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Abstract

We call a finite group G ultrasolvable if it has a characteristic subgroup series whose factors are
cyclic. It was shown by Durbin–McDonald that the automorphism group of an ultrasolvable group
is supersolvable. The converse statement was established by Baartmans–Woeppel under the hy-
pothesis that G has no direct factor isomorphic to the Klein four-group. We extend this result by
proving that Aut(G) is supersolvable if and only if G is ultrasolvable or G = H × C2 × C2 where
H is ultrasolvable of odd order. This corrects an erroneous claim by Corsi Tani. Our proof is more
elementary than Baartmans–Woeppel’s and uses some ideas of Corsi Tani and Laue.
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1 Introduction

A finite group G is solvable if and only if it has a subnormal series

1 = G0 ⊴G1 ⊴ . . .⊴Gn = G

such that the factors Gi/Gi−1 are cyclic for i = 1, . . . , n. Moreover, G is called supersolvable if there
is a analogous normal series (i. e. Gi ⊴G for i = 1, . . . , n) with cyclic factors. It is therefore natural to
investigate groups G with a characteristic series (i. e. α(Gi) = Gi for all α ∈ Aut(G) and i = 1, . . . , n)
with cyclic factors. Durbin–McDonald [4] have called these groups c.c.s. groups (characteristic cyclic
series), but we like to call them ultrasolvable. It was shown in [4, Theorem 1] that the automorphism
group of an ultrasolvable group is supersolvable. We provide an elementary proof in the next section
for the convenience of the reader (Theorem 3).

The characteristically simple Klein four-group V ∼= C2 × C2 with supersolvable automorphism group
isomorphic to the symmetric group S3 shows that the converse does not hold in general. Nevertheless,
Durbin–McDonald have conjectured that the converse holds under the hypothesis that G has no direct
factor isomorphic to V . This was eventually proven by Baartmans–Woeppel [1, Theorem C] relying on
deep theorems of Baer [2]. Corsi Tani [3, Theorema 3] showed that a p-group P ̸∼= V is ultrasolvable
if and only if Aut(P ) is supersolvable. (A more precise description of the automorphism group in this
case has been obtained by Lakatos [8].) It is claim in [3, footnote (**) on p. 106] (and in its MathSciNet
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review MR0670814) that the same result holds for arbitrary finite groups not isomorphic of V . But
this is plainly false with G = C6 × C2 being a counterexample (Aut(G) ∼= S3 × C2).

The aim of this paper is the following characterization of groups with supersolvable automorphism
group.

Theorem 1. For every finite group G, the following statements are equivalent:

(1) Aut(G) is supersolvable.

(2) G is ultrasolvable or G ∼= H × C2 × C2 where H is ultrasolvable of odd order.

The proof is mostly self-contained and makes use of ideas of Corsi Tani and Laue [9].

2 A-solvable groups

Our notation is standard and follows Kurzweil–Stellmacher’s book [7]. From now on, G will always be
a finite group.

Definition 2. A group A acts on G via a homomorphism A → Aut(G) (in most cases we consider
A ≤ Aut(G) with the embedding homomorphism). A subnormal series 1 = G0 ⊴G1 ⊴ . . .⊴Gn = G is
called an A-series if each Gi is A-invariant, i. e. α(Gi) = Gi for all α ∈ A. If G has an A-series with
cyclic factors Gi/Gi−1 for i = 1, . . . , n, then G is called A-solvable.

Note that G is 1-solvable, Inn(G)-solvable or Aut(G)-solvable if and only if G is solvable, supersolvable
or ultrasolvable respectively (Inn(G) denotes the inner automorphism group of G). An A-series of G
with cyclic factors can be refined to an A-series with factors of prime order, because subgroups of
cyclic groups are characteristic. This will often be used in the following. In the usual manner, one
verifies that A-invariant subgroups of A-solvable groups are A-solvable. The same holds for quotients
by A-invariant normal subgroups.

We first prove [4, Theorem 1] with a simpler argument.

Theorem 3 (Durbin–McDonald). If G is ultrasolvable, then Aut(G) is supersolvable.

Proof. Let A := Aut(G). Let 1 = G0 ⊴ . . . ⊴ Gn = G be an A-series with cyclic factors. Let B ⊴ A
be the kernel of the action of A on Gn−1. Let C ⊴ A be the kernel of the action of A on G/G1. By
induction on |G|, we may assume that A/B ≤ Aut(Gn−1) and A/C ≤ Aut(G/G1) are supersolvable.
Then A/(B ∩ C) ≤ A/B × A/C is supersolvable. It suffices to show that D := B ∩ C is cyclic. Let
G/Gn−1 = ⟨x⟩Gn−1 and G1 = ⟨y⟩. We choose α ∈ D \ {1} with α(x) = xya such that a ≥ 0 is as small
as possible. Since α is uniquely determined by α(x), we must have a ≥ 1. Let β ∈ D be arbitrary with
β(x) = xyb. By Euclidean division, there exist q, r ∈ Z such that b = qa+ r and 0 ≤ r < a. Since

(β−1αq)(x) = β−1(x)yqa = xyqa−b = xyr,

it follows that r = 0 and β = αq. This shows that D = ⟨α⟩.

The next lemma is well-known, but we include a proof for sake of completeness. As usual, Oπ(G)
denotes the largest normal π-subgroup of G.
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Lemma 4 (Sylow tower property). Let G be supersolvable and n ∈ N. Let π be the set of primes
p ≥ n. Then G has a normal Hall π-subgroup. In particular, G is 2-nilpotent, i. e. G has a normal
2-complement.

Proof. We argue by induction on |G|. Let N ⊴ G be a minimal normal subgroup. Then N is a chief
factor and therefore q := |N | is a prime. By induction G/N has a normal Hall π-subgroupK/N ≤ G/N .
If q ≥ n, then K is a normal Hall π-subgroup of G. Thus, let q < n. Then N has a complement L
in K by the Schur–Zassenhaus theorem. Since |Aut(N)| = q − 1 has no prime divisor in π, we obtain
N ≤ Z(K) and K = N × L. It follows that L = Oπ(K) = Oπ(G) is a normal Hall π-subgroup of G.
The second claim follows with n = 3.

The following result generalizes [3, Lemma 1] and is related to the uniqueness in the Krull–Remak–
Schmidt theorem (see [6, I.12.6]).

Lemma 5. Let G = A×B with gcd(|A/A′|, |Z(B)|) ̸= 1. Then A is not characteristic in G.

Proof. By hypothesis, there exists a non-trivial homomorphism φ : A → A/A′ → Z(B). It is easy to
check that ψ : G→ G, (a, b) 7→ (a, φ(a)b) is an automorphism with ψ(A) ̸= A.

Corollary 6. Let P = A×B be a p-group such that A is characteristic in P . Then A = 1 or B = 1.

Now we prove [3, Lemma 2], which is a consequence of Laue [9, Satz 3].

Lemma 7. For every non-abelian p-group P , we have Op′(Aut(P )) = 1.

Proof. Let A := Op′(Aut(P )). Then the normal p-subgroup P/Z(P ) ∼= Inn(P )⊴Aut(P ) is centralized
by A. It follow that [P,A] ≤ Z(P ) < P , since P is non-abelian. From the theory of coprime actions
(see [7, 8.2.7]), we obtain P = [P,A]CP (A) and [P,A] = [P,A,A] ≤ [Z(P ), A]. Since Z(P ) is abelian,
we further know that

[P,A] ∩ CP (A) = [Z(P ), A] ∩ CZ(P )(A) = 1

by [7, 8.4.2]. Therefore, P = [P,A]×CP (A) is a decomposition into characteristic subgroups, because
A⊴Aut(P ). Corollary 6 implies P = CP (A) and A = 1.

3 Strictly p-closed groups

The following definition goes back to Baer [2].

Definition 8. Let p be a prime. Then G is called strictly p-closed if G has a normal Sylow p-subgroup
P such that G/P is abelian of exponent dividing p− 1, i. e. xp−1 ∈ P for all x ∈ G.

It is a routine exercise to show that subgroups and quotients of strictly p-closed groups are strictly
p-closed. Moreover, G is strictly p-closed if and only if G/Op(G) is strictly p-closed (see also Lemma 14
below). In particular, every p-group is strictly p-closed, and for 2-groups the converse is also true.

Lemma 9. Let G be strictly p-closed. If G acts irreducibly on an elementary abelian p-group V , then
|V | = p.
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Proof. We may assume that G acts faithfully on V . Let P be the unique Sylow p-subgroup of G. By
orbit counting, we have U := CV (P ) ̸= 1. Since P ⊴G, U is G-invariant. Since V is irreducible, U = V
and P = 1. Hence, G is abelian of exponent dividing p− 1. By Schur’s lemma, G is cyclic, say G = ⟨x⟩
(see [7, 8.3.3 or 8.6.1]). Let f ∈ GL(V ) be the linear map induced by x. Since xp−1 = 1, the minimal
polynomial of f divides Xp−1−1. It follows that f has an eigenvalue in F×

p . A corresponding eigenvector
generates a G-invariant subspace of dimension 1. Therefore, |V | = p (this also follows directly from [7,
8.6.1(b)]).

Now we are in a position to prove an extension of [3, Teorema 8(b)], which is related to [2, Theorem 2.1].
As usual, we denote the Frattini subgroup of G by Φ(G).

Theorem 10. Let P be a p-group and A ≤ Aut(P ). Then the following statements are equivalent:

(i) P is A-solvable.

(ii) P/Φ(P ) is A-solvable.

(iii) A is strictly p-closed.

Proof. Suppose first that P is A-solvable. Then the normal series Φ(P ) ≤ P can be refined to an A-
series Φ(P ) = P0⊴P1⊴ . . .⊴Pn = P such that |Pi/Pi−1| = p for i = 1, . . . , n using the Jordan–Hölder
theorem for operator groups (see [7, 1.8.1]). Hence, P/Φ(P ) is A-solvable. Now given the A-series as
above, A acts on×n

i=1 Pi/Pi−1 fixing each factor. The kernel B ⊴ A of this action is a p-group by a
theorem of Burnside (see [7, 8.2.9]). Since

A/B ≤
n

×
i=1

Aut(Pi/Pi−1) ∼= Cn
p−1

is abelian of exponent dividing p− 1, we conclude that A is strictly p-closed.

Suppose conversely that A is strictly p-closed. By standard group theory,

Ω := Ω(Z(P )) := {z ∈ Z(P ) : zp = 1}

is a characteristic non-trivial elementary abelian p-subgroup of P . By Lemma 9, there exists an A-
invariant subgroup Q ≤ Ω of order p. By induction on |P |, P/Q is A-solvable and so is P .

Since “most” p-groups have no non-trivial p′-automorphisms, there is no hope to classify ultrasolvable
(p-)groups. Concrete examples are the p-groups of maximal nilpotency class and order ≥ p4 (see [6,
Hilfssätze III.14.2, III.14.4]). The following corollary is not needed in the sequel, but interesting on its
own.

Corollary 11. A 2-group P is ultrasolvable if and only if Aut(P ) is 2-group.

Corollary 12 (Baer). Every strictly p-closed group is supersolvable.

Proof. Let G be strictly p-closed with normal Sylow p-subgroup P . Then P is G-solvable by Theo-
rem 10. Hence, G is supersolvable.

We obtain a partial converse of Corollary 12.
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Lemma 13. Let G be a supersolvable group such that Op′(G) = 1 for some prime p. Then G is strictly
p-closed.

Proof. By Lemma 4, G has a normal Sylow p-subgroup P (and no other normal Sylow subgroups).
By the Schur–Zassenhaus theorem (or Hall’s theorem for solvable groups), P has a complement K
in G. Since Op′(G) = 1, K acts faithfully on P . Moreover, P is a K-solvable group, because G is
supersolvable. By Theorem 10, K is strictly p-closed and so must be G.

It is easy to see that the condition Op′(G) = 1 is not fulfilled by strictly p-closed groups in gen-
eral. In order to obtain an equivalent characterization, we recall the notation Opp′(G)/Op(G) :=
Op′(G/Op(G)).

Lemma 14. For a supersolvable group G the following assertions are equivalent:

(1) G is strictly p-closed.

(2) Opp′(G) is strictly p-closed.

(3) Opp′(G)/Op(G) is abelian of exponent dividing p− 1.

Proof. It is clear that (1) implies (2) and (2) implies (3). Now assume (3). If p does not divide |G|,
then G = Op′(G) = Opp′(G) is strictly p-closed by hypothesis. Hence, we may assume that p divides
|G|. By Lemma 4, G has a normal Sylow q-subgroup Q, where q is the largest prime divisor of |G|.
Moreover, Q ≤ Opp′(G) and therefore q = p. Since G/Op(G) = G/Q is a p′-group, it follows again that
G = Opp′(G) is strictly p-closed.

Lemma 15 (Durbin–McDonald). Let P = Cpa1 × . . .× Cpan be an abelian p-group with 1 ≤ a1 ≤
. . . ≤ an. Then Aut(P ) is supersolvable if and only if a1 < . . . < an or P = C2 × C2.

Proof. If P ∼= C2×C2, then Aut(P ) ∼= GL(2, 2) ∼= S3 is supersolvable. Suppose next that a1 < . . . < an.
Let A := Aut(P ). By Theorem 10 and Corollary 12, it suffices to show that P/Φ(P ) ∼= Cn

p is A-solvable.
Define characteristic subgroups

Pi := {x ∈ P : xp
ai = 1}Φ(P ) ≤ P

for i = 1, . . . , n. Then P0 := Φ(P ) < P1 < . . . < Pn = P and |Pi : Pi−1| = p for i = 1, . . . , n. So we are
done.

Conversely, let ak = ak+1 for some k. Since Aut(Cak
p × Cak

p ) is a subgroup of A, we may assume that
P ∼= Cpa × Cpa in order to show that A is not supersolvable. Let P = ⟨x, y⟩ and x′, y′ ∈ P such that
{x′Φ(P ), y′Φ(P )} is a basis of the elementary abelian group P/Φ(P ) ∼= Cp×Cp. Recall that Burnside’s
basis theorem implies P = ⟨x′, y′⟩. It is easy to check that there exists an automorphism γ ∈ A such
that γ(x) = x′ and γ(y) = y′. This shows that the restriction map

Γ : A→ Aut(P/Φ(P )) ∼= GL(2, p)

is surjective. If p ≥ 5, then GL(2, p) (and A in turn) is not even solvable. For p = 3, GL(2, 3) ∼= Q8⋊C3

is not supersolvable by Lemma 4, for instance. Finally, let p = 2 and a ≥ 2. By Burnside’s theorem
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mentioned before, the kernel of Γ is a 2-group. Thus, |A| = 2s3 for some s ≥ 1. It is easy to check that
the maps α, β : P → P with

α(x) = y, α(y) = (xy)−1,

β(x) = y−1, β(y) = xy−1

are automorphisms of order 3 and ⟨α⟩ ≠ ⟨β⟩. In particular, A does not have a normal Sylow 3-subgroup.
By Lemma 4, A is not supersolvable.

We end this section by proving the converse of Theorem 3 for p-groups.

Theorem 16 (Corsi Tani). Let P ̸∼= C2 × C2 be a p-group such that Aut(P ) supersolvable. Then P
is ultrasolvable.

Proof. Suppose first that P is abelian. Then P ∼= Cpa1 × . . .×Cpan with a1 < . . . < an by Lemma 15. In
fact, we have shown in the proof of Lemma 15 that P/Φ(P ) is A-solvable, where A := Aut(P ). Hence,
P is ultrasolvable by Theorem 10. Now assume that P is non-abelian. By Theorem 10, it suffices to
show that Aut(P ) is strictly p-closed. But this follows from Lemma 7 and Lemma 13.

It is straight-forward to deduce a characterization of supersolvable nilpotent groups from Theorem 16,
but this will be generalized by our main theorem.

4 Proof of Theorem 1

Let V = C2 × C2 be the Klein four-group. If G is ultrasolvable, then Aut(G) is supersolvable by
Theorem 3. If H is ultrasolvable of odd order, then Aut(H × V ) = Aut(H)×S3 is supersolvable. Now
assume conversely that A := Aut(G) is supersolvable. Then G/Z(G) ∼= Inn(G) ≤ A is supersolvable
and so is G.

Case 1: G = H × V for some H ≤ G.
Suppose first that |H| is even. By Lemma 4, H is 2-nilpotent. In particular, gcd(|H/H ′|, |V |) ̸= 1.
As in the proof of Lemma 5, we construct an automorphism α : G → G, (h, v) 7→ (h, φ(h)v), where
φ : H → V is non-trivial. Since V has exponent 2, α is an involution. Let β ∈ Aut(V ) be of order 3.
We extend β to G by β(h) = h for all h ∈ H. Then β ∈ O2′(A) and γ := [α, β] = αβ−1αβ ∈ O2′(A)
by Lemma 4. We compute

γ(h, v) = (αβ−1α)(h, β(v)) = (αβ−1)(h, φ(h)β(v)) = α(h, β−1(φ(h))v) = (h, φ(h)β−1(φ(h))v)

for all (h, v) ∈ G. By construction, there exists h ∈ H such that w := φ(h) ̸= 1. Then β−1(w) ̸= w
and wβ−1(w) ̸= 1. This shows that γ has order 2, which contradicts γ ∈ O2′(A). Therefore, |H| is odd
and the claim follows by induction on |G|, because Aut(H) ≤ A is supersolvable.

Case 2: V is not a direct factor of G.
Let p be a prime divisor of |G|. Let π be the set of primes q > p. Then N := Oπ(G) is a normal Hall
π-subgroup by Lemma 4. For a Sylow p-subgroup P of G we further have that NP = Oπ∪{p}(G) is
characteristic in G. Arguing by induction on |G| (starting with the largest prime divisor p), it suffices
to show that P := PN/N ∼= P is A-solvable. Equivalently, by Theorem 10, we need that the image A
of A in Aut(P ) is strictly p-closed. We prove this via Lemma 14. Let Z := P ∩ Z(G) ≤ Z(P ). Since A
is supersolvable,

P/Z ∼= PZ(G)/Z(G) ≤ G/Z(G) ∼= Inn(G)
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is A-solvable. Let Ap := Op(A) and B := Opp′(A) = Ap⋊K for some complement K. We need to show
that K is abelian of exponent dividing p− 1. We define the auxiliary group

B̂ := P ⋊B = (P ⋊Ap)⋊K.

Since B is supersolvable and P/Z is B-solvable, there exists a B̂-series from Z to P to P ⋊ Ap in B̂
with factors of order p. Let C ⊴K be the kernel of the action of K on the direct factors of this series.
Then K/C is abelian of exponent dividing p − 1. Thus, it suffices to prove that C = 1. Note that
CZ(Ap) = CB(Ap)⊴A (using [7, 8.2.2]). In particular, C ⊴A.

By construction, we have [P ,C] ≤ Z. As in the proof of Lemma 5, it follows that

P = [P ,C]× CP (C).

The preimage P0 ≤ Z of [P ,C] is a direct factor of P . By Gaschütz’ theorem, P0 has a complement
K in G (see [7, 3.3.2]). Since P0 ≤ Z(G), we must have G = P0 ×K. Note that Z is A-invariant as
the unique Sylow p-subgroup of Z(G). Moreover, [P ,C] is A-invariant since C ⊴ A. It follows that
α(P0) ⊆ NP0 for α ∈ A. Hence, α(P0) ⊆ Z ∩NP0 = (Z ∩N)P0 = P0, i. e. P0 is A-invariant.

If P0 = 1, then C acts trivially on P and therefore C = 1. In this case we are done by Lemma 14
Next, let P0 ̸= 1. Since Aut(P0) ≤ A is supersolvable and P0 ̸∼= V , it follows from Theorem 16 that
P0 is ultrasolvable. Since P0 is A-invariant, it suffices to show that G/P0

∼= K is ultrasolvable. Every
direct factor of K is also a direct factor of G. So by hypothesis, V is not a direct factor of K. Since
Aut(K) ≤ A is supersolvable, K is ultrasolvable by induction. This completes the proof.

5 Fully solvable groups

We close this paper with an open problem. Recall that a subgroup H ≤ G is called fully invariant if
α(H) ≤ H for every endomorphism α : G→ G. Obviously, fully invariant subgroups are characteristic.
It is natural to call a group G fully solvable if there exists a series of fully invariant subgroups

1 = G0 ⊴ . . .⊴Gn = G

such that the factors Gi/Gi−1 are cyclic for i = 1, . . . , n. Fully solvable groups are certainly ultrasolv-
able. For abelian groups the converse is also true, because the characteristic subgroups constructed in
the proof of Lemma 15 are fully invariant (noticing that Φ(P ) = ⟨xp : x ∈ P ⟩ for every abelian p-group
P ).

On the other hand, the ultrasolvable dihedral group D8 is not fully solvable, since none of the three
maximal subgroups is fully invariant. Using the computer algebra system GAP [5], one can show that
there are 36 ultrasolvable groups and 22 fully solvable groups of order 32.

Problem 17. Find a “convenient” characterization of fully solvable groups.
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