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1 Introduction

Following R. Brauer, the group algebra of a finite group G over a field of characteristic p (or a complete discrete
valuation ring of residue characteristic p) splits into blocks. This leads to a distribution of the irreducible
(ordinary and Brauer) characters of G into blocks. For a block B, k(B) denotes the number of irreducible
ordinary characters of G associated with B, and l(B) denotes the number of irreducible Brauer characters of
G associated with B. Many of the central open problems in representation theory are concerned with these
numbers. For example, Alperin’s Weight Conjecture [1] relates l(B) to the number of B-weights. The number
k(B) appears in Brauer’s k(B)-Conjecture [2] which predicts k(B) ≤ |D| where D is a defect group of B.

It is therefore an interesting task to determine the block invariants k(B) and l(B) with respect to a fixed defect
group. Here it is often useful to study the heights of the irreducible characters. For an irreducible character χ
of a block B with defect group D the height of χ is the largest integer h(χ) ≥ 0 such that ph(χ)|G : D|p divides
χ(1). The number of characters of height i is denoted by ki(B).

2 Block invariants

In my PhD thesis 2010, I determined the block invariants of 2-blocks with metacyclic defect groups [16]. It
turned out that these numbers only depend on the fusion system of the block (this was independently obtained
by Craven-Glesser [4]). The following result relies on preliminary work of Puig-Usami [12].

Theorem 1. Let B be a 2-block of a finite group G with a metacyclic defect group D. Then one of the following
holds:

(i) B is nilpotent. Then ki(B) is the number of ordinary characters of D of degree 2i. In particular k(B) is
the number of conjugacy classes of D and k0(B) = |D : D′|. Moreover, l(B) = 1.

(ii) D has maximal class. Then Theorem 3 below applies.

(iii) D is a direct product of two isomorphic cyclic groups. Then k(B) = k0(B) = |D|+8
3 and l(B) = 3.

It follows easily that the major counting conjecture are satisfied in this case.

Later in collaboration with Charles Eaton and Burkhard Külshammer, I obtained the block invariants of 2-blocks
with minimal nonabelian defect groups [17, 5]. Here minimal nonabelian means that all proper subgroups are
abelian, but the whole group is not. Rédei gave a classification of the minimal nonabelian p-groups [13]. We use
the notation [x, y] := xyx−1y−1 and [x, x, y] := [x, [x, y]].

Theorem 2. Let B be a 2-block of a finite group G with a minimal nonabelian defect group D. Then one of
the following holds:

(i) B is nilpotent. Then k(B) = 5
8 |D|, k0(B) = 1

2 |D|, k1(B) = 1
8 |D| and l(B) = 1.

(ii) |D| = 8. Then Theorem 3 applies.

(iii) D ∼= 〈x, y | x2
r

= y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉 for some r ≥ 2. Then k(B) = 5 · 2r−1,
k0(B) = 2r+1, k1(B) = 2r−1 and l(B) = 2.

(iv) D ∼= 〈x, y | x2
r

= y2
r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉 for some r ≥ 2. Then B is Morita equivalent to
the group algebra of DoE where E is a subgroup of Aut(D) of order 3. In particular, k(B) = 5·22r−2+16

3 ,
k0(B) = 22r+8

3 , k1(B) = 22r−2+8
3 and l(B) = 3.
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The last possibility in this theorem gives an example of Donovan’s Conjecture.

In recent papers [19, 15, 14], I was also able to handle 2-blocks with defect group M × C2m or M ∗ C2m .
Here M is a 2-group of maximal class, C2m is a cyclic group of order 2m and M ∗ C2m denotes the central
product. Moreover, D2n (resp. Q2n , SD2n) is the dihedral (resp. quaternion, semidihedral) group of order 2n.
The following result generalizes work by Brauer [3] and Olsson [10].

Theorem 3. Let B be a nonnilpotent 2-block of a finite group G with defect group D, and let m ≥ 0.

(i) If D ∼= D2n ×C2m for some n ≥ 3, then k(B) = 2m(2n−2 +3), k0(B) = 2m+2 and k1(B) = 2m(2n−2 − 1).
According to two different fusion systems, l(B) is 2 or 3.

(ii) If D ∼= Q8×C2m or D ∼= Q8 ∗C2m+1 , then k(B) = 2m ·7, k0(B) = 2m+2 and k1(B) = 2m ·3 and l(B) = 3.

(iii) If D ∼= Q2n × C2m or D ∼= Q2n ∗ C2m+1 for some n ≥ 4, then k0(B) = 2m+2 and k1(B) = 2m(2n−2 − 1).
According to two different fusion systems, one of the following holds

(a) k(B) = 2m(2n−2 + 4), kn−2(B) = 2m and l(B) = 2.

(b) k(B) = 2m(2n−2 + 5), kn−2(B) = 2m+1 and l(B) = 3.

(iv) If D ∼= SD2n × C2m for some n ≥ 4, then k0(B) = 2m+2 and k1(B) = 2m(2n−2 − 1). According to three
different fusion systems, one of the following holds

(a) k(B) = 2m(2n−2 + 3) and l(B) = 2.

(b) k(B) = 2m(2n−2 + 4), kn−2(B) = 2m and l(B) = 2.

(c) k(B) = 2m(2n−2 + 4), kn−2(B) = 2m and l(B) = 3.

Notice that Q2n ∗C2m
∼= D2n ∗C2m

∼= SD2n ∗C2m for m ≥ 2. It should be pointed out that also the invariants
for the defect group D4 × C2m and D4 ∗ C2m are known by work of Puig-Usami [12] and Kessar-Koshitani-
Linckelmann [7].

These theorems together with one half of Brauer’s Height Zero Conjecture (which was proved recently by
Kessar-Malle [8]) imply that the invariants of 2-blocks with defect at most 4 are known in almost all cases.
Here, only for a block with elementary abelian defect group of order 16 and inertial index 15 it is not clear to
my knowledge if Alperin’s Weight Conjecture holds (see [9]).

3 Conjectures

In the last two years I also made progress on some of the open conjectures in representation theory.

Theorem 4. Brauer’s k(B)-Conjecture holds for defect groups which contain a central, cyclic subgroup of index
at most 9.

Theorem 5. Let B be a block with a defect group which is a central extension of a group Q of order 16 by
a cyclic group. If Q is not elementary abelian or if 9 does not divide the inertial index of B, then Brauer’s
k(B)-conjecture holds for B.

As a corollary one gets Brauer’s k(B)-Conjecture for the 3-blocks of defect at most 3 and most 2-blocks of defect
at most 5 (see [18]).

Another related conjecture was proposed by Olsson [11]: For a block B with defect group D it holds that
k0(B) ≤ |D : D′| where D′ is the commutator subgroup of D. In a joint work with Lászlo Héthelyi and
Burkhard Külshammer, I verified Olsson’s Conjecture under certain hypotheses [6].

Theorem 6. Let p > 3. Then Olsson’s Conjecture holds for all p-blocks with defect groups of p-rank 2 and for
all p-blocks with minimal non-abelian defect groups.
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More detailed information is available if one involves the notion of subsections. A subsection for the block B is
a pair (u, bu) where u is p-element of G and bu is a Brauer correspondent of B in CG(u). If bu and B have the
same defect, the subsection is called major.

Theorem 7. Let B be a p-block of a finite group G where p is an odd prime, and let (u, bu) be a B-subsection
such that l(bu) = 1 and bu has defect d. Moreover, let F be the fusion system of B and |AutF (〈u〉)| = psr, where
p - r and s ≥ 0. Then we have

k0(B) ≤ |〈u〉|+ ps(r2 − 1)

|〈u〉| · r
pd. (1)

If (in addition) (u, bu) is major, we can replace k0(B) by
∑∞
i=0 p

2iki(B) in (1).
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