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Abstract

It is a fun game to complete a partial character table of a finite group. We show that one can
reconstruct a missing row or column from a given table. The proof relies on deep properties of fully
ramified characters. Moreover, we extend a classification of groups with a “large” character degree
started by Snyder and continued by Durfee and Jensen.
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1 Introduction

Character tables of finite groups are complex square matrices satisfying a large number of arithmetical
properties, most prominently, the orthogonality relations (see [6] for a compilation). Filling in missing
values of a partial character table, can therefore be seen as a sudoku-like puzzle. A particular challenge
presents itself when an entire row or column of a given table is vacant. We show that in both cases
one can reconstruct uniquely the missing row or column by using only the given part of the table (i. e.
without using other properties of the underlying group).

Theorem 1. There are no finite groups whose character tables differ by only one row or only one
column.

As usual we consider character tables as identical if they only differ by permuting rows and columns.
It can happen that two rows (or columns) of a character table differ by exactly one entry. The corre-
sponding groups have been investigated by Wang–Du [17] and Bianchi–Herzog [1] respectively.

Our proof of Theorem 1 provides an explicit algorithm and we challenge the reader with some examples.
Playing this game further will sooner or later lead to so-called pseudo groups introduced by Brauer [3]
and investigated further by Harris [8] and Gagola [6] (a concrete example is given in the next section).
In his Problem 6, Brauer [2] has even asked to give necessary and sufficient conditions distinguishing
character tables from arbitrary matrices. We put forward the following open problem.

Problem 2. Do there exist distinct character tables which differ by at most one entry in every row
(or in every column)?
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In the course of the paper we need to revisit groups G with characters of “large” degree (compared to
|G|). Such groups were studied and classified by Snyder [16] and Durfee–Jensen [4]. In the last section
we use the opportunity to extend their classification.

2 Proof of Theorem 1

We split up Theorem 1 and start with the easier case of a missing column.

Theorem 3. There are no finite groups whose character tables differ by only one column.

Proof. Let C = (cij) ∈ Ck×(k−1) be the partial character table of a finite group G, where the column
d corresponding to g ∈ G is missing. We need to show that d is uniquely determined by C. Since
character tables are invertible, the columns of C span a vector space of dimension k−1. By the second
orthogonality relation, d spans the orthogonal complement of this space. In particular, d is uniquely
determined up to a scalar multiple. If C has only one row of the form (1, . . . , 1), then this row must
correspond to the trivial character. In this case d is uniquely determined.

Now assume that C has two rows (1, . . . , 1). Then there exists a non-trivial character χ ∈ Irr(G)
such that χ(h) = 1 for all h outside the conjugacy class of g. Let K := Ker(χ) < G. Then G \K is
the conjugacy class of g. It follows that |G : K| = 2 and |CG(g)| = 2. Moreover, χ(g) = −1. Since
χ(1)2+χ(g)2 = 2 = |CG(g)|, the orthogonality relation implies that ψ(g) = 0 for all ψ ∈ Irr(G)\{1G, χ}.
Hence, d = (1,−1, 0, . . . , 0)t up to permutation of rows.

Before we embark with the corresponding theorem for rows, we illustrate why it must lie deeper. The
following matrices differ only by the their last row:

1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 −1 −1 1
2 2 −2 0 0 0
8 −1 0 0 0 0





1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 −1 −1 1
2 2 −2 0 0 0
4 −2 0 0 0 0


The first matrix is the character table of the sharply 2-transitive Mathieu group M9

∼= C2
3 ⋊Q8. The

second fulfills the orthogonality relations and looks like the character table of a group of the form
C3 ⋊ Q8 or C3 ⋊ D8 (cf. [6, Definition 2.2, Theorem 2.3]). However such a group must have at least
seven conjugacy classes since CG(C3) is abelian of index 2. This gives rise to a pseudo group mentioned
in the introduction. We will see that larger examples of the same kind can be constructed easily.

Nevertheless, the proof of the following “row theorem” features some duality to Theorem 3.

Theorem 4. There are no finite groups whose character tables differ by only one row.

Proof. Let C = (cij) ∈ C(k−1)×k be the partial character table of G, where the row corresponding to
χ ∈ Irr(G) is missing. It suffices to show that χ is uniquely determined by C. We may assume that χ
is real, since otherwise χ is complex conjugate to a given character. Moreover, we can assume that χ is
not the trivial character. In particular, G ̸= 1. We first identity which column of C corresponds to the
trivial element. This must be a column filled with positive integers. Using that |ψ(g)| ≤ ψ(1) for every
g ∈ G and ψ ∈ Irr(G), the trivial element corresponds to an integral column with “maximal” entries.
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If there are more than one such identical columns (see Case 2 below), we pick one of them and assign
it to the trivial element.

Let 1 = g1, . . . , gk ∈ G be representatives for the conjugacy classes of G. Let d := χ(1) and

γst :=
k−1∑
i=1

ciscit (1 ≤ s, t ≤ k).

By the second orthogonality relation, χ(gs) = −1
dγ1s for s = 2, . . . , k. Hence, χ is uniquely determined

by d.

Case 1: There exist 1 < s < t such that γst ̸= 0.
Since χ(gs)χ(gt) = −γst, we have χ(gs) ̸= 0 ̸= χ(gt). It follows that

d2 =
γ1sγ1t

χ(gs)χ(gt)
= −γ1sγ1t

γst
,

and d is uniquely determined by C (note that d > 0).

Case 2: γst = 0 for all 1 < s < t.
Since χ cannot vanish identically on G \ {1} (otherwise [χ, 1G] ̸= 0), there exists r > 1 such that
χ(1)χ(gr) = γ1r ̸= 0. Without loss of generality, let r = 2. Then γ2s = 0 implies χ(gs) = 0 for
s = 3, . . . , k. This situation was studied by Gagola [5]. We repeat some of his arguments for the
convenience of the reader. For every ψ ∈ Irr(G) \ {χ} we have

0 = [ψ(1)1G − ψ, χ] =
1

|G|
(
ψ(1)− ψ(g2)

)
χ(g2)

since χ is non-trivial. This yields ψ(g2) = ψ(1), i. e. the first two columns of C are identical. Moreover,
g := g2 is contained in the kernel of every ψ ∈ Irr(G) \ {χ}. Since γ1s = 0 for s ≥ 3, none of the other
columns of C is identical to the first column. This shows that

N := gG ∪ {1} =
⋂

ψ∈Irr(G)\{χ}

Ker(ψ)⊴G

is a minimal normal subgroup of G. Since all non-trivial elements of N are conjugate, N must be an
elementary abelian p-group. By Clifford theory, χ is the only irreducible character of G lying over some
λ ∈ Irr(N) \ {1N} and λ is G-conjugate to all non-trivial characters of N . It follows that λ is fully
ramified in its stabilizer Gλ and

|G : Gλ| = | Irr(N)| − 1 = |N | − 1.

Moreover, χ = 1
eλ

G where e is the ramification index of λ (see [13, Lemma 8.2]). Note that |G/N | =∑
ψ ̸=χ ψ(1)

2 = γ11 is determined by C. For a prime q ̸= p, χ vanishes on the q-singular elements. This
means that χ has q-defect 0 and

dp′ = |G|p′ = |G/N |p′

(see [13, Corollary 4.7]). From |G| = γ11 + d2 = |G/N |+ d2 we also get |N | = 1 + d2

|G/N | and

d2p = |G/N |p.

We have thus shown that χ is determined by p alone. Notice further that

|Gλ/N | = e2 =
(λG(1)
χ(1)

)2
=

|G/N |2

d2
= |G/N |p,
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i. e. Gλ/N is a Sylow p-subgroup of G/N .

Removing the second column of C reveals the character table of G/N . The following property can be
read off from this character table (see [13, Corollary 3.12]).

Case 2.1: G/N has a non-cyclic Sylow q-subgroup of some odd prime q.
Suppose that Gλ = N . Then

|G : N | = |G : Gλ| = |N | − 1 = |G : CG(g)|

yields N = CG(g). Consequently, G is a Frobenius group with kernel N and complement isomorphic
to G/N (see [11, Theorem 6.7]). However, it is well-known that the Sylow subgroups of a Frobenius
complement are cyclic or quaternion groups (see [11, Theorem 6.11]). This contradiction shows that
N < Gλ and e > 1. A theorem attributed to Gagola and presented with an elementary (but long)
proof by Isaacs [12, Theorem 5.1] states that

|G/N |p′ < |N | < |Gλ : N | = |G/N |p.

For every prime q ̸= p, we have |G/N |q ≤ |G/N |p′ < |G/N |p ≤ |G/N |q′ . Hence, p is uniquely deter-
mined by γ11 = |G/N |.

For the remainder of the proof we assume that all Sylow subgroups of G/N of odd order are cyclic.
If |Gλ/N | = |G/N |p ̸= 1, then Gλ/N cannot be cyclic, as otherwise λ would extend to Gλ. Hence, it
suffices to distinguish p = 2 from |G/N |p = 1. In the latter, case d = |G/N | is independent of p. If a
Sylow 2-subgroup P/N of G/N is cyclic, then clearly |G/N |p = 1. Thus, we assume that P/N is not
cyclic. The next case can also be read off from the character table of G/N by [14, Theorem A].

Case 2.2: |P/N : (P/N)′| > 4.
Assuming Gλ = N , we end up with a Frobenius group as in Case 2.1. But then P/N must be a
quaternion group with |P/N : (P/N)′| = 4. This contradiction shows that p = 2.

Case 2.3: |P/N : (P/N)′| = 4.
Here, P/N has a cyclic subgroup Q/N of index 2. If |P/N | = 4, then again G/N cannot be isomorphic
to a Frobenius complement and we have p = 2. Hence, let |P/N | ≥ 8. If p = 2, then we may assume
that Gλ = P by Sylow’s theorem. Now λ extends to Q. This implies e = 2 and |P/N |2 = e2 = 4,
against our assumption. Therefore, p ̸= 2, |G/N |p = 1 and d = |G/N |. This completes the proof.

The two abelian groups of order 4 show that character tables can differ by only two columns, two rows
or by just k entries, where k is the total number of characters. It might be possible to reconstruct a
row and a column of a partial character table simultaneously, but this seems to require an analysis
of characters vanishing on all but three conjugacy classes. For instance, the reader may try to decide
which of the following matrices are character tables (here i =

√
−1):

1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −2 0
2 0 0 0 2 −2





1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −2 1
4 0 0 0 1 −2





1 1 1 1 1 1
1 1 −1 −1 1 1
1 −1 i −i 1 1
1 −1 −i i 1 1
4 0 0 0 −3 1
8 0 0 0 1 −1


The proofs of our theorems in combination with [13, Corollary 3.12] and [14, Theorem A] provide a
practical algorithm to complete a partial character table. We challenge the reader to add three rows
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and three columns to turn the following matrix into a character table of size 11×11. There is only one
way to do this, but two non-isomorphic groups share this character table:



1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 i i
2 −2 −2 2 −1 1 0 0
2 2 2 2 −1 −1 0 0
3 3 −1 −1 0 0 −1 1
3 3 −1 −1 0 0 1 −1
3 −3 1 −1 0 0 i −i



3 Large character degrees

The reader might have noticed that the difficulties in our proofs arise from groups with “large” character
degrees. Gagola’s bound |N | < |G/N |p, used in Theorem 4, has been improved in [10, Theorem 1.2] as
follows:

Theorem 5. Let G be a group of order d(d+ e) where d is the degree of an irreducible character and
e > 1 is an integer. Then |G| ≤ e4 − e3.

While [10] depends on the classification of the finite simple groups, our proof of Theorem 4 (relying on
[14, Proposition 2.1]) is CFSG-free. Due to a construction by Isaacs [12], the bound |G| ≤ e4 − e3 is
best possible whenever e is a power of a prime. The authors of [10] have asked to classify those groups.
Building on work of Snyder [16] for e = 2, 3, Durfee–Jensen [4] have classified the groups with 2 ≤ e ≤ 6
(there are infinitely many groups for e = 1). For e = 7, they could not finish their classification since
the groups of order d(d + e) = 42 · 49 = 2958 are not available in the small groups library. However,
these groups can be constructed using the GrpConst package in GAP [7] (see also [9]). There are just
four of them with an irreducible character of degree d = 42. We extend the classification to e ≤ 11.
Most group orders can be handled with GAP. The difficult cases, which require special attention, are
settled in the following lemmas.

Lemma 6. Let G be a group of order d(d + e) with χ ∈ Irr(G) of degree d. Then (d, e) is not one of
the following pairs:

(i) (32, 8).

(ii) (48, 8).

(iii) (54, 9).

(iv) (55, 9).

(v) (54, 10).

(vi) (80, 10).

(vii) (64, 11).

Proof. First we recall some general facts from Clifford theory. LetN⊴G. Let θ ∈ Irr(N) be a constituent
of χN with ramification index e and k := |G : Gθ|, where Gθ is the stabilizer of θ. Then χ(1) = keθ(1)
such that e | |Gθ : N | and e2 ≤ |Gθ : N | (see [13, Theorem 5.12 and the subsequent remark]). Moreover,
kθ(1)2 < |N | and

χ(1)2 ≤ |G : N | |N | − 1

θ(1)2

unless N = 1. If N is abelian, then χ(1) = ke | |G : N | and if N ≤ Z(G), then χ(1) = e.
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(i) Here |G| = 28 · 5. Recall that N := O2(G) is the kernel of the transitive action of G on the cosets
of a Sylow 2-subgroup. In particular, G/N is isomorphic to a subgroup of S5. It follows that
|N | ≥ 26. But this leads to the contradiction

25 = χ(1) = keθ(1) < |G : N |2
√

|N | = 28√
|N |

≤ 25.

(ii) Here |G| = 27 · 3 · 7. By the classification of the transitive groups of degree 21 in GAP, we
obtain O2(G) ̸= 1. Hence, there exists a minimal normal subgroup N ≤ O2(G). Since N is
(elementary) abelian and 48 = χ(1) | |G : N |, it follows that |N | ≤ 8. On the other hand, we
have χ(1)2 ≤ |G| − |G : N |, which forces |N | = 8. Since k divides χ(1) = 48 and k < |N |, we get
k ≤ 6. But now

28 · 32 = χ(1)2 ≤ |G : N |k = 25 · 32 · 7,
a contradiction.

(iii) Here |G| = 2 · 35 · 7. There exists a normal subgroup of order 35 · 7, and by Sylow’s theorem G
has a normal Sylow 7-subgroup N . Then χ(1)2 = 22 · 36 = |G| − |G : N | and therefore k = 6 and
e = 9. This is impossible since θ extends to Gθ by [13, Corollary 6.2].

(iv) Here |G| = 55 · 64 = 26 · 5 · 11. Then χ has 11-defect 0 and therefore O11(G) = 1. By Sylow’s
theorem, G has 26 · 5 Sylow 11-subgroups. Hence, G is a Frobenius group with kernel K of order
26 · 5. By Thompson’s theorem on Frobenius kernels, K is nilpotent. Therefore, K and G have a
normal Sylow 5-subgroup. But this contradicts the fact that χ has 5-defect 0.

(v) Here |G| = 27 · 33. Then χ has 3-defect 0 and therefore O3(G) = 1. Let N := O2(G). By the
Hall–Higman lemma, CG(N) ≤ N (see [11, Theorem 3.21]). Let P be a Sylow 3-subgroup of G.
Since P acts faithfully on N/Φ(N), we obtain |N | ≥ |N/Φ(N)| ≥ 26. Suppose that |N | = 26.
Then N is elementary abelian and Gθ = N . In particular, P has a regular orbit on Irr(N). By
[13, Corollary 2.12], P also has a regular orbit on N . Using the local structure of GL(6, 2), one
can show with GAP that this is impossible. Therefore, |N | = 27 and G = N ⋊ P . We can now
determine the candidates for N with the small groups library (there are four such groups with
an automorphism group of order divisible by 27). For each candidate we construct G and check
that χ does not exist.

(vi) Here |G| = 25 · 32 · 52. Since χ has 2-defect 1, it must lie in a 2-block of defect 1. In particular,
N := O2(G) has order at most 1. If N ̸= 1, then we derive the contradiction

28 · 52 = χ(1)2 ≤ |G : N |(|N | − 1) = 24 · 32 · 52.

Hence, N = 1. In the same way we can show that O5(G) = 1. If G is solvable, we must have
N := O3(G) ̸= 1 and CG(N) ≤ N by the Hall–Higman lemma. This cannot happen since
G/CG(N) ≤ GL(3, 2) is too small. Thus, G is non-solvable. Let N be a minimal normal subgroup
of G. If N ∼= A6, then CG(N) ̸= 1 is solvable normal subgroup of G since N ∩CG(N) = Z(N) = 1
and G/NCG(N) ≤ Out(A6) ∼= C2

2 . This contradicts O5(G) = 1. If N ∼= A2
5, then N must contain

an irreducible character of degree 80 or 40, because |G : N | = 2. This is not the case since
A5 has character degrees 1, 3, 4, 5. Finally, let N ∼= A5. If M := CG(N) is solvable, we get the
contradiction CM (O3(M)) ≤ M as above. If M is non-solvable, then we find another normal
subgroup M ⊴G isomorphic to A2

5. This is impossible as we have just seen.

(vii) Here |G| = 26 · 3 · 52. Since χ has 2-defect 0, we have O2(G) = 1. As in the previous case,
we can show that G has to be non-solvable. Let N be a non-abelian minimal normal subgroup.
Then N ∼= A5 and CG(N) contains an abelian minimal normal subgroup of G. This leads to a
contradiction as before.
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Lemma 7. There are exactly 12 groups of order 3584 with an irreducible character of degree 56.

Proof. Let G be a group of order 3584 = 29 · 7 with χ ∈ Irr(G) of degree 56. Let N := O2(G). By
the classification of transitive subgroups of S7, we have |N | ≥ 28. Suppose first that |N | = 28. Let
M/N = O7(G/N). Then |M | = 28 ·7 and χ lies over some θ ∈ Irr(M) of degree 28. A GAP computation
shows that there are 11 possible isomorphism types for N . However, in each case G/N ∼= D14 is not
isomorphic to a subgroup of Out(N). This contradiction shows that |N | = 29 and G ∼= N ⋊ C7.

Now let θ ∈ Irr(N) and λ ∈ Irr(Z(N)) be constituents of χN and χZ(N) respectively. If G/N acts
trivially on Z(N), then λ is G-invariant and we derive the contradiction

562 ≤ |G : Z(N)| ≤ |G|/2 = 56 · 32.

Hence, G/N acts faithfully on Z(N) and it follows that |Z(N)| ≥ 8. On the other hand, 64 = θ(1)2 ≤
|N : Z(N)| ≤ 26 implies |Z(N)| = 8. Since G/N acts irreducibly on Z(N), Z(N) is a minimal normal
subgroup of G. In particular, Z(N) is elementary abelian and Z(N) ⊆ N ′. We use GAP to enumerate
the groups of order 26 with an automorphism of order 7. In this way we find just 7 possibilities for
N/Z(N). With the notation of [15, Definition 2.1], N is an immediate descendant of N/Z(N) and
those can be computed with the AnuPQ package in GAP. It turns out that N/Z(N) must be elementary
abelian. Hence, Z(N) = N ′ = Φ(N). In particular, N has rank 6 and p-class 2. According to the small
groups library, those groups have the form N = SmallGroup(29, a) with 7,532,393 ≤ a ≤ 10,481,221.
Running through these groups with GAP yields the following values for a:

10475413, 10476872, 10477010, 10477017, 10481182, 10481184, 10481185, 10481201, 10481221

(we made use of the AutPGrp package to compute Aut(N)). If a ̸= 10481201, then |Aut(N)|7 = 7 and
there is a unique group G. If a = 10481201, then |Aut(N)|7 = 72 and there are just four non-isomorphic
groups G.

The final theorem summarizes our findings.

Theorem 8. Let k be the number of non-isomorphic groups G of order n = d(d+ e) where 2 ≤ e ≤ 11
and G has an irreducible character of degree d. Then (d, n)k is given in the table below:

e (d, n)k Σ

2 (1, 3), (2, 8)2 3
3 (1, 4)2, (2, 10), (6, 54)2 5
4 (1, 5), (2, 12)2, (3, 21), (4, 32)7, (12, 192)6 17
5 (1, 6)2, (2, 14), (3, 24)3, (4, 36)2, (20, 500)3 11
6 (1, 7), (2, 16)9, (3, 27)2, (4, 40)2, (5, 55), (6, 72)3 18
7 (1, 8)5, (2, 18)3, (5, 60), (6, 78), (8, 120), (9, 144), (42, 2058)4 16
8 (1, 9)2, (2, 20)2, (4, 48)10, (6, 84)2, (8, 128)75, (12, 240)2, (24, 768)11, (56, 3584)12 116
9 (1, 10)2, (2, 22), (3, 36)2, (4, 52), (7, 112), (8, 136), (12, 252), 42

(16, 400)2, (18, 486)13, (72, 5832)18

10 (1, 11), (2, 24)11, (3, 39), (6, 96)12, (8, 144)5, (9, 171), (14, 336), (18, 504)2 34
11 (1, 12)5, (2, 26), (3, 42), (4, 60)4, (5, 80), (16, 432)5, (21, 672)2, (24, 840), (110, 13310)6 26
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