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Abstract

A finite group G with center Z is of central type if there exists a fully ramified character λ ∈ Irr(Z),
i. e. the induced character λG is a multiple of an irreducible character. Howlett–Isaacs have shown
that G is solvable in this situation. A corresponding theorem for p-Brauer characters was proved by
Navarro–Späth–Tiep under the assumption that p ̸= 5. We show that there are no exceptions for
p = 5, i. e. every group of p-central type is solvable. Gagola proved that every solvable group can
be embedded in G/Z for some group G of central type. We generalize this to groups of p-central
type. As an application we construct some interesting non-nilpotent blocks with a unique Brauer
character. This is related to a question by Kessar and Linckelmann.
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1 Introduction

For an irreducible character χ of a finite group G it is easy to show that χ(1)2 ≤ |G : Z| where
Z := Z(G) denotes the center of G (see [13, Corollary 2.30]). If equality holds for some χ ∈ Irr(G),
we say that G has central type. It was conjectured by Iwahori–Matsumoto and eventually proved by
Howlett–Isaacs [11], using the classification of finite simple groups (CFSG), that all groups of central
type are solvable (see also [23, Chapter 8]). Apart from this there are no restrictions on the structure
of groups of central type. In fact, Gagola [6, Theorem 1.2] has shown that every solvable group can be
embedded into G/Z for some group G of central type.

It is well-known that G is of central type if there exists some fully ramified character λ ∈ Irr(Z), i. e.
λG = eχ for some integer e and some χ ∈ Irr(G) (in this case χ(1)2 = e2 = |G : Z|; see [23, Lemma 8.2]).
This can be carried over to Brauer characters over an algebraically closed field of characteristic p > 0.
We call λ ∈ IBr(Z) fully ramified if λG = eφ for some integer e and φ ∈ IBr(G). In this situation,
Navarro–Späth–Tiep [24, Theorem A] proved (again relying on the CFSG) that G is solvable unless
p = 5. Using the structure of a minimal counterexample for p = 5 (as described in [24]), we are able
to eliminate this exceptional case.

Theorem 1. Let G be a finite group, Z ⊴ G and λ ∈ IBr(Z) be G-invariant. Suppose that λG = eφ
for some integer e and φ ∈ IBr(G). Then G/Z is solvable.
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Notice that Theorem 1 generalizes the Howlett–Isaacs theorem by choosing a prime which does not
divide |G|. Assuming that G is (p-)solvable, there exists a fully ramified Brauer character in Z = Z(G)
if and only if φ(1)2 = |G : Z|p′ for some φ ∈ IBr(G) where np′ denotes the p′-part of an integer n (see
Proposition 6 below). If this is the case, we call G a group of p-central type. Our second objective is to
carry over Gagola’s theorem as follows.

Theorem 2. Let G be a solvable group and p be a prime. Then there exists a group H of p-central
type such that G is isomorphic to a subgroup of H/Z(H).

Further properties of the group H in Theorem 2 are stated in Theorem 7 below. Theorems 1 and 2 are
proved in the next section.

In Section 3 we apply our results to p-blocks B of G with defect group D. The omnipresent nilpotent
blocks introduced by Broué–Puig [3] have a unique irreducible Brauer character, i. e. l(B) := |IBr(B)| =
1. We are interested in non-nilpotent blocks with l(B) = 1. These occur far less frequent, e. g. they
cannot be principal blocks. Indeed, it was speculated by Kessar and Linckelmann that all such blocks
are Morita equivalent to their Brauer correspondent in NG(D) (if D is abelian, this is equivalent to
Broué’s conjecture by [27, Theorem 3]). Using Külshammer’s reduction [17] and Theorem 1, all such
blocks should occur in solvable groups up to Morita equivalence.

Concrete examples can be build as follows: If H is a non-trivial p′-group of central type acting on
an elementary abelian p-group V with kernel Z(H), then G = V ⋊H has a non-nilpotent p-block B
with l(B) = 1 (see proof of Theorem 3 below). The smallest instance in terms of |G| is the unique
non-principal block of G ∼= C2

3 ⋊ D8
∼= SmallGroup(72, 23), which first appeared in Kiyota [15].

Kessar [14] has shown that every non-nilpotent block with l(B) = 1 and defect group C2
3 is Morita

equivalent to this block (see also [16]). Similar examples with abelian defect group were investigated
in [1, 2, 10, 12, 18]. All these blocks arise from groups with a normal abelian Sylow p-subgroup. As an
application of Theorem 2, we illustrate that non-nilpotent blocks with l(B) = 1 occur in arbitrarily
“complicated” solvable groups.

Theorem 3. Let p be a prime and l ≥ 1 an integer. Then there exists a solvable group G of p-length
lp(G) ≥ l such that G has a non-nilpotent p-block B of maximal defect with l(B) = 1.

On the other hand, we construct some non-solvable examples using the following recipe.

Theorem 4. Let b be a p-block of a finite group H such that l(b) is not a p-power (in particular
l(b) > 1). Suppose that there exists an automorphism group A ≤ Aut(H) such that A acts regularly on
IBr(b). Let Q be a p-group upon A acts non-trivially. Then the group G = (H ×Q)⋊A where A acts
diagonally has a non-nilpotent p-block B with l(B) = 1.

Finally we study lifts of Brauer characters. By the Fong–Swan theorem, every irreducible Brauer
character φ of a p-solvable group G is the restriction of an ordinary character to the set of p-regular
elements. This is no longer true in non-solvable groups. However, if IBr(B) = {φ}, then Malle–Navarro–
Späth [20] proved (using the CFSG) that φ still has such a lift. For nilpotent blocks with defect group
D, the number of these lifts is |D : D′|. In particular, φ has at least p2 lifts unless |D| ≤ p. For non-
nilpotent blocks, it was conjectured by Malle–Navarro [19] (in combination with Olsson’s conjecture)
that the number of lifts is strictly less than |D : D′|. Answering a question of G. Navarro, we construct
(non-nilpotent) blocks with IBr(B) = {φ} such that φ has a unique lift.
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2 Groups of p-central type

For a finite group G we denote the Fitting subgroup by F(G) and the layer by E(G) (the product of all
components of G). Then the generalized Fitting subgroup is a central product F∗(G) = F(G) ∗ E(G).
Our notation for characters follows Navarro’s book [21].

We need the following lemma from the theory of group extensions (see [8, Theorem 15.3.1]).

Lemma 5. Let N be a finite group, α ∈ Aut(N) and m ∈ N. Then the following assertions are
equivalent:

(1) There exists a finite group H such that N ⊴ H, H/N = ⟨hN⟩ ∼= Cm and α(x) = hxh−1 for all
x ∈ N .

(2) There exists n ∈ N such that α(n) = n and αm(x) = nxn−1 for all x ∈ N .

Proof of Theorem 1. By [24, Theorem A], we may assume that p = 5. Let G be a minimal counterex-
ample with respect to |G : Z|. Then by [24, Theorem 8.1 and its proof], the following holds:

(i) Z = Z(G) = F(G) is a cyclic {2, 3}-group.

(ii) E(G) = T1 ∗ . . . ∗ Tm where T1
∼= . . . ∼= Tm

∼= 6.A6 and Z(T1) = . . . = Z(Tm) ∼= C6. (In the
notation of [24] we have Ti = S′

i.)

(iii) G/F∗(G) is a 2-group, which permutes the Ti transitively. In particular, m = 2n for some n ≥ 0.

(iv) Every Sylow 2-subgroup of G is of central type.

Let N :=
⋂m

i=1NG(Ti) ⊴ G and a ∈ N . Suppose by way of contradiction that a /∈ F∗(G). Since
F∗(G) is self-centralizing and Out(Ti) ∼= C2

2 , we have a2 ∈ F∗(G). Let ti ∈ Ti and z ∈ Z such that
a2 = t1 . . . tmz. If a induces an inner automorphism on every Ti, then we have the contradiction
a ∈ F∗(G)CG(F

∗(G)) ≤ F∗(G). Thus, without loss of generality we may assume that a induces an
outer automorphism α of T1. Then α(t1) = t1 and α2 is the inner automorphism on T1 induced by
t1. Hence, by Lemma 5, there exists a group H with T1 ⊴ H and H/T1 = ⟨hT1⟩ ∼= C2 where h acts
as α on T1. Since Z(T1) = Z(E(G)) ≤ F(G) = Z(G), we have Z(Z1) ≤ Z(H). Moreover, H/Z(T1) is
isomorphic to one of the three subgroups of Aut(A6) of index 2, namely S6, PGL(2, 9) or the Mathieu
group M10. However, none of these three groups has a 6-fold Schur extension as can be checked with
GAP [7]. This contradiction shows that N = F∗(G).

Now the 2-group G/N is a transitive permutation group of degree m. Therefore, |G : N | is bounded
by the order of a Sylow 2-subgroup of the symmetric group Sm. This yields

w := |G : N | ≤ 2
∑n

i=1
m

2i = 21+2+...+2n−1
= 2m−1. (2.1)

Let P be a Sylow 2-subgroup of G and Z2 = P ∩ Z ≤ Z(P ). Observe that CP (P ∩ N) ≤ N . Since
T1 has Sylow 2-subgroups isomorphic to Q16, we have P ∩N ∼= Q16 ∗ . . . ∗Q16 ∗ Z2 and consequently
Z(P ) ≤ CP (P ∩ N) = Z2. Thus, Z(P ) = Z2. Choose vi ∈ Ti ∩ P of order 8 for i = 1, . . . ,m. Since
[Ti, Tj ] = 1 for i ̸= j, A := ⟨v1, . . . , vm⟩Z2 ≤ P is abelian with |P : A| = |G : N ||P ∩ N : A| = 2mw.
By part (iv), there exists χ ∈ Irr(P ) such that χ(1)2 = |P : Z2|. For a (linear) constituent µ ∈ Irr(A)
of the restriction χA we have χ(1) ≤ µP (1) = |P : A|. Hence,

23mw = |G : N ||N : Z|2 = |P : Z2| = χ(1)2 ≤ |P : A|2 = 22mw2

and w ≥ 2m. This contradicts (2.1).
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The original conjecture by Iwahori–Matsumoto has been generalized by J. F. Humphreys (as mentioned
in [9]) and independently by Navarro [22, Conjecture 11.1] to the following statement: Let N ⊴G and
λ ∈ Irr(N) be G-invariant such that all irreducible constituents of λG have the same degree. Then
G/N is solvable. This conjecture is still open, but the corresponding version for Brauer characters does
not hold. Indeed the Schur cover 6.A6 considered in the proof above is a counterexample for p = 5.

Next, we prove the equivalent characterization of groups of p-central type mentioned in the introduc-
tion.

Proposition 6. For a p-solvable group G with center Z := Z(G) the following assertions are equivalent:

(1) There exists some φ ∈ IBr(G) such that φ(1)2 = |G : Z|p′ .

(2) There exists a fully ramified Brauer character λ ∈ IBr(Z).

Proof. It has been shown in [24, Theorem 2.1] that (2) implies (1). The other implication was claimed
in [24] without proof. So assume that (1) holds and choose a constituent λ ∈ IBr(Z) of φZ . Since
G is p-solvable, there exists a p-complement H ≤ G. Since φ(1) has p′-degree, the restriction φH is
irreducible by [21, Theorem 10.9]. We may consider φH as an ordinary character. Let Z = Zp × Zp′

and λ = λp × λp′ where Zp is the Sylow p-subgroup of Z and λp ∈ Irr(Zp). Then φH(1)2 = |H : Zp′ |
and λH

p′ = eφH where e = φ(1) by [23, Lemma 8.2]. In particular, φH is the only character of H

lying over λp′ . Let φ′ ∈ IBr(G) be a constituent of λG. Then φ′
H is a multiple of φH . But since H is

a p-complement, φ′ is uniquely determined by φ′
H . It follows that φ′ is a multiple of φ, but then of

course φ′ = φ. Therefore, λ is fully ramified in G.

It has been remarked in [24] that Proposition 6 does not hold for the non-solvable group G = SL(2, 17)
when p = 17. Another counterexample with a different flavor is the direct product G = SL(2, 5)2 for
p = 5. Indeed, SL(2, 5) has Brauer characters of degree 3 and 4. So G has a Brauer character of degree
12.

Now we prove a strong version of Theorem 2.

Theorem 7. Let G be a solvable group and p be a prime. Then there exists a solvable H with the
following properties:

(i) Z := Z(H) has square-free p′-order.

(ii) There exists a faithful Brauer character φ ∈ IBr(H) with φ(1)2 = |H : Z|p′. In particular, H has
p-central type.

(iii) G is isomorphic to a subgroup of H/Z.

(iv) |G|, |H| and |Z| have the same prime divisors apart from p.

Proof. We follow closely Gagola’s construction [6, Theorem 1.2]. Since the trivial group is of p-central
type, we may assume that G ̸= 1. Let M ⊴ G such that q := |G : M | is a prime. By induction on
|G|, there exists a solvable group K and a faithful µ ∈ IBr(K) with µ(1)2 = |K : Z(K)|p′ fulfilling the
conclusion for M instead of G. Let

W := {(x1, . . . , xq) ∈ Z(K)q : x1 . . . xq = 1} ≤ Z(Kq)

and define U := Kq/W . Let z := (x1, . . . , xq)W ∈ Z(U). For g ∈ K and 1 ≤ i ≤ q we have

1 = [(1, . . . , 1, g, 1, . . . , 1)W, z] = (1, . . . , 1, [g, xi], 1, . . . , 1)W
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and thus [g, xi] = 1. This shows that Z(U) = Z(K)q/W ∼= Z(K) and U/Z(U) ∼= (K/Z(K))q. Since µ
is faithful, we have Op(K) = 1 = Op(U) by [21, Lemma 2.32].

Let τ := µ×. . .×µ ∈ IBr(Kq). Let λ ∈ IBr(Z(K)) be a constituent of µZ(K). Then for (x1, . . . , xq) ∈ W
we have τ(x1, . . . , xq) = τ(1)λ(x1 . . . xq) = τ(1) (note that Z(K) and W are p′-groups by induction).
Hence, W ≤ Ker(τ) by [21, Lemma 6.11]. Conversely, let x := (x1, . . . , xq) ∈ Ker(τ). Suppose that
xi /∈ Z(K). Since µ is faithful, we obtain |µ(xi)| < µ(1) and |τ(x)| < τ(1), a contradiction. Hence,
x ∈ Z(K)q and τ(1)λ(x1 . . . xq) = τ(x) = τ(1). Since µ and λ are faithful, it follows that x ∈ W .
Consequently, we may consider τ as a faithful Brauer character of U .

Case 1: q = p.
Let α ∈ Aut(Kp) be the shift automorphism such that α(x1, . . . , xp) := (xp, x1, . . . , xp−1). Clearly,
α(W ) = W and we may define H := U ⋊ ⟨α⟩. Let z := ((x1, . . . , xp)W,αi) ∈ Z(H) with 0 ≤ i < p. For
g ∈ K \ Z(K) we compute

1 = [(g, 1, . . . , 1)W, z] = (g, 1, . . . , 1, xi+1g
−1x−1

i+1, 1, . . . , 1)W

and thus i = 0 and x1, . . . , xp ∈ Z(K). Conversely, it is easy to see that Z(U) ≤ Z(H). Hence,
Z = Z(H) = Z(U) and

H/Z ∼= (U/Z(U))⋊ ⟨α⟩ ∼= (K/Z(K)) ≀ Cp.

Moreover, |G|, |H| and |Z| have the same prime divisors apart from p. By the universal embedding
theorem (see [4, Theorem 2.6A]), G is isomorphic to a subgroup of

M ≀ (G/M) ≤ (K/Z(K)) ≀ Cp
∼= H/Z.

Observe that τ is H-invariant. Hence, by Green’s theorem τ has a (unique) extension φ ∈ IBr(H) (see
[21, Theorem 8.11]). Then

φ(1)2 = τ(1)2 = µ(1)2p = |K/Z(K)|pp′ = |H : Z|p′

and H is of p-central type by Proposition 6.

Case 2: q ̸= p.
Here we need to modify the construction along the lines of [6]. Suppose first that |Z(K)| is not divisible
by q. Let Q := ⟨x⟩ ∼= Cq and ρ ∈ Irr(Q) be faithful. We replace (K,µ) by (K1, µ1) := (K ×Q,µ× ρ).
Then Z(K1) = Z(K) × Q has square-free p′-order and µ1(1)

2 = |K1 : Z(K1)|p′ . Since µ is faithful,
Op(K1) = Op(K) = 1. Suppose that (k, xi) ∈ Ker(µ1) with k ∈ K. Then |µ(k)| = µ(1). Thus,
k ∈ Z(K) and µ(k) is an integral multiple of a root of unity. On the other hand,

µ(k) = µ(1)/ρ(xi) ∈ Q|Z(K)| ∩Qq = Q,

where Qn denotes the n-th cyclotomic field. This implies µ(k) = ±µ(1). In the case µ(k) = −µ(1) we
have q ̸= 2 and therefore ρ(xi) = 1. This contradicts µ1(k, x

i) = µ1(1). Hence, µ(k) = µ(1), ρ(xi) = 1
and (k, xi) = 1. Thus, µ1 is faithful. From now on we may assume that q divides |Z(K)|.

Let z ∈ Z(K) be an element of order q and let Y := ⟨y⟩ ∼= Cq. It is easy to check that the map

α : U × Y → U × Y, ((x1, . . . , xq)W, yi) 7→ ((zixq, x1, x2, . . . , xq−1)W, yi)

is a well-defined automorphism of order q. We define H := (U × Y )⋊ ⟨α⟩. Let

h := ((x1, . . . , xq)W, yi, αj) ∈ Z(H).
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Then αj commutes with y and therefore, αj = 1. Moreover,

1 = [α, h] = (zixqx
−1
1 , x1x

−1
2 , . . . , xq−1x

−1
q )W

implies zi = 1 = yi. This shows that h ∈ Z(U). Conversely, it is easy to see that Z(U) ≤ Z(H) = Z.
Therefore, Z = Z(U) ∼= Z(K) has square-free p′-order and

|H : Z| = |U |q2

|Z(K)|
= q2|K : Z(K)|q. (2.2)

It follows that |G|, |H| and |Z| have the same prime divisors apart from p. A closer look shows that

H/Z ∼=
(
(K/Z(K))q ⋊ ⟨α⟩

)
× Y ∼= (K/Z(K) ≀ Cq)× Cq.

By the universal embedding theorem, G is isomorphic to a subgroup of M ≀ (G/M) ≤ K/Z(K) ≀ Cq ≤
H/Z.

Since α(y) = ((z, 1, . . . , 1)W, y) and µ(z) ̸= µ(1), the Brauer character τ × 1Y ∈ IBr(U × Y ) is not
invariant under α. By Clifford’s theorem, φ := (τ × 1Y )

H ∈ IBr(H) and Ker(φ) ≤ Y ∩ α(Y ) = 1.
Moreover,

φ(1)2 = τ(1)2q2 = µ(1)2qq2 = |K : Z(K)|qp′q
2 (2.2)

= |H : Z|p′ .

3 Applications to blocks

For N ⊴ G and λ ∈ IBr(N) we define IBr(G|λ) as the set of irreducible constituents of λG as usual.
Recall from [21, Corollary 8.7] that φ ∈ IBr(G|λ) if and only if λ is a constituent of φN .

Proof of Theorem 3. We may assume that l ≥ 2. By Theorem 7, there exists a solvable group H of
p-central type with lp(H) ≥ l and Z := Z(H) a p′-group. Let H/Z act faithfully on an elementary
abelian p-group V (for instance, the regular module) and define G := V ⋊ H. Then Z = Op′(G).
Let λ ∈ IBr(Z) be fully ramified in H. Since IBr(G) = IBr(H), λ is also fully ramified in G. By
a theorem of Fong (see [21, Theorem 10.20]), there exists a block B of G of maximal defect with
IBr(B) = IBr(G|λ). In particular, l(B) = 1. Let (V, b) be a B-subpair, i. e. b is a Brauer correspondent
of B in CG(V ) = V × Z. Then IBr(b) = {1V × λ} and NG(V, b) = G. Since G/CG(V ) ∼= H/Z is not a
p-group (as lp(H/Z) = lp(H) ≥ l ≥ 2), B is not nilpotent.

We give a concrete example starting with H := SmallGroup(54, 8) ∼= 31+2
+ ⋊C2 of 2-central type. This

group acts on V ∼= C4
2 and

G := V ⋊H ∼= SmallGroup(864, 3996)

has 2-length 2. Moreover, G has a 2-block B of maximal defect and l(B) = 1. We remark that B covers
a non-principal block of V ⋊ 31+2, which was investigated in [18].

Proof of Theorem 4. Let b0 be the principal p-block of Q. Then b⊗ b0 is a G-invariant block of H ×Q.
By [21, Corollary 9.21], B := (b ⊗ b0)

G is the unique block covering b ⊗ b0. Since A acts regularly
on IBr(b ⊗ b0), Clifford theory implies that l(B) = 1. Note that (Q, b ⊗ b0) is a B-subpair. Since,
G/HQ ∼= A is not a p-group (as |A| = l(b) is not a p-power), B cannot be nilpotent.
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It is not so easy to find groups H with blocks b where Aut(H) acts transitively on IBr(b). The
quasisimple groups H with the desired property were investigated and partially classified in [20].
For alternating and sporadic groups, b must have defect 1. Here, l(b) divides p− 1 and one can choose
A ∼= Cl(b) and Q ∼= Cp. The smallest case, p = 3 and H = SL(2, 5), leads to the group

G := (H × C3)⋊ C2 = H ⋊ S3 = SmallGroup(720, 414)

with a non-nilpotent 3-block B with defect 2 and l(B) = 1. The same construction works with the
simple group H = PSL(2, 11). Similarly examples can be obtained by wreath products like

G = (H ×H)⋊ ⟨(α, 1)σ⟩ ∼= H2 ⋊ C4 ≤ Aut(H2)

where α ∈ Aut(H) and σ interchanges the two copies of H. By Kessar [14], such blocks are Morita
equivalent to blocks of solvable groups. For p = 5, one can take H = PSL(2, 19) (there is certainly an
infinite family). As long as we take blocks b of H with cyclic defect group and conjugate Brauer char-
acters in Aut(H), the Brauer tree of b is a star (otherwise there is no graph automorphism permuting
the Brauer characters). Then b is a so-called inertial block, i. e. b is basically Morita equivalent to its
Brauer correspondent in the normalizer of a defect group (see [25]). The same must be true for the
block b⊗Q of H ×Q. Now a theorem of Zhou [26, Corollary] implies that B is inertial. In particular,
B is Morita equivalent to a block of a solvable group.

In general, the block of H ⋊A covering b is often nilpotent. In this case, a theorem of Puig [25] shows
that b is inertial.

There are examples where b has non-cyclic defect groups. For p = 2, we start with H := PSU(3, 5)
where b has defect group C2

2 and l(b) = 3 (b is Morita equivalent to the principal block of S4). We take
A ∼= C3 and Q = C2

2 . Then G := H ⋊A4 has a 2-block with defect group C4
2 . By Eaton [5] this block

is again Morita equivalent to a block of a solvable group.

We now construct a block B with IBr(B) = {φ} such that φ has a unique lift. If a group H acts on a
group V , we denote the stabilizer of v ∈ V in H by Hv.

Theorem 8. Let H be a p′-group of central type. Suppose that H/Z(H) acts faithfully on an elementary
abelian p-group V such that |H : Hv| > |Hv : Z(H)| for all v ∈ V \{1}. Then G := V ⋊H has a p-block
B such that IBr(B) = {φ} and φ has a unique lift to Irr(B).

Proof. Let Z := Z(H) and choose a fully ramified character λ ∈ Irr(Z). Let λH = eφ for some
φ ∈ Irr(H). By Fong’s theorem, there exists a block B of G such that Irr(B) = Irr(G|λ) and IBr(B) =
IBr(G|λ). We may consider the inflation of φ as an ordinary character and as a Brauer character of B.
It suffices to show that every χ ∈ Irr(B)\{φ} has degree χ(1) > φ(1) = e. There exists some non-trivial
character µ ∈ Irr(V ) such that µ × λ is a constituent of χV Z . Since H is a p′-group, the actions of
H on V and on Irr(V ) are permutation-isomorphic (see [23, Corollary 2.12]). Thus, by Clifford theory
and by the hypothesis we have

χ(1) ≥ |G : Gµ×λ| = |H : Hµ| > |Hµ : Z|.

Multiplying the last inequality by |H : Hµ| further yields |H : Hµ| >
√
|H : Z| = e. Hence, χ(1) > φ(1)

as desired.

The property |H : Hv| > |Hv : Z(H)| in Theorem 8 is fulfilled whenever H/Z(H) acts semiregularly on
V , i. e. Hv = 1 for all v ∈ V \ {1}. In this case, V ⋊ (H/Z(H)) is a Frobenius group with complement
H/Z(H). In particular, the Sylow subgroups of H/Z(H) are cyclic or quaternion groups. But then
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H/Z(H) has trivial Schur multiplier and there is no group H of central type. Hence, |H/Z(H)| is a
product of at least four (possibly equal) primes (keeping in mind that |H/Z(H)| is a square). Suitable
groups H can be found with GAP [7]. For instance, H = SmallGroup(128, 144) is of central type and
acts on V ∼= C4

5 such that V ⋊ (H/Z(H)) ∼= PrimitiveGroup(625, 166) with the desired property.

The condition in Theorem 8 can be relaxed by taking the degrees of the characters in Hµ (where
µ ∈ Irr(V )) into account. This leads to a smaller example where H ∼= SmallGroup(128, 138), V ∼= C4

3

and V ⋊ (H/Z(H)) ∼= PrimitiveGroup(81, 33). An example for p = 2 is given by

H/Z(H) ∼= IrredSolMatrixGroup(18, 2, 6, 163) ∼= SmallGroup(81, 9)

acting on V ∼= C18
2 .

We use the opportunity to construct yet another unusual class of blocks. Let Z ⊴H and λ ∈ Irr(Z). A
theorem of Gallagher asserts that |Irr(H|λ)| equals the number of so-called λ-good conjugacy classes
of H/Z (see [23, Section 5.5]). If λ is fully ramified, then 1 is the unique λ-good conjugacy class. One
may ask when the opposite situation occurs, where all conjugacy classes of H/Z are good. This is
holds for instance whenever λ extends to G (then |Irr(H|λ)| = k(H/Z) by Gallagher’s theorem). But
the converse is not true. For instance, H := SmallGroup(128, 731) has a subgroup Z ≤ Z(H) ∩H ′ of
order 2 such that k(H) = 2k(H/Z). The non-trivial character of Z cannot extend to H since Z ≤ H ′.
Now H/Z acts non-trivially on V ∼= C6

3 . It turns out that the solvable group G := V ⋊ H has two
3-blocks B0 and B1 with defect group V and inertial quotient H/Z such that k(B0) = k(B1) = 84 and
l(B0) = l(B1) = 16 (B0 is the principal block of G). However, B0 and B1 are not Morita equivalent,
because they have distinct decomposition matrices (the former matrix contains a 4, but the latter does
not).

Acknowledgment

The work on this paper started during a research stay at the University of Valencia in February 2023. I
thank Gabriel Navarro and Alexander Moretó for the great hospitality received there. Theorem 1 was
initiated by a question of Britta Späth at the Oberwolfach workshop “Representations of finite groups”
(ID 2316) in April 2023. I further thank Radha Kessar for some helpful discussions on this paper. This
paper is supported by the German Research Foundation (SA 2864/4-1).

References

[1] D. Benson, R. Kessar and M. Linckelmann, On blocks of defect two and one simple module, and
Lie algebra structure of HH1, J. Pure Appl. Algebra 221 (2017), 2953–2973.

[2] D. J. Benson and E. L. Green, Non-principal blocks with one simple module, Q. J. Math. 55 (2004),
1–11.

[3] M. Broué and L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117–128.

[4] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, Vol. 163,
Springer-Verlag, New York, 1996.

[5] C. W. Eaton, Morita equivalence classes of blocks with elementary abelian defect groups of order
16, arXiv:1612.03485v4.

8

https://arxiv.org/abs/1612.03485v4


[6] S. M. Gagola, Characters fully ramified over a normal subgroup, Pacific J. Math. 55 (1974), 107–
126.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.12.2 ; 2022, (http:
//www.gap-system.org).

[8] M. Hall, The theory of groups, The Macmillan Co., New York, 1959.

[9] R. J. Higgs, Finite groups with irreducible projective representations of large degree, Comm. Alge-
bra 39 (2011), 3897–3904.

[10] M. Holloway and R. Kessar, Quantum complete rings and blocks with one simple module, Q. J.
Math. 56 (2005), 209–221.

[11] R. B. Howlett and I. M. Isaacs, On groups of central type, Math. Z. 179 (1982), 555–569.

[12] X. Hu, Blocks with abelian defect groups of rank 2 and one simple module, J. Algebra 559 (2020),
496–509.

[13] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.

[14] R. Kessar, On blocks stably equivalent to a quantum complete intersection of dimension 9 in
characteristic 3 and a case of the Abelian defect group conjecture, J. Lond. Math. Soc. (2) 85
(2012), 491–510.

[15] M. Kiyota, On 3-blocks with an elementary abelian defect group of order 9, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 31 (1984), 33–58.

[16] B. Külshammer, P. Landrock and S. Reinhardt, Algebras related to a class of 3-blocks of defect 2,
Int. Electron. J. Algebra 23 (2018), 1–24.

[17] B. Külshammer, On p-blocks of p-solvable groups, Comm. Algebra 9 (1981), 1763–1785.

[18] P. Landrock and B. Sambale, On centers of blocks with one simple module, J. Algebra 472 (2017),
339–368.

[19] G. Malle and G. Navarro, Blocks with equal height zero degrees, Trans. Amer. Math. Soc. 363
(2011), 6647–6669.

[20] G. Malle, G. Navarro and B. Späth, On blocks with one modular character, Forum Math. 30
(2018), 57–73.

[21] G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note
Series, Vol. 250, Cambridge University Press, Cambridge, 1998.

[22] G. Navarro, Problems in character theory, in: Character theory of finite groups, 97–125, Contemp.
Math., Vol. 524, Amer. Math. Soc., Providence, RI, 2010.

[23] G. Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Math-
ematics, Vol. 175, Cambridge University Press, Cambridge, 2018.

[24] G. Navarro, B. Späth and P. H. Tiep, On fully ramified Brauer characters, Adv. Math. 257 (2014),
248–265.

[25] L. Puig, Nilpotent extensions of blocks, Math. Z. 269 (2011), 115–136.

[26] Y. Zhou, On the p′-extensions of inertial blocks, Proc. Amer. Math. Soc. 144 (2016), 41–54.

[27] A. Zimmermann, Derived equivalences of orders, in: Representation theory of algebras (Cocoyoc,
1994), 721–749, CMS Conf. Proc., Vol. 18, Amer. Math. Soc., Providence, RI, 1996.

9

http://www.gap-system.org
http://www.gap-system.org

	Introduction
	Groups of p-central type
	Applications to blocks

