Generalized bases of finite groups

Benjamin Sambale*

May 20, 2021

Abstract

Motivated by recent results on the minimal base of a permutation group, we introduce a new local invariant attached to arbitrary finite groups. More precisely, a subset Δ of a finite group G is called a p-base (where p is a prime) if $\langle\Delta\rangle$ is a p-group and $\mathrm{C}_{G}(\Delta)$ is p-nilpotent. Building on results of Halasi-Maróti, we prove that p-solvable groups possess p-bases of size 3 for every prime p. For other prominent groups we exhibit p-bases of size 2 . In fact, we conjecture the existence of p-bases of size 2 for every finite group. Finally, the notion of p-bases is generalized to blocks and fusion systems.

Keywords: base, p-nilpotent centralizer, fusion
AMS classification: 20D20, 20B05

1 Introduction

Many algorithms in computational group theory depend on the existence of small bases. Here, a base of a permutation group G acting on a set Ω is a subset $\Delta \subseteq \Omega$ such that the pointwise stabilizer G_{Δ} is trivial (i.e. if $g \in G$ fixes every $\delta \in \Delta$, then $g=1$). The aim of this short note is to introduce a generalized base without the presence of a group action. To this end let us first consider a finite group G acting faithfully by automorphisms on a p-group P. If p does not divide $|G|$, then G always admits a base of size 2 by a theorem of Halasi-Podoski [5]. Now suppose that G is p-solvable, P is elementary abelian and G acts completely reducibly on P. Then G has a base of size $3(2$ if $p \geq 5)$ by Halasi-Maróti [4]. In those situations we may form the semidirect product $H:=P \rtimes G$. Now there exists $\Delta \subseteq P$ such that $|\Delta| \leq 3$ and $\mathrm{C}_{H}(\Delta)=\mathrm{C}_{H}(\langle\Delta\rangle) \leq P$. This motivates the following definition.

Definition 1. Let G be a finite group with Sylow p-subgroup P. A subset $\Delta \subseteq P$ is called a p-base of G if $\mathrm{C}_{G}(\Delta)$ is p-nilpotent, i. e. $\mathrm{C}_{G}(\Delta)$ has a normal p-complement.

Clearly, any generating set of P is a p-base of G since $\mathrm{C}_{G}(P)=\mathrm{Z}(P) \times \mathrm{O}_{p^{\prime}}\left(\mathrm{C}_{G}(P)\right)$ (this observation is generalized in Lemma 7 below).
Our main theorem extends the work of Halasi-Maróti as follows.

Theorem 2. Every p-solvable group has a p-base of size 3 (2 if $p \geq 5$).

[^0]Although Halasi-Maróti's Theorem does not extend to non- p-solvable groups, the situation for p-bases seems more fortunate. For instance, if V is a finite vector space in characteristic p, then every base of $\mathrm{GL}(V)$ (under the natural action) contains a basis of V, so its size is at least $\operatorname{dim} V$. On the other hand, $G=\operatorname{AGL}(V)=V \rtimes \mathrm{GL}(V)$ possesses a p-base of size 2 . To see this, let P be the Sylow p-subgroup of $\operatorname{GL}(V)$ consisting of the upper unitriangular matrices. Let $x \in P$ be a Jordan block of size dim V. Then $\mathrm{C}_{\mathrm{GL}(V)}(x) \leq P \mathrm{Z}(\mathrm{GL}(V))$. For any $y \in \mathrm{C}_{V}(x) \backslash\{1\}$ we obtain a p-base $\Delta:=\{x, y\}$ such that $\mathrm{C}_{G}(\Delta) \leq V P$. We have even found a p-base consisting of commuting elements. After checking many more cases, we believe that the following might hold.

Conjecture 3. Every finite group has a (commutative) p-base of size 2 for every prime p.

The role of the number 2 in Conjecture 3 appears somewhat arbitrary at first. There is, however, an elementary dual theorem: A finite group is p-nilpotent if and only if every 2 -generated subgroup is p-nilpotent. This can be deduced from the structure of minimal non-p-nilpotent groups (see [6, Satz IV.5.4]). It is a much deeper theorem of Thompson [8] that the same result holds when "pnilpotent" is replaced by "solvable". Similarly, 2-generated subgroups play a role in the Baer-Suzuki Theorem and its variations.

Apart from Theorem 2 we give some more evidence of Conjecture 3 .

Theorem 4. Let G be a finite group with Sylow p-subgroup P. Then Conjecture 3 holds for G in the following cases:
(i) P is abelian.
(ii) G is a symmetric group or an alternating group.
(iii) G is a general linear group, a special linear group or a projective special linear group.
(iv) G is a sporadic simple group or an automorphism group thereof.

Our results on (almost) simple groups carry over to the corresponding quasisimple groups by Lemma 8 below. The notion of p-bases generalizes to blocks of finite groups and even to fusion systems.

Definition 5.

- Let B be a p-block of a finite group G with defect group D. A subset $\Delta \subseteq D$ is called base of B if B has a nilpotent Brauer correspondent in $\mathrm{C}_{G}(\Delta)$ (see [1, Definition IV.5.38]).
- Let \mathcal{F} be a saturated fusion system on a finite p-group P. A subset $\Delta \subseteq P$ is called base of \mathcal{F} if there exists a morphism φ in \mathcal{F} such that $Q:=\varphi(\langle\Delta\rangle)$ is fully \mathcal{F}-centralized and the centralizer fusion system $\mathcal{C}:=\mathrm{C}_{\mathcal{F}}(Q)$ is trivial, i. e. $\mathcal{C}=\mathcal{F}_{\mathrm{C}_{P}(Q)}\left(\mathrm{C}_{P}(Q)\right)$ (see [1, Definition I.5.3, Theorem I.5.5]).

By Brauer's third main theorem, the bases of the principal p-block of G are the p-bases of G (see [1, Theorem IV.5.9]). Moreover, if \mathcal{F} is the fusion system attached to an arbitrary block B, then the bases of B are the bases of \mathcal{F} (see [1, Theorem IV.3.19]). By the existence of exotic fusion systems, the following conjecture strengthens Conjecture 3 .

Conjecture 6. Every saturated fusion system has a base of size 2.

We show that Conjecture 6 holds for p-groups of order at most p^{4}.

2 Results

Proof of Theorem 2. Let G be a p-solvable group with Sylow p-subgroup P. Let $N:=\mathrm{O}_{p^{\prime}}(G)$. For $Q \subseteq$ $P, \mathrm{C}_{G}(Q) N / N$ is contained in $\mathrm{C}_{G / N}(Q N / Q)$. Hence, $\mathrm{C}_{G}(Q)$ is p-nilpotent whenever $\mathrm{C}_{G / N}(Q N / Q)$ is p-nilpotent. Thus, we may assume that $N=1$. Instead we consider $N:=\mathrm{O}_{p}(G)$. Since G is p-solvable, $N \neq 1$. We show by induction on $|N|$ that there exists a p-base $\Delta \subseteq N$ such that $\mathrm{C}_{G}(\Delta) \leq N$. By the Hall-Higman lemma (see [6, Hilfssatz VI.6.5]), $\mathrm{C}_{G / N}(N / \Phi(N))=N / \Phi(N)$ where $\Phi(N)$ denotes the Frattini subgroup of N. It follows that $\mathrm{O}_{p^{\prime}}(G / \Phi(N))=1$. Hence, by induction we may assume that N is elementary abelian. Then $\bar{G}:=G / N$ acts faithfully on N and it suffices to find a p-base $\Delta \subseteq N$ such that $\mathrm{C}_{\bar{G}}(\Delta)=1$. Thus, we may assume that $G=N \rtimes H$ where $\mathrm{C}_{G}(N)=N$ and $\mathrm{O}_{p}(H)=1$.
Note that $\Phi(G) \leq \mathrm{F}(G)=N$ where $\mathrm{F}(G)$ is the Fitting subgroup of G. Since H is contained in a maximal subgroup of G, we even have $\Phi(G)<N$. Let $K \unlhd H$ be the kernel of the action of H on $N / \Phi(G)$. By way of contradiction, suppose that $K \neq 1$. Since K is p-solvable and $\mathrm{O}_{p}(K) \leq \mathrm{O}_{p}(H)=1$, also $K_{0}:=\mathrm{O}_{p^{\prime}}(K) \neq 1$. Now K_{0} acts coprimely on N and we obtain

$$
N=\left[K_{0}, N\right] \mathrm{C}_{N}\left(K_{0}\right)=\Phi(G) \mathrm{C}_{N}\left(K_{0}\right)
$$

as is well-known. Both $\Phi(G)$ and $\mathrm{C}_{N}\left(K_{0}\right) H$ lie in a maximal subgroup M of G. But then $G=N H=$ $\Phi(G) \mathrm{C}_{N}\left(K_{0}\right) H \leq M$, a contradiction. Therefore, H acts faithfully on $N / \Phi(G)$ and we may assume that $\Phi(G)=1$. Then there exist maximal subgroups M_{1}, \ldots, M_{n} of G such that $N_{i}:=M_{i} \cap N<N$ for $i=1, \ldots, n$ and $\bigcap_{i=1}^{n} N_{i}=1$. Since $G=M_{i} N$, the quotients N / N_{i} are simple $\mathbb{F}_{p} H$-modules and N embeds into $N / N_{1} \times \ldots \times N / N_{n}$. Hence, the action of H on N is faithful and completely reducible. Now by the main result of Halasi-Maróti 4 there exists a p-base with the desired properties.

Next we work towards Theorem 4,
Lemma 7. Let P be a Sylow p-subgroup of G. Let $Q \unlhd P$ such that $\mathrm{C}_{P}(Q) \leq Q$. Then every generating set of Q is a p-base of G.

Proof. Since $P \in \operatorname{Syl}_{p}\left(\mathrm{~N}_{G}(Q)\right)$, we have $\mathrm{Z}(Q)=\mathrm{C}_{P}(Q) \in \operatorname{Syl}_{p}\left(\mathrm{C}_{G}(Q)\right)$ and therefore $\mathrm{C}_{G}(Q)=$ $\mathrm{Z}(Q) \times \mathrm{O}_{p^{\prime}}\left(\mathrm{C}_{G}(Q)\right)$ by the Schur-Zassenhaus Theorem.

Lemma 8. Let Δ be a p-base of G and let $N \leq \mathrm{Z}(G)$. Then $\bar{\Delta}:=\{x N: x \in \Delta\}$ is a p-base of G / N.

Proof. Let $g N \in \mathrm{C}_{G / N}(\bar{\Delta})$. Then g normalizes the nilpotent group $\langle\Delta\rangle N$. Hence, g acts on the unique Sylow p-subgroup P of $\langle\Delta\rangle N$. Since g centralizes

$$
\langle\bar{\Delta}\rangle=\langle\Delta\rangle N / N=P N / N \cong P / P \cap N
$$

and $P \cap N \leq N \leq \mathrm{Z}(G), g$ induces a p-element in $\operatorname{Aut}(P)$ and also in $\operatorname{Aut}(\langle\Delta\rangle N)$. Consequently, there exists a p-subgroup $Q \leq \mathrm{N}_{G}(\langle\Delta\rangle N)$ such that $\mathrm{C}_{G / N}(\bar{\Delta})=Q \mathrm{C}_{G}(\Delta N) / N=Q \mathrm{C}_{G}(\Delta) / N$. Since $\mathrm{C}_{G}(\Delta)$ is p-nilpotent, so is $Q \mathrm{C}_{G}(\Delta)$ and the claim follows.

The following implies the first part of Theorem 4.
Proposition 9. Let P be a Sylow p-subgroup of G with nilpotency class c. Then G has a p-base of size 2c.

Proof. The p^{\prime}-group $\mathrm{N}_{G}(\mathrm{Z}(P)) / \mathrm{C}_{G}(\mathrm{Z}(P))$ acts faithfully on $\mathrm{Z}(P)$. By Halasi-Podoski [5] there exists $\Delta_{0}=\{x, y\} \subseteq \mathrm{Z}(P)$ such that $\mathrm{N}_{H}(\mathrm{Z}(P)) \leq \mathrm{C}_{H}(\mathrm{Z}(P))$ where $H:=\mathrm{C}_{G}\left(\Delta_{0}\right)$. If $c=1$, then $P=\mathrm{Z}(P)$ is abelian and Burnside's transfer theorem implies that H is p-nilpotent. Hence, let $c>1$. By a well-known fusion argument of Burnside, elements of $\mathrm{Z}(P)$ are conjugate in H if and only if they are conjugate in $\mathrm{N}_{H}(\mathrm{Z}(P))$. Consequently, all elements of $\mathrm{Z}(P)$ are isolated in our situation. By the Z^{*}-Theorem (assuming the classification of finite simple groups), we obtain

$$
\mathrm{Z}\left(H / \mathrm{O}_{p^{\prime}}(H)\right)=\mathrm{Z}(P) \mathrm{O}_{p^{\prime}}(H) / \mathrm{O}_{p^{\prime}}(H)
$$

The group $\bar{H}:=H / \mathrm{Z}(P) \mathrm{O}_{p^{\prime}}(H)$ has Sylow p-subgroup $\bar{P} \cong P / \mathrm{Z}(P)$ of nilpotency class $c-1$. By induction on c there exists a p-base $\overline{\Delta_{1}} \subseteq \bar{P}$ of \bar{H} of size $2(c-1)$. We may choose $\Delta_{1} \subseteq P$ such that $\overline{\Delta_{1}}=\left\{\bar{x}: x \in \Delta_{1}\right\}$. Since $\overline{\mathrm{C}_{H}\left(\Delta_{1}\right)} \leq \mathrm{C}_{\bar{H}}\left(\overline{\Delta_{1}}\right)$ is p-nilpotent, so is

$$
\left(\mathrm{C}_{H}\left(\Delta_{1}\right) \mathrm{Z}(P) \mathrm{O}_{p^{\prime}}(H) / \mathrm{O}_{p^{\prime}}(H)\right) / \mathrm{Z}\left(H / \mathrm{O}_{p^{\prime}}(H)\right)
$$

It follows that $\mathrm{C}_{H}\left(\Delta_{1}\right) \mathrm{Z}(P) \mathrm{O}_{p^{\prime}}(H) / \mathrm{O}_{p^{\prime}}(H)$ and $\mathrm{C}_{H}\left(\Delta_{1}\right)=\mathrm{C}_{G}\left(\Delta_{0} \cup \Delta_{1}\right)$ are p-nilpotent as well. Hence, $\Delta:=\Delta_{0} \cup \Delta_{1}$ is a p-base of G of size (at most) $2 c$.

Proposition 10. The symmetric and alternating groups S_{n} and A_{n} have commutative p-bases of size 2 for every prime p.

Proof. Let $n=\sum_{i=0}^{k} a_{i} p^{i}$ be the p-adic expansion of n. Suppose first that $G=S_{n}$. Let

$$
x=\prod_{i=0}^{k} \prod_{j=1}^{a_{i}} x_{i j} \in G
$$

be a product of disjoint cycles $x_{i j}$ where $x_{i j}$ has length p^{i} for $j=1, \ldots, a_{i}$. Then x is a p-element and

$$
\mathrm{C}_{G}(x) \cong \prod_{i=0}^{k} C_{p^{i}} \backslash S_{a_{i}}
$$

Since $a_{i}<p, P:=\left\langle x_{i j}: i=0, \ldots, k, j=1, \ldots, a_{i}\right\rangle$ is an abelian Sylow p-subgroup of $\mathrm{C}_{G}(x)$. Let $y:=\prod_{i=0}^{k} \prod_{j=1}^{a_{i}} x_{i j}^{j} \in P$. It is easy to see that $\Delta:=\{x, y\}$ is a commutative p-base of G with $\mathrm{C}_{G}(\Delta)=P$.

Now let $G=A_{n}$. If $p>2$, then x, y lie in A_{n} as constructed above and the claim follows from $\mathrm{C}_{A_{n}}(\Delta) \leq$ $\mathrm{C}_{S_{n}}(\Delta)$. Hence, let $p=2$. If $\sum_{i=1}^{k} a_{i} \equiv 0(\bmod 2)$, then we still have $x \in A_{n}$ and $\mathrm{C}_{G}(x)=\left\langle x_{i j}: i, j\right\rangle$ is already a 2 -group. Thus, we have a 2 -base of size 1 in this case. In the remaining case, let $m \geq 1$ be minimal such that $a_{m}=1$. We adjust our definition of x by replacing $x_{m 1}$ with a disjoint product of two cycles of length 2^{m-1}. Then $x \in A_{n}$ and $\mathrm{C}_{G}(x)$ is a 2 -group or a direct product of a 2-group and S_{3} (the latter case happens if and only if $m=1=a_{0}$). We clearly find a 2-element $y \in \mathrm{C}_{G}(x)$ such that $\mathrm{C}_{G}(x, y)$ is a 2 -group.

The following elementary facts are well-known, but we provide proofs for the convenience of the reader.

Lemma 11. Let p be a prime and let q be a prime power such that $p \nmid q$. Let $e \mid p-1$ be the multiplicative order of q modulo p. Let p^{s} be the p-part of $q^{e}-1$. Then for every $n \geq 1$ the polynomial $X^{p^{n}}-1$ decomposes as

$$
X^{p^{n}}-1=(X-1) \prod_{k=1}^{\left(p^{s}-1\right) / e} \gamma_{0, k} \prod_{i=1}^{n-s} \prod_{k=1}^{\varphi\left(p^{s}\right) / e} \gamma_{i, k}
$$

where the $\gamma_{i, k}$ are pairwise coprime polynomials in $\mathbb{F}_{q}[X]$ of degree ep for $i=0, \ldots, n-s$.

Proof. Let ζ be a primitive root of $X^{p^{n}}-1$ in some finite field extension of \mathbb{F}_{q}. Then

$$
X^{p^{n}}-1=\prod_{k=0}^{p^{n}-1}\left(X-\zeta^{k}\right)
$$

Recall that \mathbb{F}_{q} is the fixed field under the Frobenius automorphism $c \mapsto c^{q}$. Hence, the irreducible divisors of $X^{p^{n}}-1$ in $\mathbb{F}_{q}[X]$ correspond to the orbits of $\left\langle q+p^{n} \mathbb{Z}\right\rangle$ on $\mathbb{Z} / p^{n} \mathbb{Z}$ via multiplication. The trivial orbit corresponds to $X-1$. For $i=1, \ldots, s$ the order of q modulo p^{i} is e by the definition of s. This yields $\left(p^{s}-1\right) / e$ non-trivial orbits of length e in $p^{n-s} \mathbb{Z} / p^{n} \mathbb{Z}$. The corresponding irreducible factors are denoted $\gamma_{0, k}$ for $k=1, \ldots,\left(p^{s}-1\right) / e$.

For $i \geq 1$ the order of q modulo p^{s+i} divides $e p^{i}$ (it can be smaller if $p=2$ and $s=1$). We partition $\left(p^{n-s-i} \mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$into $\varphi\left(p^{s+i}\right) /\left(e p^{i}\right)=\varphi\left(p^{s}\right) / e$ unions of orbits under $\left\langle q+p^{n} \mathbb{Z}\right\rangle$ such that each union has size $e p^{i}$. The corresponding polynomials $\gamma_{i, 1}, \ldots, \gamma_{i, \varphi\left(p^{s}\right) / e}$ are pairwise coprime (but not necessarily irreducible).

Lemma 12. Let A be an $n \times n$-matrix over an arbitrary field F such that the minimal polynomial of A has degree n. Then every matrix commuting with A is a polynomial in A.

Proof. By hypothesis, A is similar to a companion matrix. Hence, there exists a vector $v \in F^{n}$ such that $\left\{v, A v, \ldots, A^{n-1} v\right\}$ is a basis of F^{n}. Let $B \in F^{n \times n}$ such that $A B=B A$. There exist $a_{0}, \ldots, a_{n-1} \in F$ such that $B v=a_{0} v+\ldots+a_{n-1} A^{n-1} v$. Set $\gamma:=a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}$. Then

$$
B A^{i} v=A^{i} B v=a_{0} A^{i} v+\ldots+a_{n-1} A^{n-1} A^{i} v=\gamma(A) A^{i} v
$$

for $i=0, \ldots, n-1$. Since $\left\{v, A v, \ldots, A^{n-1} v\right\}$ is a basis, we obtain $B=\gamma(A)$ as desired.

Proposition 13. The groups $\mathrm{GL}(n, q), \mathrm{SL}(n, q)$ and $\mathrm{PSL}(n, q)$ possess commutative p-bases of size 2 for every prime p.

Proof. Let q be a prime power. By Lemma 8, it suffices to consider $\mathrm{GL}(n, q)$ and $\operatorname{SL}(n, q)$. Suppose first that $p \mid q$. Let $x \in G:=\mathrm{GL}(n, q)$ be a Jordan block of size $n \times n$ with eigenvalue 1 . Then x is a p-element since $x^{p^{n}}-1=(x-1)^{p^{n}}=0$. Moreover, $\mathrm{C}_{G}(x)$ consists of polynomials in x by Lemma 12 . In particular, $\mathrm{C}_{G}(x)$ is abelian and therefore p-nilpotent. Hence, we found a p-base of size 1. Since $(q-1, p)=1$, this is also a p-base of $\operatorname{SL}(n, q)$.

Now let $p \nmid q$. We "linearize" the argument from Proposition 10. Let e and s be as in Lemma 11. Let $0 \leq a_{0} \leq e-1$ such that $n \equiv a_{0}(\bmod e)$. Let

$$
\frac{n-a_{0}}{e}=\sum_{i=0}^{r} a_{i+1} p^{i}
$$

be the p-adic expansion. Let $M_{i} \in \mathrm{GL}\left(e p^{i}, q\right)$ be the companion matrix of the polynomial $\gamma_{i, 1}$ from Lemma 11 for $i=0, \ldots, r$. Let $G_{i}:=\operatorname{GL}\left(e a_{i+1} p^{i}, q\right)$ and $x_{i}:=\operatorname{diag}\left(M_{i}, \ldots, M_{i}\right) \in G_{i}$. Then the minimal polynomial of

$$
x:=\operatorname{diag}\left(1_{a_{0}}, x_{0}, \ldots, x_{r}\right) \in G
$$

divides $X^{p^{r+s}}-1$ by Lemma 11. In particular, x is a p-element. Since the $\gamma_{i, 1}$ are pairwise coprime, it follows that

$$
\mathrm{C}_{G}(x)=\mathrm{GL}\left(a_{0}, q\right) \times \prod_{i=0}^{r} \mathrm{C}_{G_{i}}\left(x_{i}\right)
$$

Since $a_{0}<e, \operatorname{GL}\left(a_{0}, q\right)$ is a p^{\prime}-group. By Lemma 12, every matrix commuting with M_{i} is a polynomial in M_{i}. Hence, the elements of $\mathrm{C}_{G_{i}}\left(x_{i}\right)$ have the form $A=\left(A_{k l}\right)_{1 \leq k, l \leq a_{i+1}}$ where each block $A_{k l}$ is a polynomial in M_{i}. We define

$$
y_{i}:=\operatorname{diag}\left(M_{i}, M_{i}^{2}, \ldots, M_{i}^{a_{i+1}}\right) \in \mathrm{C}_{G_{i}}\left(x_{i}\right)
$$

and $y:=\operatorname{diag}\left(1_{a_{0}}, y_{0}, \ldots, y_{r}\right) \in \mathrm{C}_{G}(x)$. Let $A=\left(A_{k l}\right) \in \mathrm{C}_{G_{i}}\left(x_{i}, y_{i}\right)$. We want to show that $A_{k l}=0$ for $k \neq l$. To this end, we may assume that $k<l$ and $A_{k l}=\rho\left(M_{i}\right)$ where $\rho \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(\rho)<$ $\operatorname{deg}\left(\gamma_{i, 1}\right)=e p^{i}$. Since $A \in \mathrm{C}_{G_{i}}\left(x_{i}, y_{i}\right)$, we have $M_{i}^{k} A_{k l}=M_{i}^{l} A_{k l}$ and $\left(M^{l-k}-1\right) A_{k l}=0$. It follows that the minimal polynomial $\gamma_{i, 1}$ of M_{i} divides $\left(X^{l-k}-1\right) \rho$. By way of contradiction, we assume that $\rho \neq 0$. Then $\gamma_{i, 1}$ divides $X^{l-k}-1$ and $X^{p^{r+s}}-1$. However, $l-k \leq a_{i+1}<p$ and $\gamma_{i 1}$ must divide $X-1$. This contradicts the definition of $\gamma_{i, 1}$ in Lemma 11. Hence, $A_{k l}=0$ for $k \neq l$. We have shown that the elements of $\mathrm{C}_{G}(x, y)$ have the form

$$
L \oplus \bigoplus_{i=0}^{r} \bigoplus_{j=1}^{a_{i+1}} L_{i j}
$$

where $L \in \mathrm{GL}\left(a_{0}, q\right)$ and each $L_{i j}$ is a polynomial in M_{i}. In particular, $\mathrm{C}_{G}(x, y)$ is a direct product of a p^{\prime}-group and an abelian group. Consequently, $\mathrm{C}_{G}(x, y)$ is p-nilpotent.

Now let $G:=\operatorname{SL}(n, q)$. If $p \nmid q-1$, then the p-base of $\operatorname{GL}(n, q)$ constructed above already lies in G. Thus, we may assume that $p \mid q-1$. Then $e=1$ and $a_{0}=0$ with the notation above. We now have the polynomials $\gamma_{i, k}$ with $i=0, \ldots, r$ and $k=1, \ldots, p-1 \leq \varphi\left(p^{s}\right)$ at our disposal. Let $M_{i, k}$ be the companion matrix of $\gamma_{i, k}$. Define

$$
x_{i}:=\operatorname{diag}\left(M_{i, 1}, \ldots, M_{i, a_{i+1}}\right)
$$

for $i=0, \ldots, r$. Then the minimal polynomial of $x:=\operatorname{diag}\left(x_{0}, \ldots, x_{r}\right) \in \operatorname{GL}(n, q)$ has degree n and therefore $\mathrm{C}_{\mathrm{GL}(n, q)}(x)$ is abelian by Lemma 12. Let $i \geq 0$ be minimal such that $a_{i+1}>0$. We replace the block $M_{i, 1}$ of x by the companion matrix of $X^{p^{i}}-1$. Then by Lemma 11, the minimal polynomial of x still has degree n. Moreover, x has at least one block B of size 1×1. We may modify B such that $\operatorname{det}(x)=1$. After doing so, it may happen that B occurs twice in x. In this case, $\mathrm{C}_{G}(x) \leq \mathrm{GL}(2, q) \times H$ where H is abelian. Then the matrix

$$
y:= \begin{cases}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \oplus 1_{n-2} & \text { if } p=2 \\
\operatorname{diag}\left(M_{0,1}, M_{0,1}^{-1}, 1_{n-2}\right) & \text { if } p>2\end{cases}
$$

lies in $\mathrm{C}_{G}(x)$ and $\mathrm{C}_{G}(x, y)$ is abelian. Hence, $\{x, y\}$ is a p-base of G.
Proposition 13 can probably be generalized to classical groups. The next result completes the proof of Theorem 4.

Proposition 14. Let S be a sporadic simple group and $G \in\{S, S .2\}$. Then G has a commutative p-base of size 2 for every prime p.

Proof. If p^{4} does not divide $|G|$, then the claim follows from Lemma 7. So we may assume that p^{4} divides $|G|$. From the character tables in the Atlas 2 we often find p-elements $x \in G$ such that $\mathrm{C}_{G}(x)$ is already a p-group. In this case we found a p-base of size 1 and we are done. If G admits a permutation representation of "moderate" degree (including $C o_{1}$), then the claim can be shown directly in GAP [3]. In the remaining cases we use the Atlas to find p-elements with small centralizers:

- $G=L y, p=2$: There exists an involution $x \in G$ such that $\mathrm{C}_{G}(x)=2 . A_{11}$. By the proof of Proposition 10, there exists $y \in A_{11}$ such that $\mathrm{C}_{A_{11}}(y)$ is a 2 -group. We identify y with a preimage in $\mathrm{C}_{G}(x)$. Then $\mathrm{C}_{G}(x, y)$ is a 2-group.
- $G=L y, p=3$: Here we find $x \in G$ of order 3 such that $\mathrm{C}_{G}(x)=3 . M c L$. Since $M c L$ contains a 3 -element y such that $\mathrm{C}_{M c L}(y)$ is a 3 -group, the claim follows.
- $G=T h, p=2$: There exists an involution $x \in G$ such that $\mathrm{C}_{G}(x)=2_{+}^{1+8} \cdot A_{9}$. As before we find $y \in \mathrm{C}_{G}(x)$ such that $\mathrm{C}_{G}(x, y)$ is a 2-group.
- $G=M, p=5$: There exists a 5 -element $x \in G$ such that $\mathrm{C}_{G}(x)=C_{5} \times H N$. Since there is also a 5 -element $y \in H N$ such that $\mathrm{C}_{H N}(y)$ is a 5 -group, the claim follows.
- $G=M, p=7$: In this case there exists a radical subgroup $Q \leq G$ such that $\mathrm{C}_{G}(Q)=Q \cong C_{7} \times C_{7}$ by Wilson [9, Theorem 7] (this group was missing in the list of local subgroups in the Atlas). Any generating set of Q of size 2 is a desired p-base of G.
- $G=H N .2, p=3$: There exists an element $x \in G$ of order 9 such that $\left|\mathrm{C}_{G}(x)\right|=54$. Clearly, we find $y \in \mathrm{C}_{G}(x)$ such that $\mathrm{C}_{G}(x, y)$ is 3-nilpotent.

Finally, we consider a special case of Conjecture 6 .
Proposition 15. Let \mathcal{F} be a saturated fusion system on a p-group P of order at most p^{4}. Then \mathcal{F} has a base of size 2 .

Proof. Recall that $A:=\operatorname{Out}_{\mathcal{F}}(P)$ is a p^{\prime}-group and there is a well-defined action of A on P by the Schur-Zassenhaus Theorem. If \mathcal{F} is the fusion system of the group $P \rtimes A$, then the claim follows from Halasi-Podoski [5 as before. We may therefore assume that P contains an \mathcal{F}-essential subgroup. In particular, P is non-abelian. Let $Q<P$ be a maximal subgroup of P containing $\mathrm{Z}(P)$. The fusion system $\mathrm{C}_{\mathcal{F}}(Q)$ on $\mathrm{C}_{P}(Q)=\mathrm{Z}(Q)$ is trivial by definition. Hence, we are done whenever Q is generated by two elements.

It remains to deal with the case where $|P|=p^{4}$ and all maximal subgroups containing $\mathrm{Z}(P)$ are elementary abelian of rank 3 . Since two such maximal subgroups intersect in $\mathrm{Z}(P)$, we obtain that $|\mathrm{Z}(P)|=p^{2}$ and $\left|P^{\prime}\right|=p$ by [7, Lemma 1.9], for instance. By the first part of the proof, we may choose an \mathcal{F}-essential subgroup Q such that $\mathrm{Z}(P)<Q<P$. Let $A:=\operatorname{Aut}_{\mathcal{F}}(Q)$. Since Q is essential, P / Q is a non-normal Sylow p-subgroup of A (see [1, Proposition I.2.5]). Moreover, $[P, Q]=P^{\prime}$ has order p. By [7, Lemma 1.11], there exists an A-invariant decomposition

$$
Q=\langle x, y\rangle \times\langle z\rangle .
$$

We may choose those elements such that $\Delta:=\{x z, y\} \nsubseteq \mathrm{Z}(P)$. Then $\mathrm{C}_{P}(\Delta)=Q$ and $\mathrm{C}_{A}(\Delta)=1$. Let $\varphi: S \rightarrow T$ be a morphism in $\mathcal{C}:=\mathrm{C}_{\mathcal{F}}(\Delta)$ where $S, T \leq Q$. Then φ extends to a morphism $\hat{\varphi}: S\langle\Delta\rangle \rightarrow T\langle\Delta\rangle$ in \mathcal{F} such that $\hat{\varphi}(x)=x$ for all $x \in\langle\Delta\rangle$. Hence, if $S \leq\langle\Delta\rangle$, then $\varphi=$ id. Otherwise, $S\langle\Delta\rangle=Q$ and $\hat{\varphi} \in \mathrm{C}_{A}(\Delta)=1$ since morphisms are always injective. In any case, \mathcal{C} is the trivial fusion system and Δ is a base of \mathcal{F}.

Acknowledgment

The author is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1).

References

[1] M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, Vol. 391, Cambridge University Press, Cambridge, 2011.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of finite groups, Oxford University Press, Eynsham, 1985.
[3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11.0; 2020, (http: //www.gap-system.org).
[4] Z. Halasi and A. Maróti, The minimal base size for a p-solvable linear group, Proc. Amer. Math. Soc. 144 (2016), 3231-3242.
[5] Z. Halasi and K. Podoski, Every coprime linear group admits a base of size two, Trans. Amer. Math. Soc. 368 (2016), 5857-5887.
[6] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-Verlag, Berlin, 1967.
[7] B. Oliver, Simple fusion systems over p-groups with abelian subgroup of index p: I, J. Algebra 398 (2014), 527-541.
[8] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
[9] R. A. Wilson, The odd-local subgroups of the Monster, J. Austral. Math. Soc. Ser. A 44 (1988), 1-16.

[^0]: *Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

