can replace k0(B) by
∑∞
i=0 p

2iki(B) in (4.4).

Proof. As before let |〈u〉| = pk. We will prove by induction on k that

Γ(d, k, psr) =
pk + ps(r2 − 1)

pkr
pd.

By Proposition 4.8 we may assume k ≥ 2. By Proposition 4.9 we can also assume that s = 0. As before we
consider the matrix A. Like in the proof of Proposition 4.9 it is easy to see that the indices divisible by p form
a block of the matrix AAT which contributes Γ(d, k − 1, r)/p to Γ(d, k, r). It remains to deal with the matrix
Ã :=

(
aui : gcd(i, p) = 1

)
. By Lemma 4.7 the entries of pk−dÃÃT lie in {0,±1,±2}. Moreover, if gcd(i, p) = 1

we have (aui , a
u
i ) = 2pd−k (see proof of Proposition 4.9).

With the notation of the proof of Proposition 4.4 we have V A = W . In particular rkAAT = rkA = rkW = |G :

A|. If we set A1 :=
(
aui : gcd(i, p) > 1

)
, it also follows that rkA1A

T
1 = rkA1 = ϕ(pk−1)/r. Since the rows of Ã

are orthogonal to the rows of A1 (see Lemma 4.7), we see that rk Ã = (ϕ(pk)− ϕ(pk−1))/r = pk−2(p− 1)2/r.

Now we will find pk−2(p−1)2/r linearly independent rows of Ã. For this observe that A acts on Ω := {i : 1 ≤ i ≤
pk−1, gcd(i, p) = 1} by τ i := τ · i (mod pk−1) for τ ∈ A. Since p - r, every orbit has length r (see Lemma 4.6).
We choose a set of representatives ∆ for these orbits. Then |∆| = pk−2(p − 1)/r. Finally for i ∈ ∆ we set
∆i := {i+ jpk−1 : j = 0, . . . , p− 2}. We claim that the rows aui with i ∈

⋃
j∈∆ ∆j are linearly independent. We

do this in two steps.

Step 1: (aui , a
u
j ) = 0 for i, j ∈ ∆, i 6= j.

We will show that all summands in (4.2) vanish. First assume that i ≡ jτ (mod pk) for some τ ∈ A. Then of
course we also have i ≡ jτ (mod pk−1) which contradicts the choice of ∆. Exactly the same argument works
for the other summands. For the next step we fix some i ∈ ∆.

Step 2: auj for j ∈ ∆i are linearly independent.
It suffices to show that the matrix A′ := pk−d(aul , a

u
m)l,m∈∆i

is invertible. We already know that the diagonal
entries of A′ equal 2. Now write m = l+jpk−1 for some j 6= 0. We consider the summands in (4.2). Assume that
there is some τ ∈ A such that l ≡ mτ ≡ (l+ jpk−1)τ (mod pk). Then we have τ ≡ 1 (mod pk−1) which implies
τ = 1. However, this contradicts j 6= 0. On the other hand we have l′ ≡ m′τ ≡ l′τ (mod pk) for τ = 1 ∈ A. Now
assume −l ≡ m′τ (mod pk). Then the argument above implies τ = 1 and l + l′ ≡ 0 (mod pk) which is false.
Similarly the last summand in (4.2) equals 0. Thus, we have shown that A′ = (1 + δlm)l,m∈∆i

is invertible.

This implies that the rank of Ã is pk−2(p−1)2/r. Hence, there exists an integral matrix U ∈ GL(pk−2(p−1)2,Q)

such that the only non-zero rows of UÃ are aui for i ∈
⋃
j∈∆ ∆j . Then we can leave out the zero rows and obtain

a matrix (still denoted by Ã) of dimension pk−2(p− 1)2/r. Moreover, the two steps above show that pk−dÃÃT
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consists of pk−2(p − 1)/r blocks of the form (1 + δij)1≤i,j≤p−1. Thus, an application of the quadratic form q
corresponding to the Dynkin diagram Apk−2(p−1)2/r in Eq. (4.1) gives

Γ(d, k, r) ≤ Γ(d, k − 1, r)

p
+
pk−1(p− 1)

pkr
pd =

pk + r2 − 1

pkr
pd.

The minimality of Γ(d, k, r) is not so clear as in the proof of Proposition 4.8, since here we do not know if
detU ∈ {±1}. However, it suffices to give an example where k0(B) = Γ(d, k, r). By Proposition 4.4 we already
know that Γ(d, k, r) = pd−kΓ(k, k, r). Hence, we may assume d = k. Let G = 〈u〉 o Cr and B be the principal
block of G. Then it is easy to see that the hypothesis of the theorem is satisfied. Moreover,

k0(B) = k(B) =
|D| − 1

r
+ r = Γ(d, k, r).

Hence, the proof is complete.

We add some remarks. It is easy to see that the right hand side of (4.4) is always an integer. Moreover, if A = G
(i. e. s = k − 1 and r = p − 1) or A is a p-group (i. e. r = 1), we get the same bound as in Proposition 2.1
and Proposition 2.2. In all other cases Theorem 4.10 really improves Proposition 2.1 and Proposition 2.2. For
k ≥ 2 the case s = 0 and r = p− 1 gives the best bound for k0(B). If k tends to infinity, Γ(d, k, p− 1) goes to
pd/(p− 1).

Coming back to our intended task, i. e. to prove Olsson’s Conjecture (in some cases), we have to say (in contrast
to the case p = 2) that Olsson’s Conjecture does not follow from Theorem 4.10 if it does not already follow
from Proposition 2.1, since the right hand side of (4.4) is always larger than pd−1.

In the proof we already saw that Inequality (4.4) is sharp for blocks with cyclic defect groups. Perhaps it is
possible that this can provide a more elementary proof of Dade’s Theorem. For this it would be sufficient to
bound l(B) from below, since the difference k(B)− l(B) is locally determined.

As an application of Theorem 4.10 we give a concrete example. Let B be an 11-block with defect group D ∼=
C11 ×C11 (for smaller primes results by Usami and Puig give more complete informations, e. g. [59, 45]). Then
it is known that Brauer’s k(B)-Conjecture and thus Olsson’s Conjecture hold. However, the precise values for
k(B) and l(B) are unknown. Since D is abelian, the fusion system F is controlled by AutF (D). Assume that
AutF (D) has order 5 and acts only on one factor C11 non-trivially. Then there are two non-trivial (major)
subsections (u, bu) and (v, bv) such that l(bu) = 1 and l(bv) = 5. Moreover, |A| = 5 and Theorem 4.10 implies
k(B) ≤ 77 which is better than Brauer’s k(B)-Conjecture. On the other hand the block bv dominates a block of
CG(v)/〈v〉 with cyclic defect group D/〈v〉 ∼= C11. Hence, the Cartan matrix of bv has the form 11(2+δij)1≤i,j≤5

up to basic sets (see [14, 48]). Now Theorem 2.4 applied to (v, bv) gives exactly the same bound on k(B).
Under the action of AutF (D) the group D splits in 11 orbits of length 1 and 22 orbits of length 5. Hence, by
Theorem 5.9.4 in [37] we get k(B) − l(B) = 72. Since B is centrally controlled, Theorem 1.1 in [31] implies
l(B) ≥ l(bv) = 5. This shows k(B) = 77 and l(B) = 5 (this can also be obtained from Corollary 2 in [60]). By
Theorem IV.4.18 in [18] we also have k0(B) = k(B), because B has defect 2.

Now assume that AutF (D) acts diagonally (and thus fixed point freely) on both factors C11. Then we have
l(bu) = 1 for all non-trivial subsections (u, bu). Thus, Theorem 2.4 and Theorem 1 in [60] become useless in this
situation, but Theorem 4.10 still implies k(B) ≤ 77. However, for the principal block B of G = D o AutF (D)
we have k(B) = k0(B) = 29 and l(B) = 5.

As was pointed out earlier, for odd primes p and l(bu) > 1 there is not always a stable character in IBr(bu)
under NG(〈u〉, bu), even for l(bu) = 2 (see Proposition (2E)(ii) and the example following it in [28]). However,
the situation is better if we consider the principal block.

Proposition 4.11. Let B be the principal p-block of G for an odd prime p, and let (u, bu) be a B-subsection
such that l(bu) = 2, and bu has defect d and Cartan matrix Cu = (cij). Then we may replace Cu by an equivalent
matrix such that pdc11/ detCu is divisible by p. Moreover, let F be the fusion system of B and |AutF (〈u〉)| = psr,
where p - r and s ≥ 0. Then we have

k0(B) ≤ |〈u〉|+ ps(r2 − 1)

|〈u〉| · r
c11.
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Proof. By Brauer’s third main theorem bu is the principal block of CG(u) and so IBr(bu) contains the trivial
Brauer character. Hence, both characters of IBr(bu) are stable under NG(〈u〉). As in the proof of Theorem 3.1,
pd

detCu
Cu (mod p) has rank 1. Hence, we can replace Cu by an equivalent matrix (still denoted by Cu = (cij))

such that pdc11/ detCu and pdc12/ detCu are divisible by p. As in the proof of Theorem 3.1, the rows dui and
aij become d̂ui and âij for i = 1, 2 and j = 0, . . . , ϕ(|〈u〉|)− 1. Write pdC−1

u = (c̃ij). For χ ∈ Irr0(B) we have

0 6≡ pdm(u,bu)
χχ ≡ c̃11

(
d̂uχϕ1

)2
(mod (π));

in particular â1
j (χ) 6= 0 for some j ∈ {0, . . . , ϕ(pk)− 1}. Now since

(d̂u1 , γ(d̂u1 )) =

{
c11 if γ ∈ A,
0 if γ ∈ G \ A,

the proof works as in case l(bu) = 1.

5 Controlled blocks

In this section we will use Proposition 2.1 to show that Olsson’s Conjecture is satisfied for controlled blocks
with certain defect groups. Here a block B of G with defect group D is controlled if NG(D, bD) controls the
fusion system F of B (see Section 2 for notations). Recall that in this situation all subgroups of D are fully F-
normalized. In particular for a subsection (u, bu) the block bu has defect group CD(u) (cf. Proposition 2.3). Our
strategy will be to find a subsection (u, bu) such that l(bu) = 1 and |CD(u)| = |D : D′|. Then Olsson’s Conjecture
follows from Proposition 2.1. Observe that the inequality |D : CD(u)| ≤ |D′| always holds by elementary group
theory. The next proposition gives a general criterion for this situation.

Proposition 5.1. Let B be a controlled block of G with defect group D. Suppose that there exists an element
u ∈ D such that |D : CD(u)| = |D′| and NG(D, bD) ∩ CG(u) ⊆ CD(u) CG(CD(u)). Then Olsson’s Conjecture
holds for B.

Proof. By Proposition 2.1(b) in [3], also bu is a controlled block and it suffices to show that bu has inertial
index 1, since then bu is nilpotent and l(bu) = 1. Observe that (CD(u), bCD(u)) is a maximal bu-subpair. Hence,
Proposition 2.2 in [3] implies

NG(CD(u), bCD(u)) =
[
NG(D, bD) ∩NG(CD(u), bCD(u))

]
CG(CD(u)) =

[
NG(D, bD) ∩NG(CD(u))

]
CG(CD(u)).

Thus,

NCG(u)(CD(u), bCD(u)) =
[
NG(D, bD) ∩NG(CD(u)) ∩ CG(u)

]
CG(CD(u)) = CD(u) CG(CD(u)),

and the claim follows.

Recall that the inertial quotient NG(D, bD)/DCG(D) is always a p′-group. Thus, we can formulate Proposi-
tion 5.1 in the following abstract setting. Let P be a finite p-group and let A be a p′-group of automorphisms
on P . Then we can form the semidirect product G := P o A. The conclusion of Proposition 5.1 applies if we
find an element u ∈ P such that |P : CP (u)| = |P ′| and CG(u) ≤ P . Observe that the requirement CA(u) = 1
alone is not sufficient, since for a P -conjugate v of u we might have CA(v) 6= 1. In the following results we verify
this condition for several families of 2-generator p-groups. We start with a useful lemma.

Lemma 5.2. Let P be a p-group such that |P : Φ(P )| ≤ p2. Let A ≤ Aut(P ) be a p′-group and G = P o A. If
P contains an A-invariant maximal subgroup C, then there is an element u ∈ P \ C such that CG(u) ≤ P .

Proof. In case |P : Φ(P )| = p the claim is trivial. Hence, assume |P : Φ(P )| = p2. By Maschke’s Theorem
there is another A-invariant maximal subgroup C1 of P . Let u ∈ P \ (C ∪ C1). Then CA(u) acts trivially on
〈u〉Φ(P )/Φ(P ). Since P/Φ(P ) = C/Φ(P ) × C1/Φ(P ), it follows that CA(u) acts trivially on C/Φ(P ) and on
P/C. This shows CA(u) = 1, because A is a p′-group. By way of contradiction assume that CG(u) is not a
p-group. Let α ∈ CG(u) be a non-trivial p′-element. By Schur-Zassenhaus α is P -conjugate to an element of A.
In particular CA(v) 6= 1 for some P -conjugate v of u. However, this contradicts the first part of the proof, since
v ∈ P \ (C ∪ C1).
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Proposition 5.3. Let p be an odd prime, and let P be a p-group of maximal class with |P | ≥ p4. If A ≤ Aut(P )
is a p′-group and G = P oA, then there exists an element u ∈ P such that |P : CP (u)| = |P ′| and CG(u) ≤ P .

Proof. Let |P | = pn. We denote the terms of the lower central series of P by P2 = P ′, P3 = [P2, P ], etc.
Then P1 := CP (P2/P4) is a characteristic maximal subgroup of P by Hilfssatz III.14.4 in [25]. Moreover,
Hauptsatz III.14.6(a) tells us that the set {CP (Pi/Pi+2) : 2 ≤ i ≤ n − 2} contains at most one subgroup
C := CP (Pn−2) < P different from P1. By (the proof of) Lemma 5.2 there exists an element u ∈ P \ (P1 ∪ C)
such that CG(u) ≤ P . By Hilfssatz III.14.13 in [25] we also have |P : CP (u)| = |P ′|.

Proposition 5.4. Let p be an odd prime, and let P be a p-group such that P ′ is cyclic, |P : Φ(P )| = p2

and |P | ≥ p4. If A ≤ Aut(P ) is a p′-group and G = P o A, then there exists an element u ∈ P such that
|P : CP (u)| = |P ′| and CG(u) ≤ P .

Proof. Assume first that P is abelian. By Lemma 5.2 we may assume P ∼= Cps × Cps for some s ≥ 2. Since
CG(u) = P CA(u) for all u ∈ P , it suffices to show CA(u) = 1 for some u ∈ P . After replacing P by Ω2(P ), we
may also assume that s = 2. Let x ∈ P \Φ(P ). Suppose that A1 := CA(x) 6= 1. Since A1 acts faithfully on Ω1(P ),
we have CP (A1) = 〈x〉. The group A2 := CA(xp) must be cyclic, since it acts faithfully on Ω1(P )/〈xp〉. Thus,
it follows from A1 ≤ A2 that A2 acts on 〈x〉 = CP (A1). But since A2 fixes xp ∈ Ω1(〈x〉), we derive A1 = A2.
Now choose an element u ∈ P such that Ω1(P ) ⊆ 〈x, u〉 and 〈up〉 = 〈xp〉. Then CA(u) = CA(u) ∩ CA(up) =
CA2

(u) = CA1
(u) ⊆ CA(Ω1(P )) = 1.

Now suppose that P has class 2. Then for P = 〈a, b〉 we have P ′ = 〈[a, b]〉 = {[a, bn] : n ∈ Z} = {[a, x] : x ∈ P}.
In particular |P : CP (u)| = |P ′| for all u ∈ P \Φ(P ). Hence, it suffices to show CA(u) = 1 for all u in a certain
P -conjugacy class lying in P \ Φ(P ) (compare with proof of Lemma 5.2). For this we may replace P by P/P ′.
In case |P : P ′| > p2 the claim follows from the arguments above. Thus, assume |P : P ′| = p2. Then P ′ = Z(P )
and |P ′| = p. This contradicts |P | ≥ p4.

Finally let P be a group of class at least 3. Then P ′ * Z(P ) and 1 6= P/CP (P ′) ≤ Aut(P ′) is cyclic. Hence,
C := CP (P ′)Φ(P ) is a characteristic maximal subgroup of P . By Lemma 5.2 there is an element u ∈ P \C such
that CG(u) ≤ P . Choose x ∈ CP (P ′) such that P = 〈u, x〉. Now N := 〈x〉P ′ is an abelian normal subgroup of
P , and P/N = 〈uN〉 is cyclic. Thus, Aufgabe 2 on page 259 of [25] implies that P ′ = {[y, u] : y ∈ N} = {[y, u] :
y ∈ P}; in particular, we have |P ′| = |P : CP (u)|.

We observe that GL(2, p) contains a p′-subgroup A of order 2(p− 1)2 which is bigger than p2 for p > 3. Thus,
when P is elementary abelian of order p2, then there is no regular orbit of A on P .

Proposition 5.5. Let p be an odd prime, and let P be a p-group of p-rank 2 with |P | ≥ p4. If A ≤ Aut(P ) is
a p′-group and G = P oA, then there exists an element u ∈ P such that |P : CP (u)| = |P ′| and CG(u) ≤ P .

Proof. By Theorem A.1 in [15], a result of Blackburn, there are four cases to consider. The metacyclic case follows
from Proposition 5.4. In the next case P is a 3-group of maximal class and the result holds by Proposition 5.3.

Now suppose that P is presented as

P = 〈a, b, c | ap = bp = cp
n−2

= [a, c] = [b, c] = 1, [a, b] = cp
n−3

〉

for some n ≥ 4. Then it is easy to see that P = Ω1(P ) ∗ Z(P ), where Ω1(P ) = 〈a, b〉 is a non-abelian group of
order p3 and exponent p, and Z(P ) = 〈c〉 is cyclic of order pn−2. Thus, |P ′| = p. Then

U := {x ∈ P \ Z(P ) : |〈x〉| = pn−2} 6= ∅.

For u ∈ U we have CA(u) ≤ CA(up) = CA(cp). Hence, CA(u) acts trivially on Z(P ) = 〈c〉 and on 〈u, c〉. Now
Problem 4D.1 in [26] implies CA(u) = 1 for all u ∈ U . Since U is closed under conjugation in P , we obtain
CG(u) ≤ P easily (compare with proof of Lemma 5.2). Obviously, we also have |P : CP (u)| = p = |P ′| for all
u ∈ U .

Finally, it remains to handle the case

P = 〈a, b, c | ap = bp = cp
n−2

= [b, c] = 1, [a, b−1] = cεp
n−3

, [a, c] = b〉,
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where n ≥ 4 and ε is 1 or a fixed quadratic non-residue modulo p. Obviously, P = 〈a, c〉 and P ′ = 〈b, cpn−3〉 ∼=
Cp × Cp. Moreover, CP (P ′) = 〈b, c〉 is abelian and maximal in P . Hence, by Lemma 5.2 we find an element
u ∈ P \ CP (P ′) such that CG(u) ≤ P . It remains to show |P : CP (u)| = |P ′|. By way of contradiction suppose
that CP (u) is maximal in P . Then Φ(P ) = CP (P ′) ∩ CP (u) ⊆ CP (〈CP (P ′), u〉) = Z(P ). Thus, P is minimal
non-abelian and we get the contradiction |P ′| = p. This completes the proof.

Theorem 5.6. Let D be a finite p-group, where p is an odd prime, and suppose that one of the following holds:

(i) D has p-rank 2,

(ii) D has maximal class,

(iii) D′ is cyclic and |D : Φ(D)| = p2.

Then Olsson’s Conjecture holds for all controlled blocks with defect group D.

Proof. In case |D| ≤ p3 the claim follows easily from Proposition 2.5(i) and Theorem VII.10.14 in [18] (observe
that D is not elementary abelian of order p3). The other cases are consequences of the previous propositions.

As mentioned earlier in this paper, Olsson’s Conjecture holds also for 2-blocks with maximal class defect groups.
We also like to point out that Olsson’s Conjecture for controlled blocks with maximal class defect groups follows
easily from Proposition 2.5(i) (without considering the action of an automorphism group). In connection with
(iii) in Theorem 5.6 we mention that by a result of Burnside, D′ is already cyclic if Z(D′) is (see Satz III.7.8 in
[25]).

If u is an element of D such that |D : CD(u)| = |D′|, then D′ = {[u, v] : v ∈ D}; in particular, every element in
D′ is a commutator. Thus, one cannot expect to prove Olsson’s Conjecture for all possible defect groups in this
way (see for example [22]).

6 Defect groups of p-rank 2

In this section we discuss Olsson’s Conjecture for blocks which are not necessarily controlled. We begin with a
special case for which the method of the previous section does not suffice. For this reason we use the classification
of finite simple groups.

Proposition 6.1. Let B be a block of a finite group G with a non-abelian defect group D of order 53 and
exponent 5. Suppose that the fusion system F of B is the same as the fusion system of the sporadic simple
Thompson group Th for the prime 5. Then B is Morita equivalent to the principal 5-block of Th; in particular,
Olsson’s Conjecture holds for B.

Proof. By Fong reduction, we may assume that O5′(G) is central and cyclic (cf. Section IV.6 in [7]). The ATLAS
[13] shows that Th has a unique conjugacy class of elements of order 5. Thus, by our hypothesis, all non-trivial
B-subsections are conjugate in G; in particular, all B-subsections are major. Since O5(G) ≤ D, this implies
that O5(G) = 1. Thus F(G) = Z(G) = O5′(G).

Let N/Z(G) be a minimal normal subgroup of G/Z(G). By Fong reduction, we may assume that B covers a
unique block b of N . Then D∩N is a defect group of b. By Fong reduction, we may also assume that D∩N 6= 1.
Since all non-trivial B-subsections are conjugate in G this implies that D ∩N = D, i.e. D ⊆ N . In particular,
N/Z(G) is the only minimal normal subgroup of G/Z(G). Hence N = F∗(G), and E(G) is a central product of
the components L1, . . . , Ln of G.

For i = 1, . . . , n, b covers a unique block bi of Li. Let Di be a defect group of bi. Then D1× . . .×Dn is a defect
group of b (since O5(G) = 1). Thus D1 × . . . × Dn

∼= D. This shows that we must have n = 1. Hence E(G)
is quasisimple, and S := E(G)/Z(E(G)) is simple. Since F∗(G) = E(G) F(G) = E(G) Z(G), we conclude that
CG(E(G)) = CG(F∗(G)) = Z(F(G)) = Z(G), so that G/Z(G) is isomorphic to a subgroup of Aut(E(G)).

Now we discuss the various possibilities for S, by making use of the classification of finite simple groups. In each
case we apply [4].
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If S is an alternating group then, by Section 2 in [4], the block b cannot exist. Similarly, if S is exceptional
group of Lie type then, by Theorem 5.1 in [4], the block b cannot exist.

Now suppose that S is a classical group. Then, by Theorem 4.5 in [4], p = 5 must be the defining characteristic
of S. Moreover, S has to be isomorphic to PSL(3, 5) or PSU(3, 5). Also, D is a Sylow 5-subgroup of E(G). But
now the ATLAS shows that S contains non-conjugate elements x and y of order 5 such that |CS(x)| 6= |CS(y)|.
Thus there are elements x and y of order 5 in E(G) which are not conjugate in G. This contradicts the fact that
all non-trivial B-subsections are conjugate in G.

The only remaining possibility is that S is a sporadic simple group. Then Table 1 in [4] implies that S ∈
{HS,McL,Ru,Co2, Co3, Th}. In all cases D is a Sylow 5-subgroup of S. In the first five cases we derive a
contradiction as above, using the ATLAS. So we may assume that S = Th. Since Th has trivial Schur multiplier
and trivial outer automorphism group, we must have G = S×Z(G). Thus B ∼= b⊗RR ∼= b, and b is the principal
5-block of Th, by [58]. Moreover, we have k0(B) = k0(b) = 20 ≤ |D : D′|. This completes the proof.

Theorem 6.2. Let p > 3. Then Olsson’s Conjecture holds for all p-blocks with defect groups of p-rank 2.

Proof. Let B be a p-block with defect group D of p-rank 2 for p > 3. Then, by the Theorems 4.1, 4.2 and 4.3 in
[15], B is controlled unless D is non-abelian of order p3 and exponent p (see also [57]). Hence, by Theorem 5.6
we may assume that D is non-abelian of order p3 and exponent p.

If in addition p > 7, Hendren has shown that there is at least one non-major B-subsection. In this case the
result follows easily from Proposition 2.5(i). Now let p = 7. Then the fusion system F of B is one of the systems
given in [49]. Kessar and Stancu showed using the classification of finite simple groups that three of them cannot
occur for blocks (see [27]). In the remaining cases the number of F-radical and F-centric subgroups of D is
always less than p+ 1 = 8. In particular, there is an element u ∈ D \ Z(D) such that 〈u〉Z(D) is not F-radical,
F-centric. Then by Alperin’s fusion theorem 〈u〉 is not F-conjugate to Z(D). Hence, the subsection (u, bu) is
non-major, and Olsson’s Conjecture follows from Proposition 2.5(i).

In case p = 5 the same argument shows that we can assume that F is the fusion system of the principal 5-block
of Th. However, in this case Olsson’s Conjecture holds by Proposition 6.1.

For p = 3, there are two fusion systems on the non-abelian group of order 27 and exponent 3 in [49], such that
all subsections are major. These correspond to the simple groups 2F4(2)′ and J4. However, Olsson’s Conjecture
holds for the 3-blocks of 2F4(2)′, 2F4(2), J4, Ru and 2.Ru (see [1, 2, 6, 5]; cf. Remark 1.3 in [49]). More generally,
Olsson’s Conjecture is known to hold for all principal blocks with a non-abelian defect group of order 27 and
exponent 3, by Remark 64 in [38]. In addition to 3-blocks of defect 3, there are also non-controlled 3-blocks
whose defect groups have maximal class and 3-rank 2. We plan to come back to this situation in a separate
paper. On the other hand Brauer’s k(B)-Conjecture is satisfied for all 3-blocks of defect 3 (see [54]).

We finish this paper with a similar result about minimal non-abelian defect groups.

Theorem 6.3. Let p 6= 3. Then Olsson’s Conjecture holds for all p-blocks with minimal non-abelian defect
groups.

Proof. By [52] we may assume p > 3. Let B be a block with minimal non-abelian defect group D. Then by
Rédei’s classification of minimal non-abelian groups (see [50]), we may assume that

D := 〈x, y | xp
r

= yp
s

= [x, y]p = [x, x, y] = [y, x, y] = 1〉

for r ≥ s ≥ 1. We set z := [x, y] ∈ Z(D). Observe that Φ(D) = Z(D) = 〈xp, yp, z〉 and D′ = 〈z〉. Let F be the
fusion system of B.

First assume s ≥ 2. Then we show that B is controlled. By Alperin’s Fusion Theorem it suffices to show
that D does not contain F-essential subgroups. By way of contradiction, assume that Q < D is F-essential.
Since CD(Q) ⊆ Q, Q is a maximal subgroup of D. Let a ∈ D be an element of order p. Then also aD′ ∈
D/D′ ∼= Cpr × Cps has order p. Since r ≥ s ≥ 2, we see that a ∈ Z(D) and Ω1(D) ⊆ Z(D). This shows
that 1 6= D/Q = AutD(Q) ≤ AutF (Q) acts trivially on Ω1(Q). On the other hand every p′-automorphism of
AutF (Q) acts non-trivially on Ω1(Q) (see Theorem 5.2.4 in [20]). Hence, Op(AutF (Q)) 6= 1 which contradicts
the choice of Q. Thus, we have proved that B is a controlled block. Now the claim follows from Theorem 5.6(iii).
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Now assume that s = 1. If also r = 1, then D is non-abelian of order p3 and exponent p. In this case we have
seen in the proof of Theorem 6.2 that Olsson’s Conjecture holds for B, since p > 3. Thus, let r ≥ 2. Since Z(D)
has exponent pr−1, we see that x is not F-conjugate to an element in Z(D). In particular (x, bx) is a non-major
B-subsection. Moreover, 〈x〉 is fully F-centralized, since CD(x) is a maximal subgroup of D. Hence, CD(x) is a
defect group of bx by Theorem 2.4(ii) in [33]. Now the claim follows from Proposition 2.5(i).
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