On the size of coset unions

Benjamin Sambale* and Marius Tărnăuceanu ${ }^{\dagger}$

June 9, 2021

Abstract

Let $g_{1} H_{1}, \ldots, g_{n} H_{n}$ be cosets of subgroups H_{1}, \ldots, H_{n} of a finite group G such that $g_{1} H_{1} \cup \ldots \cup$ $g_{n} H_{n} \neq G$. We prove that $\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq \gamma_{n}|G|$ where $\gamma_{n}<1$ is a constant depending only on n. In special cases we show that $\gamma_{n}=\left(2^{n}-1\right) / 2^{n}$ is the best possible constant with this property and we conjecture that this is generally true.

Keywords: union of cosets, subgroup covering
AMS classification: 20D30, 20D60, 05E16

1 Introduction

It is well-known that a finite group G cannot be the union of two proper subgroups. In fact, an easy counting argument shows that such a union covers at most three quarters of the elements of G. It is equally well-known that G is never a union of conjugates of a proper subgroup H. Cameron-Cohen (4) have shown more precisely that there are at least $|H|$ elements outside such a union. On the other hand, it may happen that G is covered by $n \geq 3$ arbitrary proper subgroups $H_{1}, \ldots, H_{n} \leq G$. While many authors classified such groups for a given n (the interested reader is referred to the survey [2]), we are interested in the situation where $H_{1} \cup \ldots \cup H_{n} \neq G$. We show that a portion of elements, depending only on n, lies outside this union. In fact, this holds more generally for union of cosets of subgroups. To the authors' knowledge, this has apparently not been observed in the literature. In the first part of the paper we prove more precisely that $|G| /(2 n!)$ elements lie outside such a coset union. In the second part we investigate our conjecture that even $|G| / 2^{n}$ elements lie outside the union. For elementary abelian groups we obtain in Theorem 6 the best possible bound of that kind by using a linear algebra approach due to Alon-Füredi [1. We like to mention that there are other open conjectures on union of cosets such as the long-standing Herzog-Schönheim Conjecture [5].

2 Main result

Theorem 1. For every positive integer n there exists a constant $\gamma_{n}<1$ with the following property: For every finite group G and every n subgroups $H_{1}, \ldots, H_{n} \leq G$ and $g_{1}, \ldots, g_{n} \in G$ either $g_{1} H_{1} \cup \ldots \cup$ $g_{n} H_{n}=G$ or $\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq \gamma_{n}|G|$.

[^0]Proof. We argue by induction on n. For $n=1$ the claim holds with $\gamma_{1}=\frac{1}{2}$ by Lagrange's Theorem. Now let $n \geq 2, H_{1}, \ldots, H_{n} \leq G$ and $g_{1}, \ldots, g_{n} \in G$ such that $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \neq G$. Let $s_{i}:=\left|G: H_{i}\right|$ for $i=1, \ldots, n$. We may assume that $s_{1} \leq \ldots \leq s_{n}$. Let α_{n} be the smallest positive integer such that $\gamma_{n-1}+\frac{1}{\alpha_{n}}<1$. If $s_{n} \geq \alpha_{n}$, then induction yields

$$
\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq\left|g_{1} H_{1} \cup \ldots \cup g_{n-1} H_{n-1}\right|+\left|g_{n} H_{n}\right| \leq\left(\gamma_{n-1}+\frac{1}{s_{n}}\right)|G| \leq\left(\gamma_{n-1}+\frac{1}{\alpha_{n}}\right)|G|
$$

Now let $s_{n} \leq \alpha_{n}$ and $H:=H_{1} \cap \ldots \cap H_{n}$. Using Poincaré's formula $\left|G: H_{i} \cap H_{j}\right| \leq\left|G: H_{i}\right|\left|G: H_{j}\right|$ repeatedly, we get $|G: H| \leq s_{1} \ldots s_{n} \leq \alpha_{n}^{n}$. Since $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}$ is a union of H-cosets, it follows that

$$
\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq|G|-|H| \leq\left(1-\frac{1}{\alpha_{n}^{n}}\right)|G|
$$

Hence, the claim holds with

$$
\gamma_{n}:=\max \left\{\gamma_{n-1}+\frac{1}{\alpha_{n}}, 1-\frac{1}{\alpha_{n}^{n}}\right\}<1
$$

The proof of Theorem 1 yields only a very crude bound on γ_{n}. With some more effort we can prove an effective bound as follows.

Proposition 2. Theorem 1 holds with $\gamma_{n}=\frac{2 n!-1}{2 n!}$.
Proof. We reuse the notation from the proof of Theorem 1. We already know that the claim holds for $n=1$. Thus, let $n \geq 2$. If $n+1 \leq s_{1} \leq \ldots \leq s_{n}$, then

$$
\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq\left|H_{1}\right|+\ldots+\left|H_{n}\right| \leq \frac{n}{n+1}|G| \leq \frac{2 n!-1}{2 n!}|G|
$$

as desired.
Now let $s_{1} \leq n$. Since G is the union of all cosets of H_{1}, there exists a coset $g H_{1}$ such that $g H_{1} \nsubseteq$ $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}$. Since $\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right|=\left|g^{-1}\left(g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right)\right|$, we may replace g_{i} by $g^{-1} g_{i}$ for $i=1, \ldots, n$. Then $H_{1} \nsubseteq g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}$ and $H_{1} \cap g_{1} H_{1}=\varnothing$. It follows that

$$
g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \subseteq\left(G \backslash H_{1}\right) \dot{\cup} \bigcup_{i=2}^{n}\left(g_{i} H_{i} \cap H_{1}\right)
$$

If $g_{i} H_{i} \cap H_{1} \neq \varnothing$, then $g_{i} H_{i} \cap H_{1}=h_{i}\left(H_{i} \cap H_{1}\right)$ for some $h_{i} \in H_{1}$. By induction on n, we conclude that

$$
\left|\left(G \backslash H_{1}\right) \dot{\cup} \bigcup_{i=2}^{n}\left(g_{i} H_{i} \cap H_{1}\right)\right| \leq \frac{s_{1}-1}{s_{1}}|G|+\gamma_{n-1}\left|H_{1}\right| \leq \frac{s_{1}+\gamma_{n-1}-1}{s_{1}}|G| .
$$

Since $\gamma_{n-1}-1<0$, it follows that

$$
\frac{s_{1}+\gamma_{n-1}-1}{s_{1}} \leq \frac{n+\gamma_{n-1}-1}{n}=\frac{2 n!+2(n-1)!-1-2(n-1)!}{2 n!}=\gamma_{n}
$$

as desired.

In most cases cosets can cover more elements than subgroups. For instance, if G is a p-group, then two distinct cosets of a maximal subgroup cover $\frac{2}{p}|G|$ elements while two distinct maximal subgroups only cover $\frac{2 p-1}{p^{2}}|G|$ elements (see also Theorem 6 below).
In order to compute a lower bound on γ_{n}, let us consider an elementary abelian 2-group $G=$ $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ rank n. Let $H_{i}:=\left\langle x_{j}: j \neq i\right\rangle$. Then $H_{1} \cup \ldots \cup H_{n}=G \backslash\left\{x_{1} \ldots x_{n}\right\}$ and therefore $\gamma_{n} \geq\left(2^{n}-1\right) / 2^{n}$ for all $n \geq 1$. If we restrict ourselves to union of subgroups, we can show that this bound is indeed optimal for small n.

Proposition 3. For every finite group G and every set of subgroups $H_{1}, \ldots, H_{n} \leq G$ with $n \leq 5$ either $H_{1} \cup \ldots \cup H_{n}=G$ or $\left|H_{1} \cup \ldots \cup H_{n}\right| \leq \frac{2^{n}-1}{2^{n}}|G|$. Equality can only hold if $\left|G: H_{1} \cap \ldots \cap H_{n}\right|=2^{n}$.

Proof. We may assume that $n \geq 2, H_{1} \cup \ldots \cup H_{n} \neq G$ and $H_{i} \nsubseteq \bigcup_{j \neq i} H_{j}$ for $i=1, \ldots, n$. Let $N:=\{1, \ldots, n\}$ and $H_{I}:=\bigcap_{i \in I} H_{i}$ for $I \subseteq N$. Suppose first that $L:=H_{N \backslash\{i\}} \nsubseteq H_{i}$ for some i, say $i=1$. Let $U:=G \backslash \bigcup_{i=2}^{n} H_{i}$. By induction on n we have $|U| \geq|G| / 2^{n-1}$. Moreover, U is a union of L-cosets. If $g \in G$ and $x \in g L \cap H_{1}$, then

$$
\left|g L \cap H_{1}\right|=\left|x\left(L \cap H_{1}\right)\right|=\left|L \cap H_{1}\right|=\left|H_{N}\right| .
$$

Hence, $\left|U \cap H_{1}\right| \leq \sum_{g L \subseteq U}\left|H_{N}\right|=\frac{|U|}{|L|}\left|H_{N}\right|$. It follows that

$$
\left|G \backslash \bigcup_{i=1}^{n} H_{i}\right|=\left|U \backslash H_{1}\right|=|U|-\left|U \cap H_{1}\right| \geq|U|\left(1-\frac{1}{\left|L: H_{N}\right|}\right) \geq \frac{|G|}{2^{n}}
$$

as desired. Equality can only hold if $|U|=|G| / 2^{n-1}$ and $\left|L: H_{N}\right|=2$. In this case, induction yields $|G: L|=2^{n-1}$ and $\left|G: H_{N}\right|=2^{n}$.
Hence, in the following we will assume that $H_{N \backslash\{i\}} \subseteq H_{i}$ for $i=1, \ldots, n$. In particular, $n \geq 3$. Since $H_{1} \cup \ldots \cup H_{n}$ is a union of H_{N}-cosets, we may also assume that $\left|G: H_{N}\right|>2^{n}$ as in the proof of Theorem 1. We need to show the strict inequality $\left|H_{1} \cup \ldots \cup H_{n}\right|<\frac{2^{n}-1}{2^{n}}|G|$. Using

$$
\left|H_{1} \cup \ldots \cup H_{n}\right| \leq\left|H_{1} \cup \ldots \cup H_{n-1}\right|+\left|H_{n}\right|-\left|H_{1} \cap H_{n}\right| \leq\left(\gamma_{n-1}+\frac{1}{s_{n}}-\frac{1}{s_{n}^{2}}\right)|G|
$$

and induction, the indices $s_{i}:=\left|G: H_{i}\right|$ can be bounded. In particular, there are only finitely many choices. By using

$$
\left|G: H_{I}\right|\left|\left|G: H_{I \cup J}\right| \leq\left|H_{I \cap J}: H_{I}\right|\right| G: H_{J} \left\lvert\,=\frac{\left|G: H_{I}\right|\left|G: H_{J}\right|}{\left|G: H_{I \cap J}\right|}\right.
$$

for $I, J \subseteq N$, we can enumerate all possible indices $\left|G: H_{I}\right|$ for $I \subseteq N$ by computer. The claim can then be checked with the exclusion-inclusion principle. Note that for $n=3$ this becomes

$$
\left|H_{1} \cup H_{2} \cup H_{3}\right|=\left(\frac{1}{s_{1}}+\frac{1}{s_{2}}+\frac{1}{s_{3}}-\frac{2}{\left|G: H_{N}\right|}\right)|G|
$$

where $9 \leq\left|G: H_{N}\right|=\left|G: H_{1} \cap H_{2}\right| \leq s_{1} s_{2}$ and $s_{1} \leq s_{2} \leq s_{3}$. It is easy to see that this implies $\left|H_{1} \cup H_{2} \cup H_{3}\right| \leq \frac{7}{9}|G|$ with equality if and only if $s_{1}=s_{2}=s_{3}=3$. For $n=4$ we obtain similarly

$$
\left|H_{1} \cup \ldots \cup H_{4}\right| \leq\left(\frac{1}{s_{1}}+\ldots+\frac{1}{s_{4}}-\frac{1}{s_{1} s_{2}}-\frac{1}{s_{1} s_{3}}-\ldots-\frac{1}{s_{3} s_{4}}+\frac{3}{\left|G: H_{N}\right|}\right)|G|
$$

where $\left|G: H_{N}\right| \geq 17$ (in fact, $\left|G: H_{N}\right| \geq 18$ since $\left|G: H_{N}\right|$ cannot be a prime). It can be seen that this is again strictly less than $\frac{15}{16}|G|$.

Finally, let $n=5$. Here we first estimate the union of four out of five subgroups. This leaves us with a short list of exceptional cases. In all those cases there exist subgroups $A, B, C, D \in\left\{H_{1}, \ldots, H_{5}\right\}$ with the following indices

$$
\begin{aligned}
|G: A \cap B| & =4, & |G: C \cap D| & =|G: C||G: D|, \\
|G: A \cap B \cap C| & =2|G: C|, & |G: A \cap B \cap D| & =2|G: D| .
\end{aligned}
$$

From $|G: A \cap B|=4$ we obtain $|G: A|=|G: B|=2$ and $A \cap B \unlhd G$ (the proof of Proposition 2 now already yields $\gamma_{5}=31 / 32$, but we need a strict inequality here). In particular ($A \cap B$) $C \leq G$ with $|(A \cap B) C: A \cap B|=|C: A \cap B \cap C|=2$. Thus, $A, B,(A \cap B) C$ are the maximal subgroups of G containing $A \cap B$ and therefore, $G=A \cup B \cup(A \cap B) C$. From $|G: A \cap B \cap D|=2|G: D|=\mid G:$ $D \cap A|=|G: D \cap B|$ we obtain $D \cap A=D \cap B$. It follows that

$$
D=(D \cap A) \cup(D \cap B) \cup(D \cap(A \cap B) C)=(D \cap A) \cup(D \cap(A \cap B) C) .
$$

Since D is not the union of two proper subgroups, we conclude that $D \subseteq(A \cap B) C$. But also $C \subseteq$ $(A \cap B) C$. Now $G=C D \subseteq(A \cap B) C$, because $|G: C \cap D|=|G: C||G: D|$. Contradiction.

We remark that the following alternative procedure applies more generally to union of cosets. Note that G acts on $\bigcup_{i=1}^{n} G / H_{i}$ by left multiplication. The kernel N of this action is contained in $H_{1} \cap \ldots \cap H_{n}$. Since $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}$ is the union of the cosets in $g_{1}\left(H_{1} / N\right) \cup \ldots \cup g_{n}\left(H_{n} / N\right)$, we may replace G by G / N. Then G is isomorphic to a subgroup of a direct product of symmetric groups $\prod_{i=1}^{n} S_{\left|G: H_{i}\right|}$. In principle we can enumerate those subgroups by computer, but doing so becomes impractical when n is large.

3 Nilpotent groups

In order to extend Proposition 3 to other cases, we provide a reduction theorem for nilpotent groups. Let $\delta_{n}(G)$ be the largest constant such that $\left|G \backslash\left(g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right)\right| \geq \delta_{n}(G)|G|$ whenever $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \neq$ G. We wish to show that $\delta_{n}(G) \geq 1 / 2^{n}$.

Lemma 4. Let $n \geq 1$. Suppose that for every p-group P and every $m \leq n$ we have $\delta_{m}(P) \geq 1 / 2^{m}$. Then $\delta_{n}(G) \geq 1 / 2^{n}$ for every nilpotent group G.

Proof. Let G be a nilpotent group. Let p_{1}, \ldots, p_{k} be the distinct prime divisors of $|G|$. Let $P_{i}:=\mathrm{O}_{p_{i}}(G)$ the Sylow p_{i}-subgroup and $Q_{i}:=\mathrm{O}_{p_{i}^{\prime}}(G)$ such that $G=P_{1} \times \ldots \times P_{k}$. Let $g_{1} H_{1}, \ldots, g_{n} H_{n}$ be cosets of subgroups of G such that $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \neq G$. Suppose that $\left|G: H_{1}\right|$ is divisible by p_{i} and p_{j} with $i \neq j$. Let $K:=H_{1} \mathrm{~N}_{P_{i}}\left(H_{1}\right)$ and $L:=H_{1} \mathrm{~N}_{P_{j}}\left(H_{1}\right)$ Then $g_{1} H_{1}=g_{1}(K \cap L)=g_{1} K \cap g_{1} L$ and $g_{1} K \cup g_{2} H_{2} \cup \ldots \cup g_{n} H_{n} \neq G$ or $g_{1} L \cup g_{2} H_{2} \cup \ldots \cup g_{n} H_{n} \neq G$. Thus, we may replace H_{1} by K or L respectively. Since every subgroup of G is subnormal, we may continue in this way until $\left|G: H_{1}\right|$ is a prime power. We repeat this process with H_{i} for $i=2, \ldots, k$. Then every H_{i} contains a unique Q_{j}.
Let $\mathcal{H}_{i}:=\left\{H_{j}: Q_{i} \subseteq H_{j}\right\}$ for $i=1, \ldots, k$. Then $\left\{H_{1}, \ldots, H_{n}\right\}$ is the disjoint union of $\mathcal{H}_{1}, \ldots, \mathcal{H}_{k}$. In particular, $n=\left|\mathcal{H}_{1}\right|+\ldots+\left|\mathcal{H}_{k}\right|$. Moreover, an element $\left(x_{1}, \ldots, x_{k}\right) \in P_{1} \times \ldots \times P_{k}$ does not lie in $g_{1} H_{1} \cup g_{2} H_{2} \cup \ldots \cup g_{n} H_{n}$ if and only if $x_{i} Q_{i}$ does not lie in $\bigcup_{H_{j} \in \mathcal{H}_{i}} g_{j}\left(H_{j} / Q_{i}\right)$ for $i=1, \ldots, k$. If we regard H_{j} / Q_{i} as subgroups of $P_{i} \cong G / Q_{i}$, it follows that

$$
\left|G \backslash\left(g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right)\right| \geq \prod_{i=1}^{k} \delta_{\left|\mathcal{H}_{i}\right|}\left(P_{i}\right)\left|P_{i}\right| \geq \prod_{i=1}^{k} \frac{\left|P_{i}\right|}{2^{\left|\mathcal{H}_{i}\right|}}=\frac{1}{2^{n}}|G| .
$$

Unfortunately, we are unable to prove $\delta_{n}(P) \geq 1 / 2^{n}$ for p-groups in general. Nevertheless, we provide an optimal bound for elementary abelian p-groups by making use of combinatorial theorems of AlonFüredi [1] (see also [6]). The following variant of the Schwartz-Zippel Lemma is an explicit version of [1, Theorem 5].

Lemma 5. Let p be a prime and let $\alpha \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{k}\right]$ be a polynomial of total degree $d=a+b(p-1)$ where $0 \leq a \leq p-2$. If α does not vanish identically on \mathbb{F}_{p}^{k}, then α is non-zero on at least $p^{k-b-1}(p-a)$ points of \mathbb{F}_{p}^{k}. This bound is best possible for $d \leq k(p-1)$.

Proof. We argue by induction on k. Without loss of generality we may assume that $k>b$. If $k=1$, then α has at most $d=a$ roots in \mathbb{F}_{p}, so it is non-zero on at least $p-a$ points. Now let $k \geq 2$. By Fermat's little theorem, $x^{p}=x$ for all $x \in \mathbb{F}_{p}$. Hence, we can reduce all powers of X_{1} such that the degree of α in X_{1} is at most $p-1$. This might decrease d, so the bound will be even stronger. For $x \in \mathbb{F}_{p}$ let

$$
\gamma_{x}:=\alpha\left(x, X_{2}, \ldots, X_{k}\right) \in \mathbb{F}_{p}\left[X_{2}, \ldots, X_{k}\right]
$$

Let $C \subseteq \mathbb{F}_{p}$ be the set of $x \in \mathbb{F}_{p}$ such that γ_{x} does not vanish identically on \mathbb{F}_{p}^{k-1}. By hypothesis, $C \neq \varnothing$. Let $p^{\prime}:=p-|C|$. Let

$$
\alpha=\alpha_{1} X_{1}^{p-1}+\alpha_{2} X_{1}^{p-2}+\ldots+\alpha_{p}
$$

with $\alpha_{i} \in \mathbb{F}_{p}\left[X_{2}, \ldots, X_{k}\right]$ and $\operatorname{deg}\left(\alpha_{i}\right) \leq d-p+i$ for $i=1, \ldots, p$. We arrange the elements of \mathbb{F}_{p}^{k-1} in some fixed order, say $\mathbb{F}_{p}^{k-1}=\left\{v_{1}, v_{2}, \ldots, v_{p^{k-1}}\right\}$, and define $\overline{\alpha_{i}}:=\left(\alpha_{i}\left(v_{1}\right), \alpha_{i}\left(v_{2}\right), \ldots, \alpha_{i}\left(v_{p^{k-1}}\right)\right)^{\mathrm{t}} \in$ $\mathbb{F}_{p}^{p^{k-1} \times 1}$. For $x \in \mathbb{F}_{p} \backslash C$ we obtain a linear equation $x^{p-1} \overline{\alpha_{1}}+x^{p-2} \overline{\alpha_{2}}+\ldots+\overline{\alpha_{p}}=0$. The Vandermonde $\operatorname{matrix} A:=\left(x^{i}: i=0, \ldots, p^{\prime}-1, x \in \mathbb{F}_{p} \backslash C\right)$ is invertible and

$$
\left(\overline{\alpha_{p}}, \overline{\alpha_{p-1}}, \ldots, \overline{\alpha_{|C|+1}}\right) A=-\left(x^{p-1} \overline{\alpha_{1}}+\ldots+x^{p^{\prime}} \overline{\alpha_{|C|}}: x \in \mathbb{F}_{p} \backslash C\right)
$$

Therefore, we can express the vectors $\overline{\alpha_{|C|+1}}, \ldots, \overline{\alpha_{p}}$ as linear combinations of $\left\{x^{p-1} \overline{\alpha_{1}}+\ldots+x^{p^{\prime}} \overline{\alpha_{|C|}}\right.$: $\left.x \in \mathbb{F}_{p} \backslash C\right\}$. Hence, we may replace each α_{i} with $|C|<i \leq p$ by a linear combination of $\alpha_{1}, \ldots, \alpha_{|C|}$ without changing the values on \mathbb{F}_{p}^{k-1}. Eventually, $\operatorname{deg}\left(\alpha_{i}\right) \leq d-p^{\prime}$ for all i and $\operatorname{deg}\left(\gamma_{x}\right) \leq d-p^{\prime}$ for $x \in C$. By induction, γ_{x} is non-zero on at least $p^{k-b^{\prime}-2}\left(p-a^{\prime}\right)$ points of \mathbb{F}_{p}^{k-1} where $d-p^{\prime}=a^{\prime}+b^{\prime}(p-1)$ with $0 \leq a^{\prime} \leq p-2$. Consequently, α is non-zero on at least

$$
|C| p^{k-b^{\prime}-2}\left(p-a^{\prime}\right)=p^{k-b^{\prime}-2}\left(p-a^{\prime}\right)\left(p-p^{\prime}\right)
$$

points of \mathbb{F}_{p}^{k}.
Suppose first that $p^{\prime} \leq a$. Then $a^{\prime}=a-p^{\prime}$ and $b^{\prime}=b$. It follows that

$$
p^{k-b-2}\left(p-a+p^{\prime}\right)\left(p-p^{\prime}\right) \geq p^{k-b-2}\left(p-a+p^{\prime}\right)(p-a) \geq p^{k-b-1}(p-a)
$$

and we are done. Now let $a<p^{\prime} \leq p-1$. Then $a^{\prime}=a-p^{\prime}+p-1$ and $b^{\prime}=b-1$. Since $\left(p^{\prime}-a\right)\left(p-p^{\prime}\right) \geq$ $p^{\prime}-a$, we obtain $\left(p^{\prime}-a+1\right)\left(p-p^{\prime}\right) \geq p-a$. This yields $p^{k-b^{\prime}-2}\left(p-a^{\prime}\right)\left(p-p^{\prime}\right) \geq p^{k-b-1}(p-a)$ as desired.

To see that the bound is best possible, just consider

$$
\alpha=\prod_{i=1}^{b}\left(X_{i}^{p-1}-1\right) \prod_{j=1}^{a}\left(X_{b+1}-j\right)
$$

where j is interpreted as $1+\ldots+1 \in \mathbb{F}_{p}$ (j summands $)$.

Theorem 6. Let G be an elementary abelian p-group, $H_{1}, \ldots, H_{n} \leq G$ and $g_{1}, \ldots, g_{n} \in G$ such that $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \neq G$. Let $n=a+b(p-1)$ where $0 \leq a \leq p-2$. Then

$$
\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq \frac{p^{b+1}-p+a}{p^{b+1}}|G| \leq \frac{2^{n}-1}{2^{n}}|G|
$$

and the first inequality is best possible.

Proof. We regard G as the \mathbb{F}_{p}-vector space \mathbb{F}_{p}^{k}. Each coset $g_{i} H_{i}$ is the set of solutions of a linear system $A_{i} x=b_{i}$. By hypothesis, there exists $x \in G \backslash\left(g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right)$. For each i we choose a row a_{i} of A_{i} such that $a_{i} x \neq \beta_{i}$ where $\beta_{i} \in \mathbb{F}_{p}$ is the corresponding entry of b_{i}. Then the polynomial

$$
\alpha\left(X_{1}, \ldots, X_{k}\right):=\prod_{i=1}^{n}\left(a_{i}\left(X_{1}, \ldots, X_{k}\right)^{\mathrm{t}}-\beta_{i}\right) \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{k}\right]
$$

of degree n does not vanish on x. By Lemma 5, α is non-zero on at least $p^{k-b-1}(p-a)=\frac{p-a}{p^{b+1}}|G|$ points of G. All these points lie outside of $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}$. This implies the first inequality. For the second, we may assume that $a=p-2$ and $b+1=\frac{n-a}{p-1}+1=\frac{n+1}{p-1}$. It suffices to show that $2^{n+1} \geq p^{b+1}$, i. e. $(n+1) \log _{p}(2) \geq \frac{n+1}{p-1}$. This is true since $2^{p-1} \geq p$.
In order to show that the first inequality is optimal, we choose $H_{1}=\ldots=H_{p-1}$ as a maximal subgroup of G and $g_{1}, \ldots, g_{p-1} \in G$ such that $G \backslash H_{1}=g_{1} H_{1} \cup \ldots \cup g_{p-1} H_{1}$. Similarly, choose $H_{p}=\ldots=H_{2 p-1}$ as a maximal subgroup of H_{1} such that $H_{1} \backslash H_{p}=g_{p} H_{p} \cup \ldots \cup g_{2 p-1} H_{p}$ and so on. This will certainly yield the exact bound.

We remark that Theorem 6 extends to arbitrary finite p-groups as long as $n \leq 2 p-2$. To see this, consider $g_{1} H_{1} \cup \ldots \cup g_{n} H_{n} \neq G$ where G is a finite p-group. If all H_{1}, \ldots, H_{n} are maximal subgroups of G, then, by the remark at the end of Section 2, we can go over to the elementary abelian group $G / \Phi(G)$ where $\Phi(G)$ is the Frattini subgroup of G. In this case the claim follows from Theorem 6 . Otherwise we may assume that H_{n} is not maximal. Then the claim follows by induction on n, because

$$
\left|g_{1} H_{1} \cup \ldots \cup g_{n} H_{n}\right| \leq\left|g_{1} H_{1} \cup \ldots \cup g_{n-1} H_{n-1}\right|+\left|H_{n}\right| \leq\left|g_{1} H_{1} \cup \ldots \cup g_{n-1} H_{n-1}\right|+\frac{1}{p^{2}}|G|
$$

On a different note we mention that the subgroup lattice of some (but not all) p-groups can be embedded into the subgroup lattice of an elementary abelian p-group (see [3]). On this basis we suspect that Theorem 6 holds for all p-groups. Moreover, the following general conjecture seems reasonable.

Conjecture 7. The best possible bound in Theorem 1 is $\gamma_{n}=\left(2^{n}-1\right) / 2^{n}$ for all n.

Acknowledgment

We thank an anonymous reviewer for his/her valuable comments. The first author is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1).

References

[1] N. Alon and Z. Füredi, Covering the cube by affine hyperplanes, European J. Combin. 14 (1993), 79-83.
[2] M. Bhargava, Groups as unions of proper subgroups, Amer. Math. Monthly 116 (2009), 413-422.
[3] L. M. Butler and A. W. Hales, Generalized flags in p-groups, Comput. Math. Appl. 39 (2000), 67-76.
[4] P. J. Cameron and A. M. Cohen, On the number of fixed point free elements in a permutation group, Discrete Math. 106/107 (1992), 135-138.
[5] M. Herzog and J. Schönheim, Research Problem No. 9, Canad. Math. Bull. 17 (1974), 150.
[6] B. Szegedy, Coverings of abelian groups and vector spaces, J. Combin. Theory Ser. A 114 (2007), 20-34.

[^0]: ${ }^{*}$ Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de
 ${ }^{\dagger}$ Faculty of Mathematics, "Al.I. Cuza" University, Iaşi, Romania, tarnauc@uaic.ro

