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Abstract

Let g1H1, . . . , gnHn be cosets of subgroups H1, . . . ,Hn of a finite group G such that g1H1 ∪ . . . ∪
gnHn 6= G. We prove that |g1H1 ∪ . . . ∪ gnHn| ≤ γn|G| where γn < 1 is a constant depending
only on n. In special cases we show that γn = (2n − 1)/2n is the best possible constant with this
property and we conjecture that this is generally true.
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1 Introduction

It is well-known that a finite group G cannot be the union of two proper subgroups. In fact, an easy
counting argument shows that such a union covers at most three quarters of the elements of G. It is
equally well-known that G is never a union of conjugates of a proper subgroup H. Cameron–Cohen [4]
have shown more precisely that there are at least |H| elements outside such a union. On the other hand,
it may happen that G is covered by n ≥ 3 arbitrary proper subgroups H1, . . . ,Hn ≤ G. While many
authors classified such groups for a given n (the interested reader is referred to the survey [2]), we are
interested in the situation where H1 ∪ . . . ∪Hn 6= G. We show that a portion of elements, depending
only on n, lies outside this union. In fact, this holds more generally for union of cosets of subgroups.
To the authors’ knowledge, this has apparently not been observed in the literature. In the first part of
the paper we prove more precisely that |G|/(2n!) elements lie outside such a coset union. In the second
part we investigate our conjecture that even |G|/2n elements lie outside the union. For elementary
abelian groups we obtain in Theorem 6 the best possible bound of that kind by using a linear algebra
approach due to Alon–Füredi [1]. We like to mention that there are other open conjectures on union
of cosets such as the long-standing Herzog–Schönheim Conjecture [5].

2 Main result

Theorem 1. For every positive integer n there exists a constant γn < 1 with the following property:
For every finite group G and every n subgroups H1, . . . ,Hn ≤ G and g1, . . . , gn ∈ G either g1H1∪ . . .∪
gnHn = G or |g1H1 ∪ . . . ∪ gnHn| ≤ γn|G|.
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Proof. We argue by induction on n. For n = 1 the claim holds with γ1 = 1
2 by Lagrange’s Theorem.

Now let n ≥ 2, H1, . . . ,Hn ≤ G and g1, . . . , gn ∈ G such that g1H1∪ . . .∪gnHn 6= G. Let si := |G : Hi|
for i = 1, . . . , n. We may assume that s1 ≤ . . . ≤ sn. Let αn be the smallest positive integer such that
γn−1 + 1

αn
< 1. If sn ≥ αn, then induction yields

|g1H1 ∪ . . . ∪ gnHn| ≤ |g1H1 ∪ . . . ∪ gn−1Hn−1|+ |gnHn| ≤
(
γn−1 +

1

sn

)
|G| ≤

(
γn−1 +

1

αn

)
|G|.

Now let sn ≤ αn and H := H1 ∩ . . . ∩Hn. Using Poincaré’s formula |G : Hi ∩Hj | ≤ |G : Hi||G : Hj |
repeatedly, we get |G : H| ≤ s1 . . . sn ≤ αnn. Since g1H1 ∪ . . . ∪ gnHn is a union of H-cosets, it follows
that

|g1H1 ∪ . . . ∪ gnHn| ≤ |G| − |H| ≤
(

1− 1

αnn

)
|G|.

Hence, the claim holds with

γn := max
{
γn−1 +

1

αn
, 1− 1

αnn

}
< 1.

The proof of Theorem 1 yields only a very crude bound on γn. With some more effort we can prove
an effective bound as follows.

Proposition 2. Theorem 1 holds with γn = 2n!−1
2n! .

Proof. We reuse the notation from the proof of Theorem 1. We already know that the claim holds for
n = 1. Thus, let n ≥ 2. If n+ 1 ≤ s1 ≤ . . . ≤ sn, then

|g1H1 ∪ . . . ∪ gnHn| ≤ |H1|+ . . .+ |Hn| ≤
n

n+ 1
|G| ≤ 2n!− 1

2n!
|G|

as desired.

Now let s1 ≤ n. Since G is the union of all cosets of H1, there exists a coset gH1 such that gH1 *
g1H1 ∪ . . . ∪ gnHn. Since |g1H1 ∪ . . . ∪ gnHn| = |g−1(g1H1 ∪ . . . ∪ gnHn)|, we may replace gi by g−1gi
for i = 1, . . . , n. Then H1 * g1H1 ∪ . . . ∪ gnHn and H1 ∩ g1H1 = ∅. It follows that

g1H1 ∪ . . . ∪ gnHn ⊆ (G \H1) ∪̇
n⋃
i=2

(giHi ∩H1).

If giHi ∩H1 6= ∅, then giHi ∩H1 = hi(Hi ∩H1) for some hi ∈ H1. By induction on n, we conclude
that ∣∣∣(G \H1) ∪̇

n⋃
i=2

(giHi ∩H1)
∣∣∣ ≤ s1 − 1

s1
|G|+ γn−1|H1| ≤

s1 + γn−1 − 1

s1
|G|.

Since γn−1 − 1 < 0, it follows that

s1 + γn−1 − 1

s1
≤ n+ γn−1 − 1

n
=

2n! + 2(n− 1)!− 1− 2(n− 1)!

2n!
= γn

as desired.
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In most cases cosets can cover more elements than subgroups. For instance, if G is a p-group, then two
distinct cosets of a maximal subgroup cover 2

p |G| elements while two distinct maximal subgroups only
cover 2p−1

p2
|G| elements (see also Theorem 6 below).

In order to compute a lower bound on γn, let us consider an elementary abelian 2-group G =
〈x1, . . . , xn〉 rank n. Let Hi := 〈xj : j 6= i〉. Then H1 ∪ . . . ∪ Hn = G \ {x1 . . . xn} and therefore
γn ≥ (2n − 1)/2n for all n ≥ 1. If we restrict ourselves to union of subgroups, we can show that this
bound is indeed optimal for small n.

Proposition 3. For every finite group G and every set of subgroups H1, . . . ,Hn ≤ G with n ≤ 5 either
H1 ∪ . . . ∪Hn = G or |H1 ∪ . . . ∪Hn| ≤ 2n−1

2n |G|. Equality can only hold if |G : H1 ∩ . . . ∩Hn| = 2n.

Proof. We may assume that n ≥ 2, H1 ∪ . . . ∪ Hn 6= G and Hi *
⋃
j 6=iHj for i = 1, . . . , n. Let

N := {1, . . . , n} and HI :=
⋂
i∈I Hi for I ⊆ N . Suppose first that L := HN\{i} * Hi for some i, say

i = 1. Let U := G \
⋃n
i=2Hi. By induction on n we have |U | ≥ |G|/2n−1. Moreover, U is a union of

L-cosets. If g ∈ G and x ∈ gL ∩H1, then

|gL ∩H1| = |x(L ∩H1)| = |L ∩H1| = |HN |.

Hence, |U ∩H1| ≤
∑

gL⊆U |HN | = |U |
|L| |HN |. It follows that∣∣∣G \ n⋃

i=1

Hi

∣∣∣ = |U \H1| = |U | − |U ∩H1| ≥ |U |
(

1− 1

|L : HN |

)
≥ |G|

2n

as desired. Equality can only hold if |U | = |G|/2n−1 and |L : HN | = 2. In this case, induction yields
|G : L| = 2n−1 and |G : HN | = 2n.

Hence, in the following we will assume that HN\{i} ⊆ Hi for i = 1, . . . , n. In particular, n ≥ 3. Since
H1 ∪ . . . ∪ Hn is a union of HN -cosets, we may also assume that |G : HN | > 2n as in the proof of
Theorem 1. We need to show the strict inequality |H1 ∪ . . . ∪Hn| < 2n−1

2n |G|. Using

|H1 ∪ . . . ∪Hn| ≤ |H1 ∪ . . . ∪Hn−1|+ |Hn| − |H1 ∩Hn| ≤
(
γn−1 +

1

sn
− 1

s2n

)
|G|

and induction, the indices si := |G : Hi| can be bounded. In particular, there are only finitely many
choices. By using

|G : HI |
∣∣ |G : HI∪J | ≤ |HI∩J : HI ||G : HJ | =

|G : HI ||G : HJ |
|G : HI∩J |

for I, J ⊆ N , we can enumerate all possible indices |G : HI | for I ⊆ N by computer. The claim can
then be checked with the exclusion-inclusion principle. Note that for n = 3 this becomes

|H1 ∪H2 ∪H3| =
( 1

s1
+

1

s2
+

1

s3
− 2

|G : HN |

)
|G|

where 9 ≤ |G : HN | = |G : H1 ∩ H2| ≤ s1s2 and s1 ≤ s2 ≤ s3. It is easy to see that this implies
|H1 ∪H2 ∪H3| ≤ 7

9 |G| with equality if and only if s1 = s2 = s3 = 3. For n = 4 we obtain similarly

|H1 ∪ . . . ∪H4| ≤
( 1

s1
+ . . .+

1

s4
− 1

s1s2
− 1

s1s3
− . . .− 1

s3s4
+

3

|G : HN |

)
|G|

where |G : HN | ≥ 17 (in fact, |G : HN | ≥ 18 since |G : HN | cannot be a prime). It can be seen that
this is again strictly less than 15

16 |G|.
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Finally, let n = 5. Here we first estimate the union of four out of five subgroups. This leaves us with a
short list of exceptional cases. In all those cases there exist subgroups A,B,C,D ∈ {H1, . . . ,H5} with
the following indices

|G : A ∩B| = 4, |G : C ∩D| = |G : C||G : D|,
|G : A ∩B ∩ C| = 2|G : C|, |G : A ∩B ∩D| = 2|G : D|.

From |G : A ∩ B| = 4 we obtain |G : A| = |G : B| = 2 and A ∩ B E G (the proof of Proposition 2
now already yields γ5 = 31/32, but we need a strict inequality here). In particular (A∩B)C ≤ G with
|(A ∩ B)C : A ∩ B| = |C : A ∩ B ∩ C| = 2. Thus, A,B, (A ∩ B)C are the maximal subgroups of G
containing A ∩ B and therefore, G = A ∪ B ∪ (A ∩ B)C. From |G : A ∩ B ∩ D| = 2|G : D| = |G :

D ∩A| = |G : D ∩B| we obtain D ∩A = D ∩B. It follows that

D = (D ∩A) ∪ (D ∩B) ∪ (D ∩ (A ∩B)C) = (D ∩A) ∪ (D ∩ (A ∩B)C).

Since D is not the union of two proper subgroups, we conclude that D ⊆ (A ∩ B)C. But also C ⊆
(A ∩B)C. Now G = CD ⊆ (A ∩B)C, because |G : C ∩D| = |G : C||G : D|. Contradiction.

We remark that the following alternative procedure applies more generally to union of cosets. Note that
G acts on

⋃n
i=1G/Hi by left multiplication. The kernel N of this action is contained in H1 ∩ . . .∩Hn.

Since g1H1 ∪ . . . ∪ gnHn is the union of the cosets in g1(H1/N) ∪ . . . ∪ gn(Hn/N), we may replace G
by G/N . Then G is isomorphic to a subgroup of a direct product of symmetric groups

∏n
i=1 S|G:Hi|.

In principle we can enumerate those subgroups by computer, but doing so becomes impractical when
n is large.

3 Nilpotent groups

In order to extend Proposition 3 to other cases, we provide a reduction theorem for nilpotent groups. Let
δn(G) be the largest constant such that |G\(g1H1∪. . .∪gnHn)| ≥ δn(G)|G| whenever g1H1∪. . .∪gnHn 6=
G. We wish to show that δn(G) ≥ 1/2n.

Lemma 4. Let n ≥ 1. Suppose that for every p-group P and every m ≤ n we have δm(P ) ≥ 1/2m.
Then δn(G) ≥ 1/2n for every nilpotent group G.

Proof. Let G be a nilpotent group. Let p1, . . . , pk be the distinct prime divisors of |G|. Let Pi := Opi(G)
the Sylow pi-subgroup and Qi := Op′i

(G) such that G = P1 × . . . × Pk. Let g1H1, . . . , gnHn be cosets
of subgroups of G such that g1H1 ∪ . . . ∪ gnHn 6= G. Suppose that |G : H1| is divisible by pi and pj
with i 6= j. Let K := H1NPi(H1) and L := H1NPj (H1) Then g1H1 = g1(K ∩ L) = g1K ∩ g1L and
g1K ∪ g2H2 ∪ . . . ∪ gnHn 6= G or g1L ∪ g2H2 ∪ . . . ∪ gnHn 6= G. Thus, we may replace H1 by K or L
respectively. Since every subgroup of G is subnormal, we may continue in this way until |G : H1| is a
prime power. We repeat this process with Hi for i = 2, . . . , k. Then every Hi contains a unique Qj .

Let Hi := {Hj : Qi ⊆ Hj} for i = 1, . . . , k. Then {H1, . . . ,Hn} is the disjoint union of H1, . . . ,Hk. In
particular, n = |H1| + . . . + |Hk|. Moreover, an element (x1, . . . , xk) ∈ P1 × . . . × Pk does not lie in
g1H1 ∪ g2H2 ∪ . . . ∪ gnHn if and only if xiQi does not lie in

⋃
Hj∈Hi

gj(Hj/Qi) for i = 1, . . . , k. If we
regard Hj/Qi as subgroups of Pi ∼= G/Qi, it follows that

|G \ (g1H1 ∪ . . . ∪ gnHn)| ≥
k∏
i=1

δ|Hi|(Pi)|Pi| ≥
k∏
i=1

|Pi|
2|Hi|

=
1

2n
|G|.
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Unfortunately, we are unable to prove δn(P ) ≥ 1/2n for p-groups in general. Nevertheless, we provide
an optimal bound for elementary abelian p-groups by making use of combinatorial theorems of Alon–
Füredi [1] (see also [6]). The following variant of the Schwartz–Zippel Lemma is an explicit version of
[1, Theorem 5].

Lemma 5. Let p be a prime and let α ∈ Fp[X1, . . . , Xk] be a polynomial of total degree d = a+b(p−1)
where 0 ≤ a ≤ p−2. If α does not vanish identically on Fkp, then α is non-zero on at least pk−b−1(p−a)

points of Fkp. This bound is best possible for d ≤ k(p− 1).

Proof. We argue by induction on k. Without loss of generality we may assume that k > b. If k = 1,
then α has at most d = a roots in Fp, so it is non-zero on at least p − a points. Now let k ≥ 2. By
Fermat’s little theorem, xp = x for all x ∈ Fp. Hence, we can reduce all powers of X1 such that the
degree of α in X1 is at most p − 1. This might decrease d, so the bound will be even stronger. For
x ∈ Fp let

γx := α(x,X2, . . . , Xk) ∈ Fp[X2, . . . , Xk].

Let C ⊆ Fp be the set of x ∈ Fp such that γx does not vanish identically on Fk−1p . By hypothesis,
C 6= ∅. Let p′ := p− |C|. Let

α = α1X
p−1
1 + α2X

p−2
1 + . . .+ αp

with αi ∈ Fp[X2, . . . , Xk] and deg(αi) ≤ d − p + i for i = 1, . . . , p. We arrange the elements of Fk−1p

in some fixed order, say Fk−1p = {v1, v2, . . . , vpk−1}, and define αi := (αi(v1), αi(v2), . . . , αi(vpk−1))t ∈
Fp

k−1×1
p . For x ∈ Fp \C we obtain a linear equation xp−1α1 +xp−2α2 + . . .+αp = 0. The Vandermonde

matrix A := (xi : i = 0, . . . , p′ − 1, x ∈ Fp \ C) is invertible and

(αp, αp−1, . . . , α|C|+1)A = −(xp−1α1 + . . .+ xp
′
α|C| : x ∈ Fp \ C).

Therefore, we can express the vectors α|C|+1, . . . , αp as linear combinations of {xp−1α1 + . . .+xp
′
α|C| :

x ∈ Fp \ C}. Hence, we may replace each αi with |C| < i ≤ p by a linear combination of α1, . . . , α|C|
without changing the values on Fk−1p . Eventually, deg(αi) ≤ d − p′ for all i and deg(γx) ≤ d − p′ for
x ∈ C. By induction, γx is non-zero on at least pk−b′−2(p−a′) points of Fk−1p where d−p′ = a′+b′(p−1)
with 0 ≤ a′ ≤ p− 2. Consequently, α is non-zero on at least

|C|pk−b′−2(p− a′) = pk−b
′−2(p− a′)(p− p′)

points of Fkp.

Suppose first that p′ ≤ a. Then a′ = a− p′ and b′ = b. It follows that

pk−b−2(p− a+ p′)(p− p′) ≥ pk−b−2(p− a+ p′)(p− a) ≥ pk−b−1(p− a)

and we are done. Now let a < p′ ≤ p−1. Then a′ = a−p′+p−1 and b′ = b−1. Since (p′−a)(p−p′) ≥
p′ − a, we obtain (p′ − a + 1)(p − p′) ≥ p − a. This yields pk−b′−2(p − a′)(p − p′) ≥ pk−b−1(p − a) as
desired.

To see that the bound is best possible, just consider

α =
b∏
i=1

(Xp−1
i − 1)

a∏
j=1

(Xb+1 − j)

where j is interpreted as 1 + . . .+ 1 ∈ Fp (j summands).
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Theorem 6. Let G be an elementary abelian p-group, H1, . . . ,Hn ≤ G and g1, . . . , gn ∈ G such that
g1H1 ∪ . . . ∪ gnHn 6= G. Let n = a+ b(p− 1) where 0 ≤ a ≤ p− 2. Then

|g1H1 ∪ . . . ∪ gnHn| ≤
pb+1 − p+ a

pb+1
|G| ≤ 2n − 1

2n
|G|

and the first inequality is best possible.

Proof. We regard G as the Fp-vector space Fkp. Each coset giHi is the set of solutions of a linear system
Aix = bi. By hypothesis, there exists x ∈ G \ (g1H1 ∪ . . .∪ gnHn). For each i we choose a row ai of Ai
such that aix 6= βi where βi ∈ Fp is the corresponding entry of bi. Then the polynomial

α(X1, . . . , Xk) :=

n∏
i=1

(ai(X1, . . . , Xk)
t − βi) ∈ Fp[X1, . . . , Xk]

of degree n does not vanish on x. By Lemma 5, α is non-zero on at least pk−b−1(p−a) = p−a
pb+1 |G| points

of G. All these points lie outside of g1H1 ∪ . . .∪ gnHn. This implies the first inequality. For the second,
we may assume that a = p − 2 and b + 1 = n−a

p−1 + 1 = n+1
p−1 . It suffices to show that 2n+1 ≥ pb+1, i. e.

(n+ 1) logp(2) ≥ n+1
p−1 . This is true since 2p−1 ≥ p.

In order to show that the first inequality is optimal, we choose H1 = . . . = Hp−1 as a maximal subgroup
of G and g1, . . . , gp−1 ∈ G such that G\H1 = g1H1∪ . . .∪ gp−1H1. Similarly, choose Hp = . . . = H2p−1
as a maximal subgroup of H1 such that H1 \Hp = gpHp ∪ . . .∪ g2p−1Hp and so on. This will certainly
yield the exact bound.

We remark that Theorem 6 extends to arbitrary finite p-groups as long as n ≤ 2p − 2. To see this,
consider g1H1∪ . . .∪gnHn 6= G where G is a finite p-group. If all H1, . . . ,Hn are maximal subgroups of
G, then, by the remark at the end of Section 2, we can go over to the elementary abelian group G/Φ(G)
where Φ(G) is the Frattini subgroup of G. In this case the claim follows from Theorem 6. Otherwise
we may assume that Hn is not maximal. Then the claim follows by induction on n, because

|g1H1 ∪ . . . ∪ gnHn| ≤ |g1H1 ∪ . . . ∪ gn−1Hn−1|+ |Hn| ≤ |g1H1 ∪ . . . ∪ gn−1Hn−1|+
1

p2
|G|.

On a different note we mention that the subgroup lattice of some (but not all) p-groups can be embedded
into the subgroup lattice of an elementary abelian p-group (see [3]). On this basis we suspect that
Theorem 6 holds for all p-groups. Moreover, the following general conjecture seems reasonable.

Conjecture 7. The best possible bound in Theorem 1 is γn = (2n − 1)/2n for all n.
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