Fusion systems of groups and blocks
 Young researchers seminar MSRI Berkeley

Benjamin Sambale*

February 21, 2018

1 Motivation

Let G be a finite group and $H \leq G$. Elements $x, y \in H$ are called fused if they are conjugate in G, but not in H.

Aim: Find "small" subgroup $K \supseteq H$ controlling fusion in H, i. e. $x, y \in H$ are fused in G iff x, y are fused in K.

Main interest: $H \in \operatorname{Syl}_{p}(G)$.
In the following let $P \in \operatorname{Syl}_{p}(G)$.
Theorem 1.1 (Burnside). $\mathrm{N}_{G}(P)$ controls fusion in $\mathrm{Z}(P)$.
Theorem 1.2 (Frobenius). If P controls fusion in P ("no fusion"), then G is p-nilpotent, i.e. $G=N \rtimes P$.

Theorem 1.3 ((Hyper)focal subgroup theorem).

$$
\begin{aligned}
\left\langle x y^{-1}: x, y \in P \text { are conjugate in } G\right\rangle & =G^{\prime} \cap P \quad \text { (focal subgroup), } \\
\left\langle x y^{-1}: x, y \in P \text { are conjugate by a } p^{\prime} \text {-element }\right\rangle & =\mathrm{O}^{p}(G) \cap P \quad \text { (hyperfocal subgroup) }
\end{aligned}
$$

where $G^{\prime}=[G, G]$ and $\mathrm{O}^{p}(G)=\left\langle p^{\prime}\right.$-elements \rangle.
Theorem $1.4\left(\mathrm{Z}^{*}\right.$-theorem). If $x \in \mathrm{Z}(P)$ is not fused to any other element of P, then $x \mathrm{O}_{p^{\prime}}(G) \in$ $\mathrm{Z}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ where $\mathrm{O}_{p^{\prime}}(G)$ is the largest normal p^{\prime}-subgroup of G.

Theorem 1.5 (ZJ-theorem). Suppose that $p>2$ and G does not involve $Q d(p):=C_{p}^{2} \rtimes \mathrm{SL}_{2}(p)$. Then $\mathrm{N}_{G}(\mathrm{Z}(\mathrm{J}(P)))$ controls fusion in P where $\mathrm{J}(P)$ is the Thompson subgroup of P.

[^0]
2 Fusion systems

Definition 2.1 (PUIG). A (saturated) fusion system on a finite p-group P is a category \mathcal{F} with

- objects $=$ subgroups of P
- morphisms $=$ injective group homomorphisms such that
$-\operatorname{Hom}_{P}(S, T):=\left\{\varphi: S \rightarrow T: \exists g \in P: \varphi(s)=s^{g}=g^{-1} s g \forall s \in S\right\} \subseteq \operatorname{Hom}_{\mathcal{F}}(S, T)$ for $S, T \leq P$,
$-\varphi \in \operatorname{Hom}_{\mathcal{F}}(S, T) \Longrightarrow \varphi \in \operatorname{Hom}_{\mathcal{F}}(S, \varphi(S)), \varphi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(\varphi(S), S)$,
- for every $S \leq P$ there exists an isomorphism $S \rightarrow T$ in \mathcal{F} such that $\operatorname{Aut}_{P}(T) \in \operatorname{Syl}_{p}\left(\operatorname{Aut}_{\mathcal{F}}(T)\right)$ and every isomorphism $\varphi: R \rightarrow T$ in \mathcal{F} extends to $\left\{x \in \mathrm{~N}_{P}(R): \exists y \in \mathrm{~N}_{P}(T): \varphi\left(r^{x}\right)=\right.$ $\left.\varphi(r)^{y} \forall r \in R\right\}$.

Example 2.2. Every finite group G induces a fusion system $\mathcal{F}_{P}(G)$ on $P \in \operatorname{Syl}_{p}(G)$ via $\operatorname{Hom}_{\mathcal{F}}(S, T):=$ $\operatorname{Hom}_{G}(S, T)$ for $S, T \leq P$ (Exercise). In particular, there is always the trivial fusion system $\mathcal{F}_{P}(P)$. There are exotic fusion systems not arising from finite groups. For example on the non-abelian group $P=7_{+}^{1+2}$ of order 7^{3} and exponent 7 .

Theorem 2.3 (Frobenius). $\mathcal{F}_{P}(G)=\mathcal{F}_{P}(P) \Longrightarrow G$ p-nilpotent.

In the following let \mathcal{F} be a fusion system on P. We call $x, y \in P \mathcal{F}$-conjugate if there exists a morphism in \mathcal{F} sending x to y.

Definition 2.4. $Q<P$ is called essential if

- for every isomorphism $Q \rightarrow S$ in \mathcal{F} we have $\left|\mathrm{N}_{P}(Q)\right| \geq\left|\mathrm{N}_{P}(S)\right|$ and $\mathrm{C}_{P}(S) \leq S$,
- there exists a strongly p-embedded subgroup $H<\operatorname{Out}_{\mathcal{F}}(Q):=\operatorname{Aut}_{\mathcal{F}}(Q) / \operatorname{Inn}(Q)$, i. e. $|H|_{p} \neq 1$ and $\left|H \cap H^{x}\right|_{p}=1$ for every $x \in \operatorname{Out}_{\mathcal{F}}(Q) \backslash H$ (cf. Frobenius complement).

Remark 2.5. Essential subgroups Q are self-centralizing $\left(\mathrm{C}_{P}(Q) \leq Q\right)$ and radical, i. e. $\mathrm{O}_{p}(\operatorname{Aut} \mathcal{F}(Q))=$ $\operatorname{Inn}(Q)$ (Exercise).

Theorem 2.6 (Alperin's fusion theorem). Every isomorphism in \mathcal{F} is a composition of restrictions from $\operatorname{Aut}_{\mathcal{F}}(P) \cup \underset{Q \text { essential }}{\bigcup} \operatorname{Aut}_{\mathcal{F}}(Q)$.
Theorem 2.7. A group G contains a strongly p-embedded subgroup iff one of the following holds:
(1) $\mathrm{O}_{p}(G)=1$ and the Sylow p-subgroups of G are cyclic or quaternion.
(2) $\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is one of the following:

- $\operatorname{PSL}\left(2, p^{n}\right)$ for $n \geq 2$,
- $\operatorname{PSU}\left(3, p^{n}\right)$ for $n \geq 1$,
- $\mathrm{Sz}\left(2^{2 n+1}\right)$ for $p=2$ and $n \geq 1$,
- ${ }^{2} G_{2}\left(3^{2 n-1}\right)$ for $p=3$ and $n \geq 1$,
- $A_{2 p}$ for $p \geq 5$,
- $\operatorname{PSL}_{3}(4), M_{11}$ for $p=3$,
- $\operatorname{Aut}(\operatorname{Sz}(32)),{ }^{2} F_{4}(2)^{\prime}, M c L, F i_{22}$ for $p=5$,
- J_{4} for $p=11$.

Consequence: Most fusion systems are controlled, i.e. there are no essential subgroups and $\mathcal{F}=$ $\mathcal{F}_{P}\left(P \rtimes \operatorname{Out}_{\mathcal{F}}(P)\right)$. In fact "most" fusion systems are trivial.
Theorem 2.8 (Burnside). P abelian $\Longrightarrow \mathcal{F}$ controlled.
Example 2.9. P cyclic 2 -group $\Longrightarrow \mathcal{F}$ trivial.
Definition 2.10.
(1) Let $\mathrm{O}_{p}(\mathcal{F})$ be the largest subgroup $Q \leq \bigcap_{E \text { essential }} E$ such that $f(Q)=Q \forall f \in \operatorname{Hom}_{\mathcal{F}}(Q, P)$ (Exercise: Show well-defined).
(2) \mathcal{F} is called constrained, if $\mathrm{C}_{P}\left(\mathrm{O}_{p}(\mathcal{F})\right) \leq \mathrm{O}_{p}(\mathcal{F})$.

Theorem 2.11 (Model theorem). Every constrained fusion system \mathcal{F} has a unique model G, i.e. $P \in \operatorname{Syl}_{p}(G), \mathrm{O}_{p}(\mathcal{F})=\mathrm{O}_{p}(G), \mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)$ and $\mathcal{F}=\mathcal{F}_{P}(G)$. In particular, \mathcal{F} is non-exotic.

Example 2.12.

(1) controlled \Longrightarrow constrained $\left(\mathrm{O}_{p}(\mathcal{F})=P\right)$.
(2) $\mathcal{F}_{D_{8}}\left(S_{4}\right)$ is constrained $\left(\mathrm{O}_{p}(\mathcal{F})=V_{4}\right)$, but not controlled.
(3) $\mathcal{F}_{D_{8}}\left(\mathrm{GL}_{3}(2)\right)$ is not constrained (Exercise).

Definition 2.13. A group G is called metacyclic if there exists $N \unlhd G$ such that N and G / N are cyclic.

Theorem 2.14. If P is metacyclic, then one of the following holds:
(1) \mathcal{F} is trivial.
(2) P is abelian and $\operatorname{Aut}_{\mathcal{F}}(P)$ is a p^{\prime}-subgroup of $\mathrm{GL}_{2}(p)$.
(3) $p>2, P=C_{2^{n}} \rtimes C_{2^{m}}, \mathcal{F}$ is controlled and $\operatorname{Out}_{\mathcal{F}}(P) \leq C_{p-1}$.
(4) $p=2, D$ is dihedral, semidihedral or quaternion (≤ 7 non-trivial fusion systems per order, all coming from "decorated" simple groups).

Definition 2.15.

$$
\begin{aligned}
\mathrm{Z}(\mathcal{F}) & :=\left\{x \in P: f(x)=x \forall f \in \operatorname{Hom}_{\mathcal{F}}(\langle x\rangle, P)\right\} \quad \text { (center) }, \\
\mathfrak{h y p}(\mathcal{F}) & :=\left\langle f(x) x^{-1}: x \in Q \leq P, f \in \mathrm{O}^{p}\left(\operatorname{Aut}_{\mathcal{F}}(Q)\right)\right\rangle \quad \text { (hyperfocal subgroup). }
\end{aligned}
$$

Proposition 2.16.

(1) \mathcal{F} trivial $\Longleftrightarrow \mathfrak{h y p}(\mathcal{F})=1$ (Exercise).
(2) P abelian $\Longrightarrow P=\mathfrak{h y p}(\mathcal{F}) \times \mathrm{Z}(\mathcal{F})$ (Exercise).
(3) $\mathfrak{h y p}(\mathcal{F})$ cyclic $\Longrightarrow \mathcal{F}$ controlled and $\operatorname{Out}_{\mathcal{F}}(P) \leq C_{p-1}$.

3 Blocks

Let F be an algebraically closed field of characteristic p, and let B be a block of $F G$, i. e. an indecomposable direct summand of the group algebra $F G$. As usual, the irreducible ordinary and modular characters can be distributed into blocks.

Definition 3.1. A defect group of B is a maximal p-subgroup $D \leq G$ such that there exists $\psi \in$ $\operatorname{Irr}\left(\mathrm{N}_{G}(D)\right)$ with

$$
\left(\sum_{\chi \in \operatorname{Irr}(B)} \chi(1)\left(\chi, \psi^{G}\right)\right)_{p}=\psi^{G}(1)_{p} .
$$

Definition 3.2 (Alperin-Broué). B determines a fusion system $\mathcal{F}_{D}(B)$ on D such that $\operatorname{Hom}_{\mathcal{F}}(S, T) \subseteq$ $\operatorname{Hom}_{G}(S, T)$ for $S, T \leq D$ (makes use of Brauer pairs).

In the following let $\mathcal{F}=\mathcal{F}_{D}(B)$.
Example 3.3. If $B=B_{0}(G)$ is the principal block $(1 \in \operatorname{Irr}(B))$, then $D \in \operatorname{Syl}_{p}(G)$ and $\mathcal{F}=\mathcal{F}_{D}(G)$.
Open: Is $\mathcal{F}=\mathcal{F}_{D}(H)$ for some finite group H ?
Definition 3.4. B is called nilpotent if \mathcal{F} is trivial.
Theorem 3.5 (Puig). If B is nilpotent, then $B \cong(F D)^{n \times n}$ for some $n \geq 1$. In particular, B and $F D$ are Morita equivalent, i. e. they have equivalent module categories.

Example 3.6. G p-nilpotent iff $B_{0}(G)$ nilpotent.
Theorem 3.7 (KÜLShammer). If $D \unlhd G$, then \mathcal{F} is controlled and B is Morita equivalent to a twisted group algebra $F_{\alpha}\left[D \rtimes \operatorname{Out}_{\mathcal{F}}(P)\right]$ where $\alpha \in \mathrm{H}^{2}\left(\operatorname{Out}_{\mathcal{F}}(P), F^{\times}\right)$.

Theorem 3.8 (KÜLSHAMMER). If G is p-solvable, then \mathcal{F} is constrained and B is Morita equivalent to $F_{\alpha} H$ where H is a model for \mathcal{F} and $\alpha \in \mathrm{H}^{2}\left(H, F^{\times}\right)$.

Theorem 3.9. If D is a metacyclic 2-group, then one of the following holds:
(1) B is nilpotent.
(2) D is dihedral, semidihedral or quaternion and B has tame representation type (Morita equivalence classes classified up to scalars).
(3) $D \cong C_{2^{n}}^{2}$ and B is Morita equivalent to $F\left[D \rtimes C_{3}\right]$.
(4) $D \cong C_{2}^{2}$ and B is Morita equivalent to $B_{0}\left(A_{5}\right)$.

Remark 3.10. Puig's theorem classifies blocks with "minimal" fusion. The following is the other extreme.

Theorem 3.11. If every two non-trivial elements of D are \mathcal{F}-conjugate, then one of the following holds:
(1) D is elementary abelian and the possible $\operatorname{Aut}_{\mathcal{F}}(D)$ are classified by Hering (transitive linear groups).
(2) $D=3_{+}^{1+2}$ and $\mathcal{F}=\mathcal{F}_{D}(H)$ where $H \in\left\{{ }^{2} F_{4}(2)^{\prime}, J_{4}\right\}$.
(3) $D=5_{+}^{1+2}, \mathcal{F}=\mathcal{F}_{D}(T h)$ and B is Morita equivalent to $B_{0}(T h)$.

Conjecture 3.12 (Blockwise Z^{*}-conjecture). B is Morita equivalent to its Brauer correspondent B_{Z} in $\mathrm{C}_{G}(\mathrm{Z}(\mathcal{F}))$.

Remark 3.13. Let $B=B_{0}(G)$. Since $B_{0}(G) \cong B_{0}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$, we may assume that $\mathrm{O}_{p^{\prime}}(G)=1$. Then the Z^{*}-theorem implies $\mathrm{Z}(\mathcal{F})=\mathrm{Z}(G)$ and $B=B_{Z}$.

Theorem 3.14 (KÜLShammer-Okuyama, Watanabe). $|\operatorname{Irr}(B)| \geq\left|\operatorname{Irr}\left(B_{Z}\right)\right|$ and $|\operatorname{IBr}(B)| \geq\left|\operatorname{IBr}\left(B_{Z}\right)\right|$ with equality in both cases if D is abelian.

Conjecture 3.15 (ROUQUIER). If $\mathfrak{h y p}(\mathcal{F})$ is abelian, then B is derived equivalent to its Brauer correspondent B_{H} in $\mathrm{N}_{G}(\mathfrak{h y p}(\mathcal{F}))$.

Remark 3.16. Suppose that D is abelian. In view of Conjecture 3.12, lets assume that $\mathrm{Z}(\mathcal{F}) \leq \mathrm{Z}(G)$. Then $\mathrm{N}_{G}(\mathfrak{h y p}(\mathcal{F}))=\mathrm{N}_{G}(D)$ (since $\left.D=\mathfrak{h y p}(\mathcal{F}) \times \mathrm{Z}(\mathcal{F})\right)$ and Rouquier's conjecture becomes Broué's conjecture.

Theorem 3.17 (Watanabe). If $\mathfrak{h y p}(\mathcal{F})$ is cyclic, then

$$
\begin{aligned}
|\operatorname{Irr}(B)| & =\left|\operatorname{Irr}\left(B_{H}\right)\right|=\left|\operatorname{Irr}\left(D \rtimes \operatorname{Out}_{\mathcal{F}}(D)\right)\right|, \\
|\operatorname{IBr}(B)| & =\left|\operatorname{IBr}\left(B_{H}\right)\right|=\left|\operatorname{Out}_{F}(D)\right| .
\end{aligned}
$$

Remark 3.18. If $p>2$ and D non-abelian metacyclic, then Theorem 3.17 applies.

[^0]: *Fachbereich Mathematik, TU Kaiserslautern, 67653 Kaiserslautern, Germany, sambale@mathematik.uni-kl.de

