On redundant Sylow subgroups

Benjamin Sambale*

April 5, 2024

Abstract

A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a Sylow subgroup different from P. Generalizing a recent theorem of Maróti-Martínez-Moretó, we show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant in G. Moreover, we answer several open questions raised by Maróti-Martínez-Moretó.

Keywords: Sylow subgroups, covering p-elements
AMS classification: 20D20

1 Introduction

By Sylow's theorem, every p-element of a finite group G lies in some Sylow p-subgroup of G. In the past, group theorists were interested in groups with trivial-intersection Sylow subgroups, i. e. every nontrivial p-element lies in a unique Sylow subgroup. In the present paper we are interested in opposite situation: groups whose p-elements all lie in at least two Sylow subgroups for a fixed prime p. Mikko Korhonen [9] has asked 10 years ago whether such groups actually exist. A positive answer was given by Jack Schmidt 9 using a group G with elementary abelian Sylow p-subgroups. Most recently, Maróti-Martínez-Moretó [11, Theorem A] have shown that for a given p-group P of exponent p there exists a solvable group G with $P \in \operatorname{Syl}_{p}(G)$ such that every element of P lies in a Sylow subgroup different from P. They called such a Sylow subgroup redundant in G, and so do we (by Sylow's theorem, either all or no Sylow p-subgroup is redundant and in the former case every p-element lies in at least two Sylow subgroups).
In general, it is easy to see that redundant Sylow subgroups must be non-cyclic. Maróti-MartínezMoretó have speculated on p. 483 that the restriction on the exponent of P in their theorem might be superfluous. In this paper, we show in Theorem 1 that this is indeed the case. In contrast to the proof of [11, Theorem A] (which depends a deep theorem of Turull and the solvable case of Thompson's theorem), our proof is elementary. Using a refined method in Theorem 2 , we also provide examples where the number of Sylow p-subgroups $\nu_{p}(G)$ of G only depends on p. In particular, we show that $\nu_{2}(G)=27$ is the smallest possible value for a group G with a redundant Sylow 2-subgroup. We also the determine the minimum of $\nu_{p}(G)$ for p-solvable groups in Theorem 7. This is a contribution to [11, Question 8.5].

Let G_{p} be the set of p-elements of G. In [11, p. 846], the authors state that there are very few groups G such that $\left|G_{p}\right|<\nu_{p}(G)$ and only examples with elementary abelian Sylow p-subgroups are known. Our

[^0]construction yields such examples for every non-cyclic p-group P. This leads to a negative answer to [11, Question 8.7]. On the other hand, we provide a positive answer to [11, Question 8.8] in Theorem 9 .

2 Results

Theorem 1. For every non-cyclic p-group P and every prime $q \neq p$ there exists an elementary abelian q-group N such that P acts on N and $G:=N \rtimes P$ has the following properties:
(i) P is redundant in G.
(ii) $\left|G_{p}\right|<\frac{1}{q^{p-1}}|G|$.
(iii) G_{p} is covered by $\frac{1}{q^{p-1}} \nu_{p}(G)$ Sylow p-subgroups.

Proof.
(i) Let V be the regular $\mathbb{F}_{q} P$-module with basis $B:=\left\{v_{x}: x \in P\right\}$. Then P acts trivial on $Z:=$ $\left\langle\prod_{x \in P} v_{x}\right\rangle$. Let $N:=V / Z \cong C_{q}^{|P|-1}$ and $G:=N \rtimes P$. Since P acts transitively on B, it follows that $\mathrm{C}_{N}(P)=1$ and $\mathrm{N}_{G}(P)=P$. Let $x \in P$. Since P is not cyclic,

$$
w:=\prod_{c \in\langle x\rangle} v_{c} Z \in \mathrm{C}_{N}(x) \backslash\{1\}
$$

Hence, $x=w x w^{-1} \in w P w^{-1} \in \operatorname{Syl}_{p}(G) \backslash\{P\}$. This shows that P is redundant in G.
(ii) Let $R \subseteq P$ be a set of representatives for the conjugacy classes of P. By construction, every p element of G is conjugate to a unique element $x \in R$. Let $g \in \mathrm{C}_{G}(x)$ and write $g=n y$ with $n \in N$ and $y \in P$. Then $x y \equiv x g \equiv g x \equiv y x(\bmod N)$ and therefore $[x, y] \in P \cap N=1$. This shows that $y \in \mathrm{C}_{P}(x), n \in \mathrm{C}_{N}(x)$ and $\mathrm{C}_{G}(x)=\mathrm{C}_{N}(x) \mathrm{C}_{P}(x)$. Every right coset C of $\langle x\rangle$ in P determines an element $w_{C}:=\prod_{c \in C} v_{c} \in \mathrm{C}_{V}(x)$. It is easy to check that the elements $\left\{w_{C}: C \in\langle x\rangle \backslash P\right\}$ form a basis of $\mathrm{C}_{V}(x)$. This yields

$$
\left|\mathrm{C}_{N}(x)\right|=\left|\mathrm{C}_{V}(x) / Z\right|=q^{|P:\langle x\rangle|-1} \geq q^{p-1}
$$

Hence,

$$
\left|G_{p}\right|=\sum_{x \in R}\left|G: \mathrm{C}_{G}(x)\right|=\sum_{x \in R}\left|P: \mathrm{C}_{P}(x)\right|\left|N: \mathrm{C}_{N}(x)\right|<\frac{|N|}{q^{p-1}} \sum_{x \in R}\left|P: \mathrm{C}_{P}(x)\right|=\frac{1}{q^{p-1}}|G|
$$

(iii) Since P is non-cyclic, there exist maximal subgroups $P_{1}, \ldots, P_{p+1} \leq P$ such that $P=P_{1} \cup \ldots \cup$ P_{p+1}. Then $N_{i}:=\mathrm{C}_{N}\left(P_{i}\right) \cong C_{q}^{p-1}$ for $i=1, \ldots, p+1$ by the argument of (ii). Since $P_{j} \unlhd P$, each P_{i} acts on N_{j}. For $i \neq j$, we have $N_{i} \cap N_{j}=\mathrm{C}_{N}\left(\left\langle P_{i}, P_{j}\right\rangle\right)=\mathrm{C}_{N}(P)=1$. By the Fitting decomposition (see [7, Theorem 4.34]), we obtain

$$
N_{j}=\mathrm{C}_{N_{j}}\left(P_{i}\right) \times\left[P_{i}, N_{j}\right]=\left[P_{i}, N_{j}\right] \leq\left[P_{i}, N\right]
$$

Since $N=N_{i} \times\left[P_{i}, N\right]$, it follows that

$$
N_{i} \cap \prod_{j \neq i} N_{j} \leq N_{i} \cap\left[P_{i}, N\right]=1
$$

Therefore, $N_{1} \times \ldots \times N_{p+1} \leq N$. We choose a basis $b_{i, 1}, \ldots, b_{i, p-1}$ of N_{i} for every $i=1, \ldots, p+1$. Then the elements $b_{i, j}$ are linearly independent and can be extended to a basis B of N. For $w \in N$ and $b \in B$ let w_{b} be the coefficient of w with respect to b. Define

$$
T:=\left\{w \in N: \forall j=1, \ldots, p-1: \sum_{i=1}^{p+1} w_{b_{i, j}} \equiv 0 \quad(\bmod q)\right\} .
$$

Then $|T|=\frac{1}{q^{p-1}}|N|$. Let $n \in N$ and $x \in P$ be arbitrary. There exist i and $t \in T$ such that $x \in P_{i}$ and $t_{b}=n_{b}$ for all $b \in B \backslash\left\{b_{i, 1}, \ldots, b_{i, p-1}\right\}$. It follows that $t^{-1} n \in N_{i} \leq \mathrm{C}_{N}(x)$ and $n x n^{-1}=t x t^{-1} \in t P t^{-1}$. Hence, G_{p} is covered by $\left\{t P t^{-1}: t \in T\right\}$.

If $q^{p-1}>|P|$ in the situation of Theorem 1, then $\left|G_{p}\right|<|N|=\left|G: \mathrm{N}_{G}(P)\right|=\nu_{p}(G)$ by (iii). If p or q goes to infinity, (iiii) furnishes a counterexample to [11, Question 8.7]. At the same time, it provides some evidence for [11, Question 8.6]. If P contains a cyclic subgroup of index p, one can show that G_{p} cannot be covered by less than $\frac{1}{q^{p-1}} \nu_{p}(G)$ Sylow subgroups.
If P is the Klein four-group and $q=3$, then the construction of the proof above yields the group $G \cong \operatorname{SmallGroup}(108,40)$ with $\nu_{2}(G)=27$, which was mentioned in [11, Introduction]. Question 8.5 of [11 asks for the smallest possible value of $\nu_{p}(G)$ when G has a redundant Sylow p-subgroup. Our proof of Theorem 1 yields $\nu_{p}(G)=|N|=q^{|P|-1}$. We give a better bound, which only depends on p.

Theorem 2. For every non-cyclic p-group P there exists a solvable group G such that P is redundant in G and $\nu_{p}(G)=q^{p+1}$, where $q>1$ is the smallest prime power congruent to 1 modulo p.

Proof. Since P is non-cyclic, there exist maximal subgroups $P_{1}, \ldots, P_{p+1} \leq P$ such that $P=P_{1} \cup$ $\ldots \cup P_{p+1}$. Since $q \equiv 1(\bmod p)$, the finite field \mathbb{F}_{q} contains a primitive p-th root of unity. Hence, for $i=1, \ldots, p+1$ there exists a 1-dimensional $\mathbb{F}_{q} P$-module N_{i} with kernel P_{i}. Define $N=N_{1} \oplus \ldots \oplus N_{p+1}$. Since every $x \in P$ lies in some P_{i}, it follows that $\mathrm{C}_{N}(x)>1=\mathrm{C}_{N}(P)$. Now by the proof of Theorem 1(i) (or using [11, Corollary 3.2]), it follows that P is redundant in $G:=N \rtimes P$ and $\nu_{p}(G)=|N|=q^{p+1}$ (we do not need that P acts faithfully on N).

Theorem 2 provides the following upper bounds for the minimal values of $\nu_{p}(G)$:

p	2	3	5	7	11	13	17	19	23	29
$\min _{q \equiv 1(\bmod p)} q^{p+1}$	3^{3}	2^{8}	11^{6}	2^{24}	23^{12}	3^{42}	103^{18}	191^{20}	47^{24}	59^{30}

Now we work in the opposite direction by finding lower bounds on $\nu_{p}(G)$. The following result settles the case $p=2$.

Theorem 3. Let G be a finite group with a redundant Sylow 2-subgroup. Then $\nu_{2}(G) \geq 27$.
Proof. Let N be the kernel of the conjugation action of G on $\operatorname{Syl}_{2}(G)$, i. e. N is the intersection of all Sylow normalizers. Let $P \in \operatorname{Syl}_{2}(G)$. Since P is the unique Sylow 2-subgroup of $P N$, the map $\operatorname{Syl}_{2}(G) \rightarrow \operatorname{Syl}_{2}(G / N), P \mapsto P N / N$ is a bijection and P is redundant in $\operatorname{Syl}_{2}(G)$ if and only if $P N / N$ is redundant in G / N. Hence, we may assume that $N=1$. Then G is a transitive permutation group of degree $\nu_{2}(G)$. We run through the database of all transitive groups of odd degree up to 25 in GAP [3]. For each such group we can quickly check whether the stabilizer has a normal Sylow 2-subgroup. If this is the case, we check whether G has a redundant Sylow 2-subgroup using [11, Lemmas 2.1 and 2.6]. It turns out that there are no examples with $\nu_{2}(G)<27$.

With the same method, we obtain $\nu_{3}(G) \geq 49$ and $\nu_{5}(G) \geq 51$ whenever G has a redundant Sylow p-subgroup for $p=3$ or $p=5$ respectively. The next lemma improves [11, Theorem 8.4] with an easier proof.

Lemma 4. Let G be a finite group with a redundant Sylow p-subgroup. Then $\nu_{p}(G) \geq p^{2}+p+1$.

Proof. Let $P \in \operatorname{Syl}_{p}(G)$ be covered by $P_{1}, \ldots, P_{k} \in \operatorname{Syl}_{p}(G) \backslash\{P\}$ such that k is as small as possible. Then $P \cap P_{i} \neq P \cap P_{j}$ for $i \neq j$. Since P is not the union of p proper subgroups, we must have $k \geq p+1$. Let $g \in \mathrm{~N}_{P}\left(P \cap P_{i}\right) \backslash P_{i}$. Then $g \notin \mathrm{~N}_{G}\left(P_{i}\right)$, since otherwise $P_{i}\langle g\rangle$ would be a p-subgroup larger than P_{i}. Hence, the Sylow subgroups $P_{i}^{g^{j}}$ for $j=1, \ldots, p$ are pairwise distinct and

$$
P \cap P_{i}^{g^{j}}=P^{g^{j}} \cap P_{i}^{g^{j}}=\left(P \cap P_{i}\right)^{g^{j}}=P \cap P_{i} .
$$

In this way we obtain $k p$ Sylow p-subgroups different from P. Hence, $\nu_{p}(G) \geq k p+1 \geq p^{2}+p+1$.

Lemma 5. Let G be a finite group with a redundant Sylow p-subgroup. Then $\nu_{p}(G)$ is not a prime.

Proof. Let G be a minimal counterexample with $P \in \operatorname{Syl}_{p}(G)$ redundant. As in the proof of Theorem 3. we may assume that G is a transitive permutation group of prime degree $q:=\left|\operatorname{Syl}_{p}(G)\right|$. By a result of Burnside, G is a subgroup of the affine group $C_{q} \rtimes C_{q-1}$ or a 2-transitive almost simple group (see [2, Corollary 3.5B and Theorem 4.1B]). The first case is impossible, since P must be non-cyclic. The latter case can be investigated with the classification of the finite simple groups (see [2, p. 99] or [5]). More precisely, the socle N of G is one of the following simple groups:
(i) $N=A_{q}$. Since the stabilizer A_{q-1} must have a normal Sylow p-subgroup, it follows that $q=5$ and $p=2$. By Theorem 3, neither $G=A_{5}$ nor $G=S_{5}$ has a redundant Sylow 2-subgroup.
(ii) $N=\operatorname{PSL}(2,11)$ with $q=11$. Here $|G: N| \leq 2$ and the stabilizer is isomorphic to A_{5}, so it cannot have a normal Sylow p-subgroup.
(iii) $N=M_{11}=G$ with $q=11$. Again the stabilizer M_{10} has no normal Sylow p-subgroup.
(iv) $N=M_{23}=G$ with $q=23$. Here the stabilizer M_{22} is simple.
(v) $N=\operatorname{PSL}(n, r)$ with $q=\frac{r^{n}-1}{r-1}$ where n is a prime. Suppose that $n \mid r-1$. Then $q=1+r+\ldots+$ $r^{n-1} \equiv n \equiv 0(\bmod n)$ and $q=n$. But this contradicts $q>r-1$. Hence, $\operatorname{gcd}(n, r-1)=1$ and $N=\operatorname{SL}(n, r)$. Here G acts on the set of lines or hyperplanes of \mathbb{F}_{r}^{n}. In both cases the stabilizer, say N_{v} contains a copy of $\operatorname{GL}(n-1, r)$. If $n>2$, then $|\operatorname{GL}(n-1, r)|$ is divisible by $r \frac{r^{n-1}-1}{r-1}=q-1$. In particular, N_{v} has a non-trivial Sylow p-subgroup, which cannot be normal since GL $(n-1, r)$ is involved in N_{v}. Consequently, $n=2$ and $q=r+1$ is a Fermat prime. Now G / N is a cyclic 2 -group. For $p>2$ it is well-known that the Sylow p-subgroup of N and G are cyclic (see [10, 8.6.9]). Hence, $p=2$ and $G=P N$. The upper unitriangular matrices constitute a Sylow 2-subgroup $Q \leq P$ of N. We consider $x:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in Q$. It is easy to see that $\mathrm{C}_{N}(x)=Q$. In particular, Q is the only Sylow 2-subgroup of N containing x. Since $\mathrm{N}_{G}(P) \leq \mathrm{N}_{G}(P \cap N)=\mathrm{N}_{G}(Q)$ and $\nu_{p}(G)=q$ is a prime, we have

$$
\nu_{p}(N)=\left|N: \mathrm{N}_{N}(Q)\right|=\left|N: N \cap \mathrm{~N}_{G}(Q)\right|=\left|N \mathrm{~N}_{G}(Q): \mathrm{N}_{G}(Q)\right|| | G: \mathrm{N}_{G}(P) \mid=\nu_{p}(G)
$$

and $\nu_{p}(N)=\nu_{p}(G)$. Therefore, P is the only Sylow 2-subgroup of G containing Q and x. Thus, P is not redundant and we derived a contradiction.

Now we consider p-solvable groups. For $H \leq P \in \operatorname{Syl}_{p}(G)$ let $\lambda_{G}(H)$ be the number of Sylow p subgroups of G containing H. The following result was proved using Wielandt's subnormalizers.

Lemma 6 (Casolo). Let G be a p-solvable group and $H \leq P \in \operatorname{Syl}_{p}(G)$. Let \mathcal{M} be the set of p^{\prime}-quotients in a normal series of G whose quotients are p-groups or p^{\prime}-groups. Then

$$
\lambda_{G}(H)\left|\mathrm{N}_{G}(P): P\right|=\prod_{Q \in \mathcal{M}}\left|\mathrm{C}_{Q}(H)\right|
$$

Proof. See Theorems 2.6 and 2.8 in [1].

Theorem 7. Let G be a p-solvable group with a redundant Sylow p-subgroup. Then $\nu_{p}(G) \geq q^{p+1}$, where $q>1$ is the smallest prime power congruent to 1 modulo p.

Proof. Let $P \in \operatorname{Syl}_{p}(G)$ and \mathcal{M} as in Lemma 6. Choosing $H=P$ in Lemma 6 yields

$$
\left|\mathrm{N}_{G}(P): P\right|=\prod_{Q \in \mathcal{M}}\left|\mathrm{C}_{Q}(P)\right|
$$

Let $N:=\chi_{Q \in \mathcal{M}} Q$ and $\tilde{G}:=N \rtimes P$. Then $\nu_{p}(G)=\left|G: \mathrm{N}_{G}(P)\right|=\left|\tilde{G}: \mathrm{N}_{\tilde{G}}(P)\right|=\nu_{p}(\tilde{G})$. Now let $H \leq P$ be a cyclic subgroup. Since P is redundant in G, we have $\lambda_{G}(H)>1$. In this situation Lemma 6 shows that $\lambda_{\tilde{G}}(H)>1$. Hence, P is redundant in \tilde{G} and we may assume that $G=\tilde{G}$ is p-nilpotent and $N=\mathrm{O}_{p^{\prime}}(G)$. Then $\mathrm{C}_{N}(x)>\mathrm{C}_{N}(P)$ for all $x \in P$. We consider N as a P-set via the conjugation action. By a theorem of Hartley-Turull [6] (see also [7, Theorem 3.31]), there exists an abelian group A and an isomorphism of P-sets $\varphi: N \rightarrow A$, i. e. $\varphi\left(n^{x}\right)=\varphi(n)^{x}$ for all $x \in P$ and $n \in N$. In particular, $\mathrm{C}_{A}(x)=\varphi\left(\mathrm{C}_{N}(x)\right)>\varphi\left(\mathrm{C}_{N}(P)\right)=\mathrm{C}_{A}(P)$. Hence, P is redundant in $A \rtimes P$ and

$$
\nu_{p}(A \rtimes P)=\left|A: \mathrm{C}_{A}(P)\right|=\left|N: \mathrm{C}_{N}(P)\right|=\nu_{p}(G)
$$

Thus, we may assume that $N=A$ is abelian. Then $\mathrm{C}_{N}(P) \unlhd G$. Going over to $G / \mathrm{C}_{N}(P)$, we may assume that $\mathrm{C}_{N}(P)=1$. Let $P_{1}, \ldots, P_{p+1} \leq P$ be maximal subgroups of P such that $P=P_{1} \cup \ldots \cup P_{p+1}$. If $\mathrm{C}_{N}\left(P_{i}\right)=1$ for some i, then P_{i} is redundant in $P_{i} N$ and $\nu_{p}\left(P_{i} N\right)=|N|=\nu_{p}(G)$. Arguing by induction on $|G|$, we can assume that $N_{i}:=\mathrm{C}_{N}\left(P_{i}\right)>1$ for $i=1, \ldots, p+1$. Using the Fitting decomposition as in the proof of Theorem 1 iii), we obtain $N_{1} \times \ldots \times N_{p+1} \leq N$. Since P acts non-trivially on each N_{i}, it is clear that $\left|N_{i}\right| \geq q$. In total, $|N| \geq q^{p+1}$.

We remark that $G:=\operatorname{PSL}(2,11)$ has a redundant Sylow 2-subgroup by [11, Theorem D] and $\nu_{2}(G)=55$ is a product of only two primes. This indicates that Theorem 7 may not hold for arbitrary groups.
For $x \in P \in \operatorname{Syl}_{p}(G)$ let $\lambda_{G}(x)=\lambda_{G}(\langle x\rangle)$. Gheri [4] has introduced the following condition:

$$
\begin{equation*}
\nu_{p}(G)^{|P| / p} \geq \prod_{x \in P} \lambda_{G}(x) \tag{2.1}
\end{equation*}
$$

He has shown in [4, Theorem B] that (2.1) holds for all finite groups if and only it holds for all almost simple groups. No counterexamples are known to exist. This yields a conjectural bound for $\nu_{p}(G)$.

Theorem 8. Suppose that G has a redundant Sylow p-subgroup of order p^{n}. If G satisfies (2.1), then

$$
\nu_{p}(G) \geq(p+1)^{\frac{p^{n}-1}{p^{n-1}-1}}>(p+1)^{p}
$$

Proof. Let $x \in P \in \operatorname{Syl}_{p}(G)$. Since P is redundant, there exists a Sylow p-subgroup $Q \neq P$ such that $x \in P \cap Q$. As in the proof of Lemma 4, we may choose $g \in \mathrm{~N}_{P}(P \cap Q) \backslash Q$ such that $Q^{g}, Q^{g^{2}}, \ldots, Q^{g^{p}}$ are distinct Sylow p-subgroups containing x. Hence, $\lambda_{G}(x) \geq p+1$. Moreover, $\lambda_{G}(1)=\nu_{p}(G)$. Now (2.1) implies

$$
\nu_{p}(G)^{p^{n-1}} \geq \lambda_{G}(1) \prod_{x \in P \backslash\{1\}} \lambda_{G}(x) \geq \nu_{p}(G)(p+1)^{p^{n}-1}
$$

Since P is non-cyclic, $n \geq 2$ and $\frac{p^{n}-1}{p^{n-1}-1}>p$.

If $n=2$ in Theorem 8 , then $\nu_{p}(G) \geq(p+1)^{p+1}$. This coincides with Theorem 7 , whenever, p is a Mersenne prime or $p=2$. The proof of [4, Theorem B] reduces (2.1) to an almost simple group S such that $\nu_{p}(S) \leq \nu_{p}(G)$. Then S is a primitive permutation group of degree $\leq \nu_{p}(S)$. If $\nu_{p}(G)$ is small, say $\nu_{p}(G)<2^{12}$, we can check (2.1) by running through the library of primitive groups in GAP [3]. We did not find examples among non-solvable groups improving the values in Theorem 2.

Next we answer [11, Question 8.8].

Theorem 9. For every $n \in \mathbb{N}$ there exists a constant $\delta_{n}<1$ with the following property: For every set of Sylow p-subgroups P_{1}, \ldots, P_{n} of a finite group G we have $G_{p}=P_{1} \cup \ldots \cup P_{n}$ or

$$
\left|P_{1} \cup \ldots \cup P_{n}\right|<\delta_{n}\left|G_{p}\right|
$$

Proof. We assume that $G_{p} \neq P_{1} \cup \ldots \cup P_{n}$ and argue by induction on n. Let $P \in \operatorname{Syl}_{p}(G) \backslash\left\{P_{1}, \ldots, P_{n}\right\}$. A well-known theorem of Frobenius asserts that $\left|G_{p}\right|=a|P|$ for some integer $a \geq 2$ (see e.g. [8]). If $n=1$, then the claim holds with $\delta_{1}=\frac{1}{2}$. Now let $n \geq 2$ and assume that δ_{n-1} is already given. Let ρ_{n} be the smallest positive integer such that $\delta_{n-1}+\frac{1}{\rho_{n}}<1$. If $a \geq \rho_{n}$, then induction yields

$$
\left|P_{1} \cup \ldots \cup P_{n}\right| \leq\left|P_{1} \cup \ldots \cup P_{n-1}\right|+|P| \leq \delta_{n-1}\left|G_{p}\right|+\frac{1}{a}\left|G_{p}\right| \leq\left(\delta_{n-1}+\frac{1}{\rho_{n}}\right)\left|G_{p}\right|
$$

Now suppose that $a \leq \rho_{n}$. We may assume that $P \nsubseteq P_{1} \cup \ldots \cup P_{n}$. Hence, by [12, Theorem 1], there exists a constant $\gamma_{n}<1$ such that

$$
\begin{aligned}
\left|P_{1} \cup \ldots \cup P_{n}\right| & \leq\left|G_{p} \backslash P\right|+\left|\left(P \cap P_{1}\right) \cup \ldots \cup\left(P \cap P_{n}\right)\right| \leq \frac{a-1}{a}\left|G_{p}\right|+\gamma_{n}|P| \\
& =\left(1-\frac{1-\gamma_{n}}{a}\right)\left|G_{p}\right| \leq\left(1-\frac{1-\gamma_{n}}{\rho_{n}}\right)\left|G_{p}\right|
\end{aligned}
$$

Finally, the claim holds with

$$
\delta_{n}:=\max \left\{\delta_{n-1}+\frac{1}{\rho_{n}}, 1-\frac{1-\gamma_{n}}{\rho_{n}}\right\}
$$

We finally remark that the prime p in Theorem 1 can be replaced by a set of primes. In fact the proof easily generalizes to the following theorem:

Theorem 10. For every finite group H there exists a finite group G such that H is a Hall π-subgroup of G (where π is a set of primes) and every π-element of G lies in at least two Hall π-subgroups of G.

References

[1] C. Casolo, Subnormalizers in finite groups, Comm. Algebra 18 (1990), 3791-3818.
[2] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, Vol. 163, Springer-Verlag, New York, 1996.
[3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.12.2; 2022, (http: //www.gap-system.org).
[4] P. Gheri, On the number of p-elements in a finite group, Ann. Mat. Pura Appl. (4) 200 (2021), 1231-1243.
[5] R. M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304-311.
[6] B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman character correspondence, J. Reine Angew. Math. 451 (1994), 175-219.
[7] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics, Vol. 92, American Mathematical Society, Providence, RI, 2008.
[8] I. M. Isaacs and G. R. Robinson, On a theorem of Frobenius: solutions of $x^{n}=1$ in finite groups, Amer. Math. Monthly 99 (1992), 352-354.
[9] M. Korhonen, If p is an odd prime, does every Sylow p-subgroup contain an element not in any other Sylow p-subgroup?, https://math.stackexchange.com/questions/299682.
[10] H. Kurzweil and B. Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004.
[11] A. Maróti, J. Martínez and A. Moretó, Covering the set of p-elements in finite groups by Sylow p-subgroups, J. Algebra 638 (2024), 840-861.
[12] B. Sambale and M. Tărnăuceanu, On the size of coset unions, J. Algebraic Combin. 55 (2022), 979-987.

[^0]: *Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

