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Abstract

We bound the order of a finite p-group in terms of its exponent and p-rank. Here the p-rank is the maximal
rank of an abelian subgroup. These results are applied to defect groups of p-blocks of finite groups with given
Loewy length. Doing so, we improve results in a recent paper by Koshitani, Külshammer and Sambale. In
particular, we determine possible defect groups for blocks with Loewy length 4.
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1 Exponent and p-rank

Let P be a finite p-group for a prime p. Then the exponent of P is the smallest positive integer e such that
xe = 1 for all x ∈ P . Moreover, the p-rank of P is the maximal rank of an abelian subgroup of P . It is often
useful to bound the order of P if its exponent and p-rank are given. Most of our notation is standard (see e. g.
[7]). We denote a cyclic group of order n ≥ 1 by Cn. Moreover, define Pm = P × . . . × P (m copies). We use
the abbreviations Ω(P ) := Ω1(P ) and f(P ) := f1(P ) for a finite p-group P .

Theorem 1.1 (Laffey [11]). Let P be a finite p-group with exponent pe, and let r be the rank of a maximal
elementary abelian normal subgroup of P . Then |P | ≤ pk where

k :=

{
re+

(
r
2

)
+ r2 if p = 2,

re+
(
r
2

)
if p > 2.

Corollary 1.2. Let P be a finite p-group with exponent pe and p-rank r. If p > 2, then |P | ≤ pre+(r
2).

For p = 2 we improve Theorem 1.1 as follows.

Theorem 1.3. Let P be a 2-group with exponent 2e, and let r be the rank of a maximal elementary abelian
normal subgroup of P . Then |P | ≤ 2k where

k := r(e+ 1) +

(
r

2

)
− 1

2

(
|blog2(r)c+ 1− e|+ blog2(r)c+ 1− e

)
. (1)

Proof. Let E be a maximal elementary abelian normal subgroup of P of rank r. We consider C := CP (E)EP .
Choose a maximal abelian normal subgroup A of exponent at most 4 of P which contains E. Then obviously,
CP (A) ⊆ C. Moreover, Ω(A) = E. By a result of Alperin (see Satz III.12.1 in [7]) we have Ω2(CP (A)) = A ⊆
Z(CP (A)). Lemma 1 in [11] implies |CP (A)| ≤ 2re. Let x ∈ C. Then x acts trivially on E and thus also on
A/E. It follows that x2 ∈ CP (A) and C/CP (A) is elementary abelian. In particular, Φ(C) ⊆ CP (A). Since
Φ(C) = f(C), we also have Φ(C) ⊆ Ωe−1(CP (A)). Corollary 1 in [10] shows that Ωe−1(CP (A)) has exponent
at most 2e−1. Hence, again by Lemma 1 in [11] we obtain |Φ(C)| ≤ 2r(e−1).
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Now we count the involutions in C. Let M be the set of all elementary abelian subgroups of C of rank r + 1
which contain E (possiblyM = ∅). For an involution x ∈ C \ E we have 〈E, x〉 ∈ M. Moreover, two distinct
elements of M intersect in E. Since E is maximal, the action of G on M by conjugation has no fixed points.
In particular, |M| is even. We conclude that the number γ of involutions in C satisfies γ ≡ 2r − 1 (mod 2r+1).
Now a result of MacWilliams (see Theorem 37.1 in [2]) shows that |C : Φ(C)| ≤ 22r. Hence,

|C| = |Φ(C)||C : Φ(C)| ≤ 2r(e−1)+2r = 2r(e+1).

Now we consider P/C ≤ Aut(E) ∼= GL(r, 2). Let S ≤ GL(r, 2) be the group of upper unitriangular matrices.
Then |S| = 2(r

2) and S ∈ Syl2(GL(r, 2)). In particular, P/C ∼= S0 ≤ S. By Satz III.16.5 in [7],

2dlog2(r)e = exp(S) ≤ exp(S0)|S : S0| ≤ 2e|S : S0|.

This gives |S0| ≤ 2(r
2)+e−dlog2(r)e whenever dlog2(r)e ≥ e. Now assume r = 2e. Let α ∈ S be a Jordan block of

size r. Suppose that there is x ∈ P such that xC corresponds to α. Then |〈x〉| = 2e and 〈x〉 ∩C = 1. Moreover,
α has minimal polynomial (X + 1)r. In particular, 1 + α + α2 + . . . + αr−1 6= 0. Choose a ∈ E such that
(1 + α+ α2 + . . .+ αr−1)(a) 6= 1. Then

(ax)2
e

= a · xax−1 · x2ax−2 · . . . · xr−1ax1−r · x2
e

6= 1.

This contradiction shows that |S0| ≤ 2(s
2)+e−blog2(r)c−1 whenever blog2(r)c+ 1 ≥ e. The result follows.

The last summand in Eq. (1) is only relevant if r is large compared to e. Since this will not happen in the
applications in the next section, we note the following consequence.

Corollary 1.4. Let P be a finite 2-group with exponent 2e and 2-rank r. Then |P | ≤ 2r(e+1)+(r
2).

The analysis of the subgroup S ∈ Sylp(GL(r, p)) in the proof of Theorem 1.3 also applies to odd primes p. In
fact one may count the matrices α ∈ S such that (α − 1)p

e−1 = 0. Unfortunately, these matrices do not form
a subgroup. However, the Jordan form of such a matrix consists only of blocks of size ≤ pe − 1. In the proof
of Theorem 1.3, |S0| can be bounded by the order of the largest subgroup T ≤ S such that (α − 1)p

e−1 = 0

for all α ∈ T . Computer calculations suggest that this is a better bound than p(
r
2)+e−blogp(r)c−1. For example if

p = e = 2 and r = 6, one gets |S0| ≤ 212 instead of |S0| ≤ 214.

In the following we improve the corollaries above for special cases which will play an important role in the
second part of the paper.

Let P be a 2-group of 2-rank r and exponent 2e. If r = 1, then Corollary 1.4 shows that |P | ≤ 2e+1 (as is
well-known), and this bound is assumed by the quaternion group. If e = 1, then P is elementary abelian and
satisfies |P | ≤ 2r. In case r = 2, Corollary 1.4 implies |P | ≤ 22e+3. This can be slightly improved.

Proposition 1.5. Let P be a 2-group with exponent 2e and 2-rank r ≤ 2. Then |P | ≤ 2r(e+1).

Proof. By the remark above, we may assume that r = 2 and e ≥ 2. Obviously, a metacyclic group of exponent
2e has order at most 22e. Hence, we may assume that P is not metacyclic. By Theorem 50.1 in [3] there exists
a metacyclic normal subgroup N E P such that CP (Ω2(N)) ≤ N . If |P : N | ≤ 4, then we are done. Thus, by
way of contradiction we may assume that P/N ∼= D8 and

N = 〈a, b | a2
e

= b2
e

= 1, bab−1 = a1+2i〉 ∼= C2e o C2e

where i ∈ {2e−1, 2e} (see Theorem 50.1 in [3]). Observe that C2
2e−1
∼= Ωe−1(N) = Φ(N) ⊆ Z(N). Let x ∈ P such

that x2 /∈ N . Suppose that x acts trivially on Ω(N) ∼= C2
2 by conjugation. Then it is easy to see that x must

also act trivially on Ω2(N)/Ω(N) ∼= C2
2 . Then however, x2 ∈ CP (Ω2(N)) ≤ N . This contradiction shows that

CP (Ω(N)) < P . We can find an element y ∈ P \ CP (Ω(N)) such that y2 ∈ N . Since Ω(N) = fe−1(N), y acts
non-trivially on N/Φ(N). In particular, 〈N, y〉/Φ(N) ∼= D8. Hence, let us choose an element z ∈ 〈N, y〉 such
that z2 ∈ N \Φ(N). Since all elements in N \Φ(N) have order 2e, we derive the contradiction |〈z〉| = 2e+1.
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Now we turn to the case r = 3. Here Corollary 1.4 yields |P | ≤ 23e+6. This can be improved for e = 2 as
follows.

Proposition 1.6. Let P be a 2-group with exponent 4 and 2-rank 3. Then |P | ≤ 29.

Proof. Let E be a maximal elementary abelian normal subgroup of P . If E has rank at most 2, then the claim
follows from Theorem 1.3. Hence, we may assume that E has rank 3. Suppose that |P | ≥ 29. Let x ∈ P \ E
be an involution. Then 〈E, x〉 is a group of order 24 with more than 7 involutions. Obviously, 〈E, x〉 lies in a
subgroup of P of order 29. However, using GAP [5] one can show that all groups of order 29 with exponent 4 and
2-rank 3 have precisely 7 involutions. This contradiction shows that all involutions of P lie in E. In particular
Φ(P ) = f(P ) ⊆ E. Now Theorem 37.1 in [2] implies |P | = 29.

By the results above we raise the following question:

Question: Let P be a 2-group with exponent 2e and 2-rank r. Is it true that |P | ≤ 2r(e+1)?1,

A direct product of quaternion groups shows that the bound would be sharp. Moreover, a counterexample must
have at least 213 elements.

Next we turn to odd primes. Here a group of p-rank 1 is cyclic and therefore, Corollary 1.2 is optimal in this
case. By Lemma 3.2 in [9], Corollary 1.2 is also optimal for e = 1, p ≥ 7 and r ≤ 3. Now let p = 3 and consider
the group

P := 〈x, y, a | x3
e

= y3
e

= a3 = [x, y] = 1, axa−1 = xy−3, aya−1 = xy−2〉

of order 32e+1. Since a acts non-trivially on 〈x3e−1

, y3
e−1〉, it follows that P has 3-rank 2. Moreover, P/〈x3, y3〉

has exponent 3 and P has exponent 3e. Hence, Corollary 1.2 is optimal for p = 3 and r = 2. On the other hand,
Blackburn’s classification of the p-groups with p-rank 2 (see Satz III.12.4 in [7]) implies that Corollary 1.2 is
not optimal for r = 2 ≤ e and p ≥ 5. For the 3-groups of 3-rank 3 we give another improvement.

Lemma 1.7. Let P be a group of order 36, exponent 9 and 3-rank 3 such that Z(P ) has rank 3. Then Ω(P ) =
f(P ) ∼= P/f(P ) ∼= C3

3 . Let C2
3
∼= A ≤ Aut(P ). Then A does not act faithfully on Ω(P ).

Proof. The result can of course be achieved by computer, but we prefer to give a theoretical argument. Since
P has 3-rank 3 and Z(P ) has rank 3, we conclude that C3

3
∼= Ω(P ) ⊆ Z(P ). Obviously, P/Ω(P ) has exponent 3.

By Lemma C in [13], we have P/Ω(P ) ∼= C3
3 . In particular, P has class at most 2. By Satz III.10.2 in [7], P is

regular and thus Ω(P ) = f(P ). Write P = 〈x, y, z〉 such that Ω(P ) = 〈x3, y3, z3〉. Let A = 〈a, b〉. Assume that
A acts faithfully on Ω(P ). Since Aut(Ω(P )) ∼= GL(3, 3), we may regard A as a subgroup of upper unitriangular
matrices. In particular a(x3) = b(x3) = x3. Moreover, we may assume that a(y3) = y3 and a(z3) = x3z3 (i. e. 〈a〉
represents the center of the group of upper unitriangular matrices). Hence there are elements αx, αy, αz ∈ Ω(P )
such that ax = xαx, ay = yαy and az = xzαz. Since a3 = 1, it follows that

z = a3z = a2(xzαz) = a(xαxxzαz
aαz) = xαx

aαxxαxxzαz
aαz

a2αz = x3α2
x
aαxz

This shows that aαx = αxx
−3. Therefore, αx ≡ z−3 (mod 〈x3, y3〉). Now we consider b.

Suppose first that bx = xβx and by = xyβy for some βx, βy ∈ Ω(P ). Then

xyβy
bαy = b(yαy) = bay = aby = a(xyβy) = xαxyαy

aβy.

This gives the contradiction
〈x3, y3〉 3 bαyα

−1
y = αx

aβyβ
−1
y ∈ z−3〈x3〉.

Hence, we may assume that the action of b on P/Ω(P ) is given by bx = xβx, by = yβy and bz = yzβz for some
βx, βy, βz ∈ Ω(P ). This yields

xβx
bαx = b(xαx) = bax = abx = a(xβx) = xαx

aβx

1Shortly after this question appeared in the 19th edition of the Kourovka Notebook, Avinoam Mann pointed out that the answer
is “no” according to [A. Y. Ol’shanskii, The number of generators and orders of Abelian subgroups of finite p-groups, Math.
Notes 23 (1978), 183–185]
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and
〈y3〉 3 bαxα

−1
x = aβxβ

−1
x ∈ 〈x3〉.

Since αx ≡ z−3 (mod 〈x3, y3〉), we derive the contradiction bαxα
−1
x 6= 1.

Proposition 1.8. Let P be a 3-group with exponent 9 and 3-rank 3. Then |P | ≤ 37.

Proof. Let E be a maximal elementary abelian normal subgroup of P . By Theorem 1.1, we may assume that
E has rank 3. Consider C := CP (E). By a result of Alperin (see Satz III.12.1 in [7]), Ω(C) = E ⊆ Z(C). Thus,
by Lemma 1 in [11] we have |C| ≤ 36. Since P/C acts faithfully on E, we obtain |P/C| ≤ 33.

Suppose first that |C| = 36. By way of contradiction, let us assume that there is a subgroup Q ≤ P such
that C ≤ Q and |Q : C| = 9. Since Q/C acts faithfully on E, we obtain Q/C ∼= C2

3 . By Lemma 1.7 we have
E = Ω(C) = f(C). Hence, Q := Q/E also acts faithfully on C := C/E. Assume first that Q has 3-rank 4.
Then there exists an elementary abelian normal subgroup K = K/E of Q such that |K ∩ C| = 9. Hence, we
find elements a, b ∈ K \ C such that Q = 〈a, b, C〉 and [a, b] ∈ Ω(C) ⊆ Z(C). Since a3, b3 ∈ Ω(C) ⊆ Z(C), it
follows that 〈a, b〉 induces an elementary abelian subgroup A ≤ Aut(C) of order 9. However, this contradicts
Lemma 1.7.

Therefore, we may assume that Q has 3-rank 3. Since Q has exponent 3, one can show by computer that
there is only one possible isomorphism type for Q. One can show further that Q is a semidirect product of C
and a subgroup of type C2

3 . Thus, we find elements a, b ∈ Q \ C such that a3, b3, [a, b] ∈ Ω(C), and we get a
contradiction as above.

For the remainder of the proof we can assume that |C| = 35 and |P | = 38. A computer calculations shows that
there are only three possible isomorphism types for C, namely C2

9 × C3, (C9 o C9) × C3 and a group of type
(C9 ×C3) oC9. Let us consider the last case. Let A ∈ Syl3(Aut(C)). Then one can show that the kernel of the
canonical map A→ Aut(Ω(C)) has index 3. However, this is impossible, since |P/C| = 27. Hence, there are two
remaining isomorphism types for C. We may choose a maximal subgroup Q ≤ P such that C ≤ Q and Z(Q)
is cyclic (choose a suitable action on Ω(C)). Suppose that Q contains a subgroup Q1 of order 36 such that the
rank of Z(Q1) is 3. Then there must be another subgroup Q1 6= Q2 ≤ Q such that Q1

∼= Q2, because otherwise
Q1 would be characteristic in Q and normal in P and we were back to the first case of the proof by setting
E := Ω(Q1). Therefore, Q satisfies the following properties:

• Q has order 37, exponent 9, 3-rank 3 and Z(Q) is cyclic,

• there exists a normal subgroup C E Q such that CQ(C) ⊆ C and C is isomorphic to C2
9 × C3 or to

(C9 o C9)× C3,

• for every subgroup Q1 ≤ Q of order 36 such that the rank of Z(Q1) is 3, there exists a subgroup Q1 6=
Q2 ≤ Q such that Q2

∼= Q1.

A computation yields that there are precisely 68 isomorphism types of groups with these three properties. Using
the GrpConst package in GAP we can determine all extensions of these groups by C3. It follows that P is not
among them and thus cannot exist.

There are in fact 3-groups of order 37, exponent 9 and 3-rank 3. The results of the present section give the
impression that there is no uniform bound on the order of a p-group in terms of exponents and p-ranks which
is optimal for all odd primes.

2 Applications

In this section we consider p-blocks of finite groups over algebraically closed fields of characteristic p. The
following result improves Theorem 2.3 in [9].

Theorem 2.1. Let B be a p-block of a finite group G with defect d and Loewy length λ > 1. Then

d ≤

(λ− 1)(1 + blogp(λ− 1)c) +
(
λ
2

)
if p = 2,

(λ− 1)blogp(λ− 1)c+
(
λ
2

)
if p > 2.
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Proof. The result follows from Lemma 2.2 in [9] and Corollaries 1.2 and 1.4 above.

The p-blocks with Loewy length at most 3 are determined in [14] (see also Proposition 3.1 in [9]). In [9] we started
the investigation of p-blocks with Loewy length 4. Using the results above we give more precise information
now.

Proposition 2.2. Let B be a p-block of a finite group with Loewy length 4 and defect d. Then

d ≤


9 if p = 2,

7 if p = 3,

5 if p = 5,

6 if p ≥ 7.

Proof. For p ∈ {2, 3} apply Lemma 2.2 in [9] in combination with Propositions 1.6 and 1.8 above. For p ≥ 5 the
claim was already shown in [9] (see remark after Proposition 3.3).

In case p ≥ 5 we have given a short list of possible defect groups in the situation of Proposition 2.2 (see
Proposition 3.3 and Corollary 3.5 in [9]). For p = 5 (respectively p ≡ 1 (mod 5), p ≡ 1 (mod 7)) there are
at most 10 (respectively 11, 11) isomorphism types, and for the remaining primes p ≥ 7 we have at most 12
possible isomorphism types. Now, using the “Small Groups Library” we can do the same for the remaining
primes p = 2, 3. In order to reduce the number of 2-groups we apply the theory of fusion systems (see e. g.
[1]).

Lemma 2.3. Let f(n) be the number of 2-groups of order 2n, exponent 4 and 2-rank at most 3 which admit
only trivial fusion systems. Then f(6) = 30, f(7) = 104, f(8) = 496 and f(9) = 933.

Proof. Let P be a 2-group of order 2n which admits only the trivial fusion system. Then by Alperin’s Fusion
Theorem (see Theorem I.3.5 in [1]), Aut(P ) is a 2-group and there are no candidates for essential subgroups.
We list some necessary condition on an essential subgroup Q ≤ P for a fusion system F . Since Q is F-centric
we have CP (Q) ⊆ Q. Since O2(OutF (Q)) = 1, it follows that NP (Q)/Q ∈ Syl2(OutF (Q)) acts faithfully on
Q/Φ(Q). If Q is generated by at most 5 elements, we have |NP (Q) : Q| ≤ 4 and the possible isomorphism types
of OutF (Q) are described in Corollary 6.12 and Lemma 6.13 in [16]. If Q happens to be normal in P , we find a
non-trivial constrained fusion system NF (Q) on P . By Theorem III.5.10 in [1], NF (Q) is the fusion system of a
group of order |Q||OutF (Q)|. Usually we can check by computer if there are groups with the desired properties.

These properties suffice to determine 30 groups of order 26 which admit only the trivial fusion system. On the
other hand, we can construct non-trivial fusion systems on the remaining groups of order 26, exponent 4 and
2-rank at most 3.

For n = 7, 8 we find 104 respectively 496 groups with the given constraints. It turns out that there are no
non-trivial fusion systems if Aut(P ) is a 2-group. Now we will show that this is also true for n = 9. A computer
calculation (as in Proposition 1.6) shows that all groups P of order 29, exponent 4 and 2-rank 3 satisfy C3

3
∼=

Ω(P ) ⊆ Z(P ). Let Q ≤ P be a candidate for an essential subgroup. Then

P ′ ⊆ Φ(P ) = f(P ) ⊆ Ω(P ) ⊆ Z(P ) ⊆ CP (Q) ⊆ Q

and Q E P . Hence, Q cannot be generated by three or less elements (otherwise |NP (Q) : Q| = |P : Q| > 2).
Now suppose that Q is generated by four elements. Then Φ(Q) < Ω(P ), since otherwise P/Q acts trivially
on Q/Φ(Q). Therefore, |Q| ≤ 26 and |P : Q| ≥ 23. However, this contradicts Lemma 6.13 in [16]. Thus we
have shown that Q cannot be generated by four elements. Suppose next that Q is generated by five elements.
Then again Φ(Q) < Ω(P ) and |Q| ∈ {26, 27}. Since Φ(Q) < Z(P ) ⊆ Z(Q) < Q, we have a characteristic
subgroup lying between Φ(Q) and Q. In case Z(Q) = Ω(P ) we have |Z(Q) : Φ(Q)| ≤ 4. Hence, OutF (Q)
must act non-trivially on Q/Z(Q) = Q/Ω(P ). However, P/Q ≤ OutF (Q) acts trivially on Q/Ω(P ). It follows
that Ω(P ) < Z(Q). However, one can show that there are no groups Q with the given properties such that
|Z(Q)| ≥ 24. We conclude that Q is not generated by five or less elements. If Q is generated by more elements,
one can show with GAP that |Z(Q)| ≤ 4. This contradicts Ω(P ) ⊆ Z(P ) ⊆ Z(Q). In summary, we proved that
there are only trivial fusion systems on a group P of order 29, exponent 4 and 2-rank 3, if and only if Aut(P )
is a 2-group.
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Lemma 2.4. Let B be a 2-block of a finite group with defect group D such that Z(D) is isomorphic either to
C4 × C2, C2

2 × C4 or to C2
4 × C2. Then B does not have Loewy length 4.

Proof. Let (D, b) be a maximal Brauer pair of B. Let T := NG(D, b)/CG(Z(D)). Then we have |T | ∈ {1, 3}. In
case T = 1 the result follows from Corollary 2.7 in [9]. Now let |T | = 3. Then Z(D) ∼= C2

2×C4 or Z(D) ∼= C2
4×C2.

One can show by computer that the Loewy length of the centralizer algebra F Z(D)T is at least 5 where F is
an algebraically closed field of characteristic 2. Hence, again the claim follows from Corollary 2.7 in [9].

Proposition 2.5. Let B be a 2-block of a finite group with Loewy length 4 and defect group D. Then there are
at most 196 possible isomorphism types for D and three of them are known to occur, namely C4, C3

2 and D8.

Proof. There are 1799 2-groups of exponent at most 4 and 2-rank at most 3. It is known that the groups C4, C3
2

and D8 do actually occur as defect groups of 2-blocks with Loewy length 4 (see [8]). Now let D be metacyclic,
but not isomorphic to C4 or D8. Then |D| ≤ 16 and the remark after Corollary 3.9 in [9] shows that D is not a
defect group of a block with Loewy length 4. This excludes 14 groups from our list. The abelian groups C2

2 ×C4

and C2
4 × C2 are impossible by Lemma 2.4. Another group (minimal non-abelian of order 32) can be excluded

by using [4]. Using the list of defect groups of order 32 in [18], we can further exclude 7 groups which can only
correspond to nilpotent blocks (cf. Corollary 3.8 in [9]).

Now let |D| ≥ 26. By Lemma 2.3, 30+104+496+933 = 1563 of these groups lead to nilpotent blocks. Two more
groups can be excluded by Lemma 2.4. Moreover, there is one group whose center is isomorphic to C2

4 . Here one
can show that the image of the restriction map Aut(D)→ Aut(Z(D)) is a 2-group. Hence, by Corollary 2.7 in
[9], D is not the defect group of a block with Loewy length 4. Using the same technique we eliminate 13 more
groups of higher order.

Thus, altogether we have 1799 − 14 − 3 − 7 − 1563 − 16 = 196 possible defect groups for 2-blocks with Loewy
length 4 where three of them are known to occur.

Lemma 2.6. Let B be a 3-block of a finite group with defect group D and Loewy length 4. Then Z(D) is
elementary abelian.

Proof. The same argument as in Lemma 2.4 works.

Lemma 2.7. There are (at least) 2 (respectively 13) groups of order 36 (respectively 37) with exponent 9 and
3-rank at most 3 which admit only trivial fusion systems.

Proof. Let P be a group of order 3n with exponent 9 and 3-rank at most 3. Assume that P admits only the
trivial fusion system. Then n ≥ 6, since otherwise Aut(P ) is not a 3-group (see [12]). We may assume that
Aut(P ) is a 3-group. We use the following algorithm in order to find possible groups P :

(1) Make a list L of all candidates of essential subgroups of P by using Lemma 6.15 in [16].

(2) We may assume that F is a sparse fusion system on P in the sense of [6].

(3) By Theorem 3.5 in [6], F is constrained, i. e. there is a self-centralizing subgroupNEP such that F = NF (N).
Moreover, N lies in at least one member of L.

(4) Theorem III.5.10 in [1] shows that there is a finite group G such that P ∈ Syl3(G), N E G, G/Z(N) ∼=
AutF (N) and F = FP (G). In particular, Aut(N) has no normal Sylow 3-subgroup (otherwise F would be
controlled and thus trivial).

(5) It follows that |N | ≥ 33 and in case |N | = 33 we have N ∼= C3
3 and n = 6.

This gives 2 groups of order 36 and 13 groups of order 37.

Proposition 2.8. Let B be a 3-block of a finite group with Loewy length 4 and defect group D. Then there are
at most 386 possible isomorphism types for D and none of them is known to occur.
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Proof. There are 820 3-groups of exponent at most 9 and 3-rank at most 3. However, the three cyclic groups
C1, C3 and C9 cannot occur by Corollary 3.9 in [9]. Also the abelian groups C9 × C3, C2

9 , C2
3 × C9, C2

9 × C3

and C3
9 cannot occur by Lemma 2.6. Using Corollary 2.7 in [9] we can exclude 411 more groups. Among the

remaining groups, 15 lead to nilpotent blocks by Lemma 2.7. Hence, there are 820− 8− 411− 15 = 386 groups
left.

We remark that the proof of Proposition 2.8 exhausts the known methods, i. e. in the remaining case there are
always non-trivial fusion systems and neither Corollary 2.7 nor Corollary 3.9 in [9] applies. We add a result for
principal blocks which was suggested by Koshitani with a different proof.

Proposition 2.9. Let B be a principal 3-block with defect group D and Loewy length 4. Then D is not meta-
cyclic. Moreover, |D| ≥ 34.

Proof. By Proposition 4.13 in [9] we may assume that D is non-abelian. Since D has exponent at most 9, it
follows that D ∼= C9oC3 or C9oC9. In the first case, Theorem 4.5 in [17] implies that all Cartan invariants of B
are divisible by 3. The same holds in case |D| = 34 by Corollary 5 in [15] (cf. [17, Section 2]). Now Proposition 4.6
in [9] gives a contradiction. The last statement follows from Propositions 4.13 and 4.14 in [9].
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