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Abstract

A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a
Sylow subgroup different from P. Generalizing a recent theorem of Maroti-Martinez—Moretd, we
show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant
in G. Moreover, we answer several open questions raised by Maroti-Martinez—Moreto.
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1 Introduction

By Sylow’s theorem, every p-element of a finite group G lies in some Sylow p-subgroup of G. In the
past, group theorists were interested in groups with trivial-intersection Sylow subgroups, i. e. every non-
trivial p-element lies in a unique Sylow subgroup. In the present paper we are interested in opposite
situation: groups whose p-elements all lie in at least two Sylow subgroups for a fixed prime p. Mikko
Korhonen [9] has asked 10 years ago whether such groups actually exist. A positive answer was given by
Jack Schmidt [9] using a group G with elementary abelian Sylow p-subgroups. Most recently, Maroti—
Martinez—Moret6 [11, Theorem A] have shown that for a given p-group P of exponent p there exists
a solvable group G with P € Syl ,(G) such that every element of P lies in a Sylow subgroup different
from P. They called such a Sylow subgroup redundant in G, and so do we (by Sylow’s theorem, either
all or no Sylow p-subgroup is redundant and in the former case every p-element lies in at least two
Sylow subgroups).

In general, it is easy to see that redundant Sylow subgroups must be non-cyclic. Maréti-Martinez—
Moret6 have speculated on p. 483 that the restriction on the exponent of P in their theorem might be
superfluous. In this paper, we show in that this is indeed the case. In contrast to the proof
of [11, Theorem A| (which depends a deep theorem of Turull and the solvable case of Thompson’s
theorem), our proof is elementary. Using a refined method in , we also provide examples
where the number of Sylow p-subgroups v,(G) of G only depends on p. In particular, we show that
v2(G) = 27 is the smallest possible value for a group G with a redundant Sylow 2-subgroup. We also
the determine the minimum of v,(G) for p-solvable groups in . This is a contribution to [11],
Question 8.5].

Let G, be the set of p-elements of G. In [I1], p. 846|, the authors state that there are very few groups G
such that |G,| < 1,(G) and only examples with elementary abelian Sylow p-subgroups are known. Our
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construction yields such examples for every non-cyclic p-group P. This leads to a negative answer to [11],

Question 8.7]. On the other hand, we provide a positive answer to [I1, Question 8.8] in

2 Results

Theorem 1. For every non-cyclic p-group P and every prime q # p there exists an elementary abelian
q-group N such that P acts on N and G := N x P has the following properties:

(i) P is redundant in G.
(i) |Gyl < /G,

(iii) G, is covered by qp%lup(G) Sylow p-subgroups.

Proof.

(i)

(iii)

Let V be the regular F,P-module with basis B := {v, : « € P}. Then P acts trivial on Z :=

(IL,cpve). Let N :=V/Z = Cllpl_l and G := N x P. Since P acts transitively on B, it follows
that Cy(P) =1 and Ng(P) = P. Let x € P. Since P is not cyclic,

wi= [] veZ € On(x)\ {1}.

ce(x)

Hence, = waw ™ € wPw™! € Syl (G) \ {P}. This shows that P is redundant in G.

Let R C P be a set of representatives for the conjugacy classes of P. By construction, every p-
element of G is conjugate to a unique element z € R. Let g € Cg(x) and write g = ny withn € N
and y € P. Then xy = g = gx = yz (mod N) and therefore [z,y] € PN N = 1. This shows that
y € Cp(z), n € Cy(x) and Cg(z) = Cn(z)Cp(x). Every right coset C of (x) in P determines an
element we = [[.ccve € Cy(x). It is easy to check that the elements {w¢ : C € (z)\P} form a
basis of Cy (x). This yields

Cn ()] = [Cv(2)/2Z] = ¢ 7171 > g2~

Hence,

N 1
NS 1P cp@)l =

Gyl =D 1G: Ca(x)| = Y |P: Cp(@)|IN : Cy(2)| < . =
TER

z€ER TER

Since P is non-cyclic, there exist maximal subgroups Pi,..., P41 < P such that P= P U... U
P,i1. Then N; := Cn(F;) = Cg_l fori = 1,...,p+ 1 by the argument of . Since P; < P,
each P; acts on Nj. For i # j, we have N; N N; = Cy((P;, Pj)) = Cn(P) = 1. By the Fitting
decomposition (see |7, Theorem 4.34]), we obtain

Nj = Cn,(P) x [P;; Nj| = [P;; Nj| < [P, N].
Since N = N; x [P;, N, it follows that

Nz‘ﬁHNj < N;N[P,N] =1
J#i



Therefore, Ny x ... x Npy1 < N. We choose a basis b; 1,...,b;p—1 of N; forevery ¢ =1,...,p+1.
Then the elements b; ; are linearly independent and can be extended to a basis B of N. For w € N
and b € B let wy be the coefficient of w with respect to b. Define

p+1
T := {weN:ijl,...,p—LZwbm =0 (modq)}.
i=1

Then |T| = qp%l]N]. Let n € N and « € P be arbitrary. There exist ¢ and ¢ € T such that

x € Pyand t, = np for all b € B\ {bj1,...,bip—1}. It follows that t7ln € N; < Cy(z) and
nzn~! =txt~! € tPt~1. Hence, G, is covered by {tPt~':t e T}. O

If ¢~ > |P| in the situation of [Theorem 1] then |G,| < |[N| = |G : Ng(P)| = v,(G) by (ii). If p or
q goes to infinity, furnishes a counterexample to |11, Question 8.7]. At the same time, it provides
some evidence for [I1), Question 8.6]. If P contains a cyclic subgroup of index p, one can show that G,
cannot be covered by less than qp%lup(G) Sylow subgroups.

If P is the Klein four-group and ¢ = 3, then the construction of the proof above yields the group
G = SmallGroup(108,40) with v5(G) = 27, which was mentioned in [IT, Introduction]. Question 8.5
of [11] asks for the smallest possible value of 1,(G) when G has a redundant Sylow p-subgroup. Our
proof of yields v,(G) = |N| = ¢!PI=1. We give a better bound, which only depends on p.

Theorem 2. For every non-cyclic p-group P there exists a solvable group G such that P is redundant
in G and vy(G) = ¢°T1, where ¢ > 1 is the smallest prime power congruent to 1 modulo p.

Proof. Since P is non-cyclic, there exist maximal subgroups Pi,..., P41 < P such that P = P U
...UPpyy1. Since ¢ = 1 (mod p), the finite field F, contains a primitive p-th root of unity. Hence, for
i =1,...,p+1 there exists a 1-dimensional F,P-module N; with kernel P;. Define N = N1 @...®Npq1.
Since every = € P lies in some P;, it follows that C(z) > 1 = Cn(P). Now by the proof of[Theorem 1J(i)
(or using 1T}, Corollary 3.2]), it follows that P is redundant in G := N x P and v,(G) = |[N| = ¢'**
(we do not need that P acts faithfully on V). O

provides the following upper bounds for the minimal values of v,(G):

p (2 3 5 7 11 13 17 19 23 29
min qp+1‘33 28 116 224 2312 342 10318 19120 47%4 5930
g=1(mod p)

Now we work in the opposite direction by finding lower bounds on v,(G). The following result settles
the case p = 2.

Theorem 3. Let G be a finite group with a redundant Sylow 2-subgroup. Then vo(G) > 27.

Proof. Let N be the kernel of the conjugation action of G on Syly(G), i.e. N is the intersection of
all Sylow normalizers. Let P € Syly(G). Since P is the unique Sylow 2-subgroup of PN, the map
Syly(G) — Syly(G/N), P +— PN/N is a bijection and P is redundant in Syly(G) if and only if PN/N
is redundant in G/N. Hence, we may assume that N = 1. Then G is a transitive permutation group of
degree v2(G). We run through the database of all transitive groups of odd degree up to 25 in GAP [3].
For each such group we can quickly check whether the stabilizer has a normal Sylow 2-subgroup. If
this is the case, we check whether G has a redundant Sylow 2-subgroup using [I1, Lemmas 2.1 and
2.6]. It turns out that there are no examples with 15(G) < 27. O



With the same method, we obtain v3(G) > 49 and v5(G) > 51 whenever G has a redundant Sylow
p-subgroup for p = 3 or p = 5 respectively. The next lemma improves [11, Theorem 8.4] with an easier
proof.

Lemma 4. Let G be a finite group with a redundant Sylow p-subgroup. Then vy(G) > P’ +p+1.

Proof. Let P € Syl,(G) be covered by P, ..., P, € Syl,(G)\ {P} such that k is as small as possible.
Then PNP; # PN P; for i # j. Since P is not the union of p proper subgroups, we must have £ > p+1.
Let g € Np(P N P;) \ Pi. Then g ¢ Ng(FP;), since otherwise P;(g) would be a p-subgroup larger than

P;. Hence, the Sylow subgroups Pl-gj for j =1,...,p are pairwise distinct and
PnpY =p’npY =(PnP)Y =PNP.

In this way we obtain kp Sylow p-subgroups different from P. Hence, v,(G) > kp+1>p?>+p+1. O
Lemma 5. Let G be a finite group with a redundant Sylow p-subgroup. Then v,(G) is not a prime.

Proof. Let G be a minimal counterexample with P € Syl,(G) redundant. As in the proof of ,
we may assume that G is a transitive permutation group of prime degree ¢ := | Syl,(G)|. By a result
of Burnside, G is a subgroup of the affine group C; x Cy_; or a 2-transitive almost simple group (see
[2, Corollary 3.5B and Theorem 4.1B]). The first case is impossible, since P must be non-cyclic. The
latter case can be investigated with the classification of the finite simple groups (see [2, p. 99| or [5]).
More precisely, the socle N of G is one of the following simple groups:

i) N = A,. Since the stabilizer A,_1 must have a normal Sylow p-subgroup, it follows that ¢ = 5
q q
and p = 2. By neither G = A5 nor G = S5 has a redundant Sylow 2-subgroup.

(i) N = PSL(2,11) with ¢ = 11. Here |G : N| < 2 and the stabilizer is isomorphic to As, so it cannot
have a normal Sylow p-subgroup.

(iii) N = Mj; = G with ¢ = 11. Again the stabilizer M7y has no normal Sylow p-subgroup.
(iv) N = Mss = G with g = 23. Here the stabilizer Mag is simple.

(v) N =PSL(n,r) with ¢ = 7"::11 where n is a prime. Suppose that n |r—1. Theng=1+r+...+
"1 =n =0 (mod n) and ¢ = n. But this contradicts ¢ > r — 1. Hence, ged(n,r — 1) = 1 and
N = SL(n,r). Here G acts on the set of lines or hyperplanes of F}. In both cases the stabilizer, say
N, contains a copy of GL(n—1,7). If n > 2, then | GL(n—1, )| is divisible by rrn;l L—g¢—1.In
particular, N, has a non-trivial Sylow p-subgroup, which cannot be normal since GL(n — 1,r) is
involved in N,.. Consequently, n = 2 and ¢ = r+1 is a Fermat prime. Now G/N is a cyclic 2-group.
For p > 2 it is well-known that the Sylow p-subgroup of N and G are cyclic (see |10, 8.6.9]).
Hence, p = 2 and G = PN. The upper unitriangular matrices constitute a Sylow 2-subgroup
Q < P of N. We consider z := (}1) € Q. It is easy to see that Cy(z) = Q. In particular,
@ is the only Sylow 2-subgroup of N containing z. Since Ng(P) < Ng(P N N) = Ng(Q) and
vp(G) = q is a prime, we have

vp(N) = [N : Ny (Q)] = [N : NN Nea(Q) = [NNg(Q) : Na(Q)| | |G : Na(P)] = 1(G)

and v,(N) = vp(G). Therefore, P is the only Sylow 2-subgroup of G containing ) and x. Thus,
P is not redundant and we derived a contradiction. O



Now we consider p-solvable groups. For H < P € Syl (G) let A\g(H) be the number of Sylow p-
subgroups of GG containing H. The following result was proved using Wielandt’s subnormalizers.

Lemma 6 (Casolo). Let G be a p-solvable group and H < P € Syl (G). Let M be the set of p'-quotients
in a normal series of G whose quotients are p-groups or p'-groups. Then

Aa(H)Ng(P): Pl = [] ICo(H)l.
QeM

Proof. See Theorems 2.6 and 2.8 in [I]. O

Theorem 7. Let G' be a p-solvable group with a redundant Sylow p-subgroup. Then v,(G) > Ry
where ¢ > 1 is the smallest prime power congruent to 1 modulo p.

Proof. Let P € Syl,(G) and M as in Choosing H = P in yields

Ng(P): Pl= ][] ICo(P)I.
QeEM

Let N := Xpger @ and G := N x P. Then 1,(G) = |G : Ng(P)| = |G : N&(P)| = p(G). Now let
H < P be a cyclic subgroup. Since P is redundant in G, we have Ag(H) > 1. In this situation
shows that A\z(H) > 1. Hence, P is redundant in G and we may assume that G = G is p-nilpotent
and N = Op(G). Then Cy(z) > Cy(P) for all z € P. We consider N as a P-set via the conjugation
action. By a theorem of Hartley—Turull [6] (see also |7, Theorem 3.31]), there exists an abelian group
A and an isomorphism of P-sets ¢: N — A, i.e. ¢(n”) = ¢(n)* for all x € P and n € N. In particular,
Ca(x) = ¢(Cn(z)) > ¢(Cn(P)) = Ca(P). Hence, P is redundant in A x P and

Vo(Ax P) = |A: C4(P)| = N : Cx(P)| = ().

Thus, we may assume that N = A is abelian. Then Cn (P)<G. Going over to G/Cy (P), we may assume
that Cny(P) = 1. Let Py,..., P,y1 < P be maximal subgroups of P such that P = Py U...UP,q;. If
Cn(P;) = 1 for some 4, then P; is redundant in P;N and v,(P;N) = |N| = v,(G). Arguing by induction
on |G|, we can assume that N; := Cy(F;) > 1fori=1,...,p+ 1. Using the Fitting decomposition as

in the proof of [Theorem I{fiii), we obtain Ny x ... x N,11 < N. Since P acts non-trivially on each Nj,
it is clear that |N;| > ¢. In total, |[N| > ¢PT1. O

We remark that G := PSL(2, 11) has a redundant Sylow 2-subgroup by [I1, Theorem D] and v5(G) = 55
is a product of only two primes. This indicates that may not hold for arbitrary groups.

For x € P € Syl,(G) let Ag(z) = Ag((r)). Gheri [4] has introduced the following condition:

w(@)F17 > T Aa(e). 1)

zeP

He has shown in [4, Theorem B| that (2.1]) holds for all finite groups if and only it holds for all almost
simple groups. No counterexamples are known to exist. This yields a conjectural bound for v,(G).

Theorem 8. Suppose that G has a redundant Sylow p-subgroup of order p™. If G satisfies (2.1]), then

p"—1

vp(G) > (p+ )P =1 > (p+ 1)P.



Proof. Let x € P € Syl,(G). Since P is redundant, there exists a Sylow p-subgroup @ # P such that

x € PNQ. As in the proof of we may choose g € Np(PNQ)\ @ such that @9, Q92, Q%
are distinct Sylow p-subgroups containing x. Hence, Ag(z) > p + 1. Moreover, Ag(1) = v,(G). Now

(2.1) implies

n—1

w(GP 2 xe() [ Ael@) 2 @@+ 17"

Since P is non-cyclic, n > 2 and pfif_ll > p. O

If n=21in then v,(G) > (p + 1)P*!. This coincides with whenever, p is a

Mersenne prime or p = 2. The proof of [4, Theorem B| reduces to an almost simple group S such
that 1,(S) < 1,(G). Then S is a primitive permutation group of degree < v,(S). If 1,(G) is small, say
vp(G) < 2'2) we can check by running through the library of primitive groups in GAP [3]. We
did not find examples among non-solvable groups improving the values in [Theorem 2|

Next we answer |11, Question 8.8|.

Theorem 9. For every n € N there exists a constant d, < 1 with the following property: For every set
of Sylow p-subgroups Py, ..., P, of a finite group G we have G, = Py U...UP, or

|PLU...UP,| < 0,|Gpl

Proof. We assume that G, # PiU...UP, and argue by induction on n. Let P € Syl,(G)\{ P, ..., P.}.
A well-known theorem of Frobenius asserts that |G| = a|P| for some integer a > 2 (see e.g. [§]). If
n = 1, then the claim holds with §; = % Now let n > 2 and assume that J,_1 is already given. Let p,
be the smallest positive integer such that 6,1 + pin < 1. If @ > pn, then induction yields

1 1
[PrU L UP S [PLUUP| 4P| < 60malGyl + |Gy < (5,%1 + ;) Gyl
n
Now suppose that a < p,,. We may assume that P ¢ P; U...U P,. Hence, by [12, Theorem 1], there

exists a constant ~, < 1 such that

a—1
|IPLU...UP,| < |G\ P|+|(PNP)U...U(PNPF,)| §T|Gp|+%|P|

= (1= =)i6 < (1- 26

a n

Finally, the claim holds with

1 1-—
Op 1= max{&n_l 4+ —, 1- In } O
Pn Pn

We finally remark that the prime p in can be replaced by a set of primes. In fact the proof
easily generalizes to the following theorem:

Theorem 10. For every finite group H there exists a finite group G such that H is a Hall w-subgroup
of G (where 7 is a set of primes) and every mw-element of G lies in at least two Hall 7w-subgroups of G.
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