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Abstract

A Sylow p-subgroup P of a finite group G is called redundant if every p-element of G lies in a
Sylow subgroup different from P . Generalizing a recent theorem of Maróti–Martínez–Moretó, we
show that for every non-cyclic p-group P there exists a solvable group G such that P is redundant
in G. Moreover, we answer several open questions raised by Maróti–Martínez–Moretó.

Keywords: Sylow subgroups, covering p-elements
AMS classification: 20D20

1 Introduction

By Sylow’s theorem, every p-element of a finite group G lies in some Sylow p-subgroup of G. In the
past, group theorists were interested in groups with trivial-intersection Sylow subgroups, i. e. every non-
trivial p-element lies in a unique Sylow subgroup. In the present paper we are interested in opposite
situation: groups whose p-elements all lie in at least two Sylow subgroups for a fixed prime p. Mikko
Korhonen [9] has asked 10 years ago whether such groups actually exist. A positive answer was given by
Jack Schmidt [9] using a group G with elementary abelian Sylow p-subgroups. Most recently, Maróti–
Martínez–Moretó [11, Theorem A] have shown that for a given p-group P of exponent p there exists
a solvable group G with P ∈ Sylp(G) such that every element of P lies in a Sylow subgroup different
from P . They called such a Sylow subgroup redundant in G, and so do we (by Sylow’s theorem, either
all or no Sylow p-subgroup is redundant and in the former case every p-element lies in at least two
Sylow subgroups).

In general, it is easy to see that redundant Sylow subgroups must be non-cyclic. Maróti–Martínez–
Moretó have speculated on p. 483 that the restriction on the exponent of P in their theorem might be
superfluous. In this paper, we show in Theorem 1 that this is indeed the case. In contrast to the proof
of [11, Theorem A] (which depends a deep theorem of Turull and the solvable case of Thompson’s
theorem), our proof is elementary. Using a refined method in Theorem 2, we also provide examples
where the number of Sylow p-subgroups νp(G) of G only depends on p. In particular, we show that
ν2(G) = 27 is the smallest possible value for a group G with a redundant Sylow 2-subgroup. We also
the determine the minimum of νp(G) for p-solvable groups in Theorem 7. This is a contribution to [11,
Question 8.5].

Let Gp be the set of p-elements of G. In [11, p. 846], the authors state that there are very few groups G
such that |Gp| < νp(G) and only examples with elementary abelian Sylow p-subgroups are known. Our
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construction yields such examples for every non-cyclic p-group P . This leads to a negative answer to [11,
Question 8.7]. On the other hand, we provide a positive answer to [11, Question 8.8] in Theorem 9.

2 Results

Theorem 1. For every non-cyclic p-group P and every prime q ̸= p there exists an elementary abelian
q-group N such that P acts on N and G := N ⋊ P has the following properties:

(i) P is redundant in G.

(ii) |Gp| < 1
qp−1 |G|.

(iii) Gp is covered by 1
qp−1 νp(G) Sylow p-subgroups.

Proof.

(i) Let V be the regular FqP -module with basis B := {vx : x ∈ P}. Then P acts trivial on Z :=

⟨
∏

x∈P vx⟩. Let N := V/Z ∼= C
|P |−1
q and G := N ⋊ P . Since P acts transitively on B, it follows

that CN (P ) = 1 and NG(P ) = P . Let x ∈ P . Since P is not cyclic,

w :=
∏
c∈⟨x⟩

vcZ ∈ CN (x) \ {1}.

Hence, x = wxw−1 ∈ wPw−1 ∈ Sylp(G) \ {P}. This shows that P is redundant in G.

(ii) Let R ⊆ P be a set of representatives for the conjugacy classes of P . By construction, every p-
element of G is conjugate to a unique element x ∈ R. Let g ∈ CG(x) and write g = ny with n ∈ N
and y ∈ P . Then xy ≡ xg ≡ gx ≡ yx (mod N) and therefore [x, y] ∈ P ∩N = 1. This shows that
y ∈ CP (x), n ∈ CN (x) and CG(x) = CN (x)CP (x). Every right coset C of ⟨x⟩ in P determines an
element wC :=

∏
c∈C vc ∈ CV (x). It is easy to check that the elements {wC : C ∈ ⟨x⟩\P} form a

basis of CV (x). This yields

|CN (x)| = |CV (x)/Z| = q|P :⟨x⟩|−1 ≥ qp−1.

Hence,

|Gp| =
∑
x∈R

|G : CG(x)| =
∑
x∈R

|P : CP (x)||N : CN (x)| < |N |
qp−1

∑
x∈R

|P : CP (x)| =
1

qp−1
|G|.

(iii) Since P is non-cyclic, there exist maximal subgroups P1, . . . , Pp+1 ≤ P such that P = P1 ∪ . . . ∪
Pp+1. Then Ni := CN (Pi) ∼= Cp−1

q for i = 1, . . . , p + 1 by the argument of (ii). Since Pj ⊴ P ,
each Pi acts on Nj . For i ̸= j, we have Ni ∩ Nj = CN (⟨Pi, Pj⟩) = CN (P ) = 1. By the Fitting
decomposition (see [7, Theorem 4.34]), we obtain

Nj = CNj (Pi)× [Pi, Nj ] = [Pi, Nj ] ≤ [Pi, N ].

Since N = Ni × [Pi, N ], it follows that

Ni ∩
∏
j ̸=i

Nj ≤ Ni ∩ [Pi, N ] = 1.
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Therefore, N1× . . .×Np+1 ≤ N . We choose a basis bi,1, . . . , bi,p−1 of Ni for every i = 1, . . . , p+1.
Then the elements bi,j are linearly independent and can be extended to a basis B of N . For w ∈ N
and b ∈ B let wb be the coefficient of w with respect to b. Define

T :=
{
w ∈ N : ∀j = 1, . . . , p− 1 :

p+1∑
i=1

wbi,j ≡ 0 (mod q)
}
.

Then |T | = 1
qp−1 |N |. Let n ∈ N and x ∈ P be arbitrary. There exist i and t ∈ T such that

x ∈ Pi and tb = nb for all b ∈ B \ {bi,1, . . . , bi,p−1}. It follows that t−1n ∈ Ni ≤ CN (x) and
nxn−1 = txt−1 ∈ tP t−1. Hence, Gp is covered by {tP t−1 : t ∈ T}.

If qp−1 > |P | in the situation of Theorem 1, then |Gp| < |N | = |G : NG(P )| = νp(G) by (ii). If p or
q goes to infinity, (iii) furnishes a counterexample to [11, Question 8.7]. At the same time, it provides
some evidence for [11, Question 8.6]. If P contains a cyclic subgroup of index p, one can show that Gp

cannot be covered by less than 1
qp−1 νp(G) Sylow subgroups.

If P is the Klein four-group and q = 3, then the construction of the proof above yields the group
G ∼= SmallGroup(108, 40) with ν2(G) = 27, which was mentioned in [11, Introduction]. Question 8.5
of [11] asks for the smallest possible value of νp(G) when G has a redundant Sylow p-subgroup. Our
proof of Theorem 1 yields νp(G) = |N | = q|P |−1. We give a better bound, which only depends on p.

Theorem 2. For every non-cyclic p-group P there exists a solvable group G such that P is redundant
in G and νp(G) = qp+1, where q > 1 is the smallest prime power congruent to 1 modulo p.

Proof. Since P is non-cyclic, there exist maximal subgroups P1, . . . , Pp+1 ≤ P such that P = P1 ∪
. . . ∪ Pp+1. Since q ≡ 1 (mod p), the finite field Fq contains a primitive p-th root of unity. Hence, for
i = 1, . . . , p+1 there exists a 1-dimensional FqP -module Ni with kernel Pi. Define N = N1⊕. . .⊕Np+1.
Since every x ∈ P lies in some Pi, it follows that CN (x) > 1 = CN (P ). Now by the proof of Theorem 1(i)
(or using [11, Corollary 3.2]), it follows that P is redundant in G := N ⋊ P and νp(G) = |N | = qp+1

(we do not need that P acts faithfully on N).

Theorem 2 provides the following upper bounds for the minimal values of νp(G):

p 2 3 5 7 11 13 17 19 23 29

min
q≡ 1 (mod p)

qp+1 33 28 116 224 2312 342 10318 19120 4724 5930

Now we work in the opposite direction by finding lower bounds on νp(G). The following result settles
the case p = 2.

Theorem 3. Let G be a finite group with a redundant Sylow 2-subgroup. Then ν2(G) ≥ 27.

Proof. Let N be the kernel of the conjugation action of G on Syl2(G), i. e. N is the intersection of
all Sylow normalizers. Let P ∈ Syl2(G). Since P is the unique Sylow 2-subgroup of PN , the map
Syl2(G) → Syl2(G/N), P 7→ PN/N is a bijection and P is redundant in Syl2(G) if and only if PN/N
is redundant in G/N . Hence, we may assume that N = 1. Then G is a transitive permutation group of
degree ν2(G). We run through the database of all transitive groups of odd degree up to 25 in GAP [3].
For each such group we can quickly check whether the stabilizer has a normal Sylow 2-subgroup. If
this is the case, we check whether G has a redundant Sylow 2-subgroup using [11, Lemmas 2.1 and
2.6]. It turns out that there are no examples with ν2(G) < 27.
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With the same method, we obtain ν3(G) ≥ 49 and ν5(G) ≥ 51 whenever G has a redundant Sylow
p-subgroup for p = 3 or p = 5 respectively. The next lemma improves [11, Theorem 8.4] with an easier
proof.

Lemma 4. Let G be a finite group with a redundant Sylow p-subgroup. Then νp(G) ≥ p2 + p+ 1.

Proof. Let P ∈ Sylp(G) be covered by P1, . . . , Pk ∈ Sylp(G) \ {P} such that k is as small as possible.
Then P ∩Pi ̸= P ∩Pj for i ̸= j. Since P is not the union of p proper subgroups, we must have k ≥ p+1.
Let g ∈ NP (P ∩ Pi) \ Pi. Then g /∈ NG(Pi), since otherwise Pi⟨g⟩ would be a p-subgroup larger than
Pi. Hence, the Sylow subgroups P gj

i for j = 1, . . . , p are pairwise distinct and

P ∩ P gj

i = P gj ∩ P gj

i = (P ∩ Pi)
gj = P ∩ Pi.

In this way we obtain kp Sylow p-subgroups different from P . Hence, νp(G) ≥ kp+1 ≥ p2+ p+1.

Lemma 5. Let G be a finite group with a redundant Sylow p-subgroup. Then νp(G) is not a prime.

Proof. Let G be a minimal counterexample with P ∈ Sylp(G) redundant. As in the proof of Theorem 3,
we may assume that G is a transitive permutation group of prime degree q := |Sylp(G)|. By a result
of Burnside, G is a subgroup of the affine group Cq ⋊ Cq−1 or a 2-transitive almost simple group (see
[2, Corollary 3.5B and Theorem 4.1B]). The first case is impossible, since P must be non-cyclic. The
latter case can be investigated with the classification of the finite simple groups (see [2, p. 99] or [5]).
More precisely, the socle N of G is one of the following simple groups:

(i) N = Aq. Since the stabilizer Aq−1 must have a normal Sylow p-subgroup, it follows that q = 5
and p = 2. By Theorem 3, neither G = A5 nor G = S5 has a redundant Sylow 2-subgroup.

(ii) N = PSL(2, 11) with q = 11. Here |G : N | ≤ 2 and the stabilizer is isomorphic to A5, so it cannot
have a normal Sylow p-subgroup.

(iii) N = M11 = G with q = 11. Again the stabilizer M10 has no normal Sylow p-subgroup.

(iv) N = M23 = G with q = 23. Here the stabilizer M22 is simple.

(v) N = PSL(n, r) with q = rn−1
r−1 where n is a prime. Suppose that n | r− 1. Then q = 1+ r+ . . .+

rn−1 ≡ n ≡ 0 (mod n) and q = n. But this contradicts q > r − 1. Hence, gcd(n, r − 1) = 1 and
N = SL(n, r). Here G acts on the set of lines or hyperplanes of Fn

r . In both cases the stabilizer, say
Nv contains a copy of GL(n−1, r). If n > 2, then |GL(n−1, r)| is divisible by r rn−1−1

r−1 = q−1. In
particular, Nv has a non-trivial Sylow p-subgroup, which cannot be normal since GL(n− 1, r) is
involved in Nv. Consequently, n = 2 and q = r+1 is a Fermat prime. Now G/N is a cyclic 2-group.
For p > 2 it is well-known that the Sylow p-subgroup of N and G are cyclic (see [10, 8.6.9]).
Hence, p = 2 and G = PN . The upper unitriangular matrices constitute a Sylow 2-subgroup
Q ≤ P of N . We consider x :=

(
1 1
0 1

)
∈ Q. It is easy to see that CN (x) = Q. In particular,

Q is the only Sylow 2-subgroup of N containing x. Since NG(P ) ≤ NG(P ∩ N) = NG(Q) and
νp(G) = q is a prime, we have

νp(N) = |N : NN (Q)| = |N : N ∩NG(Q)| = |NNG(Q) : NG(Q)|
∣∣ |G : NG(P )| = νp(G)

and νp(N) = νp(G). Therefore, P is the only Sylow 2-subgroup of G containing Q and x. Thus,
P is not redundant and we derived a contradiction.
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Now we consider p-solvable groups. For H ≤ P ∈ Sylp(G) let λG(H) be the number of Sylow p-
subgroups of G containing H. The following result was proved using Wielandt’s subnormalizers.

Lemma 6 (Casolo). Let G be a p-solvable group and H ≤ P ∈ Sylp(G). Let M be the set of p′-quotients
in a normal series of G whose quotients are p-groups or p′-groups. Then

λG(H)|NG(P ) : P | =
∏

Q∈M
|CQ(H)|.

Proof. See Theorems 2.6 and 2.8 in [1].

Theorem 7. Let G be a p-solvable group with a redundant Sylow p-subgroup. Then νp(G) ≥ qp+1,
where q > 1 is the smallest prime power congruent to 1 modulo p.

Proof. Let P ∈ Sylp(G) and M as in Lemma 6. Choosing H = P in Lemma 6 yields

|NG(P ) : P | =
∏

Q∈M
|CQ(P )|.

Let N :=×Q∈MQ and G̃ := N ⋊ P . Then νp(G) = |G : NG(P )| = |G̃ : NG̃(P )| = νp(G̃). Now let
H ≤ P be a cyclic subgroup. Since P is redundant in G, we have λG(H) > 1. In this situation Lemma 6
shows that λG̃(H) > 1. Hence, P is redundant in G̃ and we may assume that G = G̃ is p-nilpotent
and N = Op′(G). Then CN (x) > CN (P ) for all x ∈ P . We consider N as a P -set via the conjugation
action. By a theorem of Hartley–Turull [6] (see also [7, Theorem 3.31]), there exists an abelian group
A and an isomorphism of P -sets φ : N → A, i. e. φ(nx) = φ(n)x for all x ∈ P and n ∈ N . In particular,
CA(x) = φ(CN (x)) > φ(CN (P )) = CA(P ). Hence, P is redundant in A⋊ P and

νp(A⋊ P ) = |A : CA(P )| = |N : CN (P )| = νp(G).

Thus, we may assume that N = A is abelian. Then CN (P )⊴G. Going over to G/CN (P ), we may assume
that CN (P ) = 1. Let P1, . . . , Pp+1 ≤ P be maximal subgroups of P such that P = P1 ∪ . . . ∪ Pp+1. If
CN (Pi) = 1 for some i, then Pi is redundant in PiN and νp(PiN) = |N | = νp(G). Arguing by induction
on |G|, we can assume that Ni := CN (Pi) > 1 for i = 1, . . . , p+ 1. Using the Fitting decomposition as
in the proof of Theorem 1(iii), we obtain N1 × . . .×Np+1 ≤ N . Since P acts non-trivially on each Ni,
it is clear that |Ni| ≥ q. In total, |N | ≥ qp+1.

We remark that G := PSL(2, 11) has a redundant Sylow 2-subgroup by [11, Theorem D] and ν2(G) = 55
is a product of only two primes. This indicates that Theorem 7 may not hold for arbitrary groups.

For x ∈ P ∈ Sylp(G) let λG(x) = λG(⟨x⟩). Gheri [4] has introduced the following condition:

νp(G)|P |/p ≥
∏
x∈P

λG(x). (2.1)

He has shown in [4, Theorem B] that (2.1) holds for all finite groups if and only it holds for all almost
simple groups. No counterexamples are known to exist. This yields a conjectural bound for νp(G).

Theorem 8. Suppose that G has a redundant Sylow p-subgroup of order pn. If G satisfies (2.1), then

νp(G) ≥ (p+ 1)
pn−1

pn−1−1 > (p+ 1)p.
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Proof. Let x ∈ P ∈ Sylp(G). Since P is redundant, there exists a Sylow p-subgroup Q ̸= P such that
x ∈ P ∩Q. As in the proof of Lemma 4, we may choose g ∈ NP (P ∩Q) \Q such that Qg, Qg2 , . . . , Qgp

are distinct Sylow p-subgroups containing x. Hence, λG(x) ≥ p + 1. Moreover, λG(1) = νp(G). Now
(2.1) implies

νp(G)p
n−1 ≥ λG(1)

∏
x∈P\{1}

λG(x) ≥ νp(G)(p+ 1)p
n−1.

Since P is non-cyclic, n ≥ 2 and pn−1
pn−1−1

> p.

If n = 2 in Theorem 8, then νp(G) ≥ (p + 1)p+1. This coincides with Theorem 7, whenever, p is a
Mersenne prime or p = 2. The proof of [4, Theorem B] reduces (2.1) to an almost simple group S such
that νp(S) ≤ νp(G). Then S is a primitive permutation group of degree ≤ νp(S). If νp(G) is small, say
νp(G) < 212, we can check (2.1) by running through the library of primitive groups in GAP [3]. We
did not find examples among non-solvable groups improving the values in Theorem 2.

Next we answer [11, Question 8.8].

Theorem 9. For every n ∈ N there exists a constant δn < 1 with the following property: For every set
of Sylow p-subgroups P1, . . . , Pn of a finite group G we have Gp = P1 ∪ . . . ∪ Pn or

|P1 ∪ . . . ∪ Pn| < δn|Gp|.

Proof. We assume that Gp ̸= P1∪. . .∪Pn and argue by induction on n. Let P ∈ Sylp(G)\{P1, . . . , Pn}.
A well-known theorem of Frobenius asserts that |Gp| = a|P | for some integer a ≥ 2 (see e. g. [8]). If
n = 1, then the claim holds with δ1 =

1
2 . Now let n ≥ 2 and assume that δn−1 is already given. Let ρn

be the smallest positive integer such that δn−1 +
1
ρn

< 1. If a ≥ ρn, then induction yields

|P1 ∪ . . . ∪ Pn| ≤ |P1 ∪ . . . ∪ Pn−1|+ |P | ≤ δn−1|Gp|+
1

a
|Gp| ≤

(
δn−1 +

1

ρn

)
|Gp|.

Now suppose that a ≤ ρn. We may assume that P ⊈ P1 ∪ . . . ∪ Pn. Hence, by [12, Theorem 1], there
exists a constant γn < 1 such that

|P1 ∪ . . . ∪ Pn| ≤ |Gp \ P |+ |(P ∩ P1) ∪ . . . ∪ (P ∩ Pn)| ≤
a− 1

a
|Gp|+ γn|P |

=
(
1− 1− γn

a

)
|Gp| ≤

(
1− 1− γn

ρn

)
|Gp|.

Finally, the claim holds with

δn := max
{
δn−1 +

1

ρn
, 1− 1− γn

ρn

}
.

We finally remark that the prime p in Theorem 1 can be replaced by a set of primes. In fact the proof
easily generalizes to the following theorem:

Theorem 10. For every finite group H there exists a finite group G such that H is a Hall π-subgroup
of G (where π is a set of primes) and every π-element of G lies in at least two Hall π-subgroups of G.
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