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Donovan’s Conjecture

Let D be a finite p-group for a prime number p.

Donovan’s Conjecture
There are only finitely many Morita equivalence classes of blocks of
finite groups with defect group D.

A weak version is the following.

Conjecture
There is a bound on the Cartan invariants of blocks of finite groups
with defect group D which only depends on D.
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Known results

If D is a cyclic group, then Donovan’s Conjecture is true.
If p = 2 and D has maximal class, all blocks with defect group
D have tame representation type.
Then, by Erdmann’s work the Morita equivalence class of a block
with defect group D is known up to certain parameters.
Donovan’s Conjecture also holds if one restricts to blocks of
p-solvable, symmetric or alternating groups.
Hiss and Kessar showed Donovan’s Conjecture for some blocks
of classical groups.
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Rédei’s classification

In the following we consider blocks with respect to a splitting
p-modular system (K,O,F).
Assume that p = 2 and D is a minimal nonabelian 2-group.
This means all proper subgroups of D are abelian, but D is not.
Then by a result of Rédei D is isomorphic to one of the following
groups:
(a) 〈x , y | x2r

= y2s
= 1, xyx−1 = y1+2s−1〉 with r ≥ 1 and

s ≥ 2,
(b) 〈x , y | x2r

= y2s
= [x , y ]2 = [x , x , y ] = [y , x , y ] = 1〉 with

2 ≤ r ≥ s ≥ 1,
(c) Q8.
In case (a) or (c) D is metacyclic.
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Rédei’s classification

Let B be a block of a finite group with defect group D as given
above.
If D is metacyclic, then B is nilpotent unless D ∼= D8 or D ∼= Q8.
In the nilpotent case B is Morita equivalent to the group algebra
OD by Puig’s Theorem.
For D ∼= D8 or D ∼= Q8 we can apply Erdmann’s work.
Hence, we may assume that case (b) in Rédei’s classification
occurs, i. e.

D := 〈x , y | x2r
= y2s

= [x , y ]2 = [x , x , y ] = [y , x , y ] = 1〉,

where 2 ≤ r ≥ s ≥ 1, [x , y ] := xyx−1y−1 and [x , x , y ] :=
[x , [x , y ]].
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The case s = 1

Assume that B is not nilpotent.
Then it turns out that s = 1 or r = s.
Let ki (B) be the number of ordinary irreducible characters of
height i ≥ 0 of B , and let k(B) =

∑∞
i=0 ki (B).

Similarly l(B) is the number of irreducible Brauer characters of
B .
For s = 1 these block invariants are given by the following
theorem.
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The case s = 1

Theorem (S., 2010)

Let B be a non-nilpotent block of a finite group with defect group

D = 〈x , y | x2r
= y2 = [x , y ]2 = [x , x , y ] = [y , x , y ] = 1〉

for some r ≥ 2. Then

k(B) = 5 · 2r−1, k0(B) = 2r+1, k1(B) = 2r−1, l(B) = 2

and the Cartan matrix of B is given by

2r−1
(
3 1
1 3

)
up to basic sets.
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The case r = s

In the r = s case we were able to prove Donovan’s Conjecture:

Theorem
Let B be a non-nilpotent block of a finite group with defect group

D = 〈x , y | x2r
= y2r

= [x , y ]2 = [x , x , y ] = [y , x , y ] = 1〉

for some r ≥ 2. Then B is Morita equivalent to O[D o E ] where E
is a subgroup of Aut(D) of order 3. In particular, we have

k(B) =
5 · 22r−2 + 16

3
, k0(B) =

22r + 8
3

, k1(B) =
22r−2 + 8

3

and l(B) = 3.
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Sketch of the proof (1)

It turns out that the claim holds for solvable groups. Now the idea
is to reduce the situation to quasisimple groups.

Lemma
Let G be a finite group with Sylow 2-subgroup D as given above.
Then G is solvable.

Proof.
By Feit-Thompson we may assume O2′(G ) = 1.
Then the Z∗-Theorem implies z := [x , y ] ∈ Z(G ). Thus, G/〈z〉
has Sylow 2-subgroup D/〈z〉 ∼= C2r × C2r .
By a result of Brauer, G/〈z〉 and thus also G is solvable.
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Sketch of the proof (2)

Let G be a finite group with a non-nilpotent block B as above.
Then by Fong reduction we may assume that O2′(G ) is cyclic
and central.
An application of the Külshammer-Puig Theorem gives

O2(G ) ⊆ D ′ = 〈z〉

and Z(G ) = F(G ).
It turns out that B covers a non-nilpotent block b of the layer
E(G ) of G with defect group D.
Moreover, b covers a non-nilpotent block of a component of G
also with defect group D.
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Sketch of the proof (3)

Hence, by way of contradiction we may assume that G is quasi-
simple, i. e. G ′ = G and G/Z(G ) is simple.
Now we apply the classification of the finite simple groups.
By the lemma above, 64 (≤ 2|D|) divides |G |.
If G/Z(G ) is an alternating group, the situation is very easy,
since one can use the representation theory of symmetric groups.
For the non-principal 2-blocks of the (covering groups of the)
sporadic groups results of Landrock and An-Eaton can be used.
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Sketch of the proof (4)

Thus, it remains to deal with the simple groups of Lie type.
By a result of Humphreys it suffices to consider Lie groups in
odd characteristic.
Here one can use methods going back to Deligne, Lusztig and
others.
We illustrate these for the case G/Z(G ) ∼= PSL(n, q).
Here one can go over to H := GL(n, q) (ignoring exceptional
covers).
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Sketch of the proof (5)

Then there is a semisimple element s ∈ H such that a Sylow
2-subgroup of CH(s) is related to D.
In particular it can be shown that CH(s) is solvable.
On the other hand CH(s) has the form

CH(s) ∼=
t×

i=1
GL(ni , qmi ).

This leads to q = 3 and eventually to a contradiction.
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Proposition
In the situation of the last theorem, all simple B-modules have vertex
D.

Proof.
The result holds for G = D o E , since the irreducible Brauer
characters are restrictions of ordinary characters of height 0 in
this case.
Since Morita equivalence preserves decomposition matrices, the
result follows for arbitrary G .
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Corollary
For a 2-block B of a finite group with minimal nonabelian defect
group the following conjectures are satisfied:

Alperin’s Weight Conjecture
Brauer’s k(B)-Conjecture
Brauer’s Height-Zero Conjecture
Dade’s Ordinary Conjecture
Alperin-McKay Conjecture
Olsson’s Conjecture
Eaton’s Conjecture
Eaton-Moretó Conjecture
Malle-Navarro Conjecture
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Background

For primes p > 3, Héthelyi, Külshammer and myself proved
Olsson’s Conjecture for p-blocks with defect groups of p-rank
2.
In the process the extraspecial defect group D of order 53 and
exponent 5 turns out to be very difficult.
In particular blocks with defect group D and a specific fusion
system are complicated.
We end up by determining the Morita equivalence class of such
blocks.
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A result

Proposition
Let B be a block of a finite group G with an extraspecial defect group
D of order 53 and exponent 5. Suppose that the fusion system of B
is the same as the fusion system of the sporadic simple Thompson
group Th for the prime 5. Then B is Morita equivalent to the principal
5-block of Th.
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Sketch of the proof (1)

We observe that all nontrivial elements of D are conjugate in
the fusion system.
By Fong reduction we may assume F(G ) = Z(G ) = O5′(G ).
It turns out that G has only one component, i. e. E(G ) is quasi-
simple.
So S := E(G )/Z(E(G )) is simple and

G/Z(G ) ≤ Aut(E(G )) ≤ Aut(S).

B covers a block b of E(G ) with defect group D.
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Sketch of the proof (2)

G

E(G ) Z(G )

Z(E(G ))

≤ Aut(S)

S

For the block b we use An and Eaton’s classification of blocks
of quasisimple groups with extraspecial defect groups.
This shows that D must be a Sylow 5-subgroup of E(G ).
But then in most cases there are elements x , y ∈ S of order 5
such that |CS(x)| 6= |CS(y)|.
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Sketch of the proof (3)

In particular, x and y cannot be conjugate in G . This contradicts
the structure of the fusion system.
The only remaining case is S = Th and b = B0(E(G )).
Fortunately here we have Out(Th) = M(Th) = 1, so that G =
S × Z(G ).
Hence, B ∼= b ⊗O O ∼= B0(Th).
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