Fusion systems of groups and blocks

Young researchers seminar MSRI Berkeley

Benjamin Sambale*

February 21, 2018

1 Motivation

Let G be a finite group and $H \leq G$. Elements $x, y \in H$ are called *fused* if they are conjugate in G, but not in H.

Aim: Find "small" subgroup $K \supseteq H$ controlling fusion in H, i. e. $x, y \in H$ are fused in G iff x, y are fused in K.

Main interest: $H \in Syl_p(G)$.

In the following let $P \in Syl_p(G)$.

Theorem 1.1 (BURNSIDE). $N_G(P)$ controls fusion in Z(P).

Theorem 1.2 (FROBENIUS). If P controls fusion in P ("no fusion"), then G is p-nilpotent, i. e. $G = N \rtimes P$.

Theorem 1.3 ((Hyper)focal subgroup theorem).

 $\langle xy^{-1} : x, y \in P \text{ are conjugate in } G \rangle = G' \cap P$ (focal subgroup), $\langle xy^{-1} : x, y \in P \text{ are conjugate by a } p'\text{-element} \rangle = O^p(G) \cap P$ (hyperfocal subgroup)

where G' = [G, G] and $O^p(G) = \langle p'\text{-elements} \rangle$.

Theorem 1.4 (Z*-theorem). If $x \in Z(P)$ is not fused to any other element of P, then $x O_{p'}(G) \in Z(G/O_{p'}(G))$ where $O_{p'}(G)$ is the largest normal p'-subgroup of G.

Theorem 1.5 (ZJ-theorem). Suppose that p > 2 and G does not involve $Qd(p) := C_p^2 \rtimes SL_2(p)$. Then $N_G(Z(J(P)))$ controls fusion in P where J(P) is the Thompson subgroup of P.

^{*}Fachbereich Mathematik, TU Kaiserslautern, 67653 Kaiserslautern, Germany, sambale@mathematik.uni-kl.de

2 Fusion systems

Definition 2.1 (PUIG). A (saturated) *fusion system* on a finite *p*-group *P* is a category \mathcal{F} with

- objects = subgroups of P
- morphisms = injective group homomorphisms such that
 - $-\operatorname{Hom}_{P}(S,T) := \{\varphi : S \to T : \exists g \in P : \varphi(s) = s^{g} = g^{-1}sg \ \forall s \in S\} \subseteq \operatorname{Hom}_{\mathcal{F}}(S,T) \text{ for } S, T \leq P,$
 - $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S,T) \Longrightarrow \varphi \in \operatorname{Hom}_{\mathcal{F}}(S,\varphi(S)), \, \varphi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(\varphi(S),S),$
 - for every $S \leq P$ there exists an isomorphism $S \to T$ in \mathcal{F} such that $\operatorname{Aut}_P(T) \in \operatorname{Syl}_p(\operatorname{Aut}_{\mathcal{F}}(T))$ and every isomorphism $\varphi : R \to T$ in \mathcal{F} extends to $\{x \in \operatorname{N}_P(R) : \exists y \in \operatorname{N}_P(T) : \varphi(r^x) = \varphi(r)^y \ \forall r \in R\}.$

Example 2.2. Every finite group G induces a fusion system $\mathcal{F}_P(G)$ on $P \in \operatorname{Syl}_p(G)$ via $\operatorname{Hom}_{\mathcal{F}}(S,T) := \operatorname{Hom}_G(S,T)$ for $S,T \leq P$ (Exercise). In particular, there is always the *trivial* fusion system $\mathcal{F}_P(P)$. There are *exotic* fusion systems not arising from finite groups. For example on the non-abelian group $P = 7^{1+2}_+$ of order 7^3 and exponent 7.

Theorem 2.3 (FROBENIUS). $\mathcal{F}_P(G) = \mathcal{F}_P(P) \Longrightarrow G \text{ p-nilpotent.}$

In the following let \mathcal{F} be a fusion system on P. We call $x, y \in P \mathcal{F}$ -conjugate if there exists a morphism in \mathcal{F} sending x to y.

Definition 2.4. Q < P is called *essential* if

- for every isomorphism $Q \to S$ in \mathcal{F} we have $|N_P(Q)| \ge |N_P(S)|$ and $C_P(S) \le S$,
- there exists a strongly p-embedded subgroup $H < \operatorname{Out}_{\mathcal{F}}(Q) := \operatorname{Aut}_{\mathcal{F}}(Q) / \operatorname{Inn}(Q)$, i. e. $|H|_p \neq 1$ and $|H \cap H^x|_p = 1$ for every $x \in \operatorname{Out}_{\mathcal{F}}(Q) \setminus H$ (cf. Frobenius complement).

Remark 2.5. Essential subgroups Q are self-centralizing $(C_P(Q) \leq Q)$ and *radical*, i. e. $O_p(Aut_{\mathcal{F}}(Q)) = Inn(Q)$ (Exercise).

Theorem 2.6 (ALPERIN's fusion theorem). Every isomorphism in \mathcal{F} is a composition of restrictions from $\operatorname{Aut}_{\mathcal{F}}(P) \cup \bigcup_{\substack{Q \text{ essential}}} \operatorname{Aut}_{\mathcal{F}}(Q).$

Theorem 2.7. A group G contains a strongly p-embedded subgroup iff one of the following holds:

(1) $O_p(G) = 1$ and the Sylow p-subgroups of G are cyclic or quaternion.

(2) $O^{p'}(G/O_{p'}(G))$ is one of the following:

- $\operatorname{PSL}(2, p^n)$ for $n \ge 2$,
- $PSU(3, p^n)$ for $n \ge 1$,
- $Sz(2^{2n+1})$ for p = 2 and $n \ge 1$,
- ${}^{2}G_{2}(3^{2n-1})$ for p = 3 and $n \ge 1$,
- A_{2p} for $p \ge 5$,
- $PSL_3(4)$, M_{11} for p = 3,
- Aut(Sz(32)), ${}^{2}F_{4}(2)'$, McL, Fi₂₂ for p = 5,

• J_4 for p = 11.

Consequence: Most fusion systems are *controlled*, i.e. there are no essential subgroups and $\mathcal{F} = \mathcal{F}_P(P \rtimes \operatorname{Out}_{\mathcal{F}}(P))$. In fact "most" fusion systems are trivial.

Theorem 2.8 (BURNSIDE). *P* abelian $\implies \mathcal{F}$ controlled.

Example 2.9. *P* cyclic 2-group $\Longrightarrow \mathcal{F}$ trivial.

Definition 2.10.

- (1) Let $O_p(\mathcal{F})$ be the largest subgroup $Q \leq \bigcap_{E \text{ essential}} E$ such that $f(Q) = Q \ \forall f \in \operatorname{Hom}_{\mathcal{F}}(Q, P)$ (Exercise: Show well-defined).
- (2) \mathcal{F} is called *constrained*, if $C_P(O_p(\mathcal{F})) \leq O_p(\mathcal{F})$.

Theorem 2.11 (Model theorem). Every constrained fusion system \mathcal{F} has a unique model G, i. e. $P \in \operatorname{Syl}_p(G)$, $\operatorname{O}_p(\mathcal{F}) = \operatorname{O}_p(G)$, $\operatorname{C}_G(\operatorname{O}_p(G)) \leq \operatorname{O}_p(G)$ and $\mathcal{F} = \mathcal{F}_P(G)$. In particular, \mathcal{F} is non-exotic.

Example 2.12.

- (1) controlled \implies constrained ($O_p(\mathcal{F}) = P$).
- (2) $\mathcal{F}_{D_8}(S_4)$ is constrained $(O_p(\mathcal{F}) = V_4)$, but not controlled.
- (3) $\mathcal{F}_{D_8}(\mathrm{GL}_3(2))$ is not constrained (Exercise).

Definition 2.13. A group G is called *metacyclic* if there exists $N \leq G$ such that N and G/N are cyclic.

Theorem 2.14. If P is metacyclic, then one of the following holds:

- (1) \mathcal{F} is trivial.
- (2) P is abelian and $\operatorname{Aut}_{\mathcal{F}}(P)$ is a p'-subgroup of $\operatorname{GL}_2(p)$.
- (3) p > 2, $P = C_{2^n} \rtimes C_{2^m}$, \mathcal{F} is controlled and $\operatorname{Out}_{\mathcal{F}}(P) \leq C_{p-1}$.
- (4) p = 2, D is dihedral, semidihedral or quaternion (≤ 7 non-trivial fusion systems per order, all coming from "decorated" simple groups).

Definition 2.15.

$$\begin{aligned} \mathbf{Z}(\mathcal{F}) &:= \{ x \in P : f(x) = x \; \forall f \in \operatorname{Hom}_{\mathcal{F}}(\langle x \rangle, P) \} & (center), \\ \mathfrak{hyp}(\mathcal{F}) &:= \langle f(x)x^{-1} : x \in Q \leq P, \; f \in \operatorname{O}^p(\operatorname{Aut}_{\mathcal{F}}(Q)) \rangle & (hyperfocal \; subgroup). \end{aligned}$$

Proposition 2.16.

- (1) \mathcal{F} trivial $\iff \mathfrak{hyp}(\mathcal{F}) = 1$ (Exercise).
- (2) P abelian $\Longrightarrow P = \mathfrak{hyp}(\mathcal{F}) \times Z(\mathcal{F})$ (Exercise).
- (3) $\mathfrak{hyp}(\mathcal{F})$ cyclic $\Longrightarrow \mathcal{F}$ controlled and $\operatorname{Out}_{\mathcal{F}}(P) \leq C_{p-1}$.

3 Blocks

Let F be an algebraically closed field of characteristic p, and let B be a block of FG, i.e. an indecomposable direct summand of the group algebra FG. As usual, the irreducible ordinary and modular characters can be distributed into blocks.

Definition 3.1. A *defect group* of B is a maximal p-subgroup $D \leq G$ such that there exists $\psi \in Irr(N_G(D))$ with

$$\left(\sum_{\chi\in\operatorname{Irr}(B)}\chi(1)(\chi,\psi^G)\right)_p=\psi^G(1)_p.$$

Definition 3.2 (ALPERIN-BROUÉ). *B* determines a fusion system $\mathcal{F}_D(B)$ on *D* such that $\operatorname{Hom}_{\mathcal{F}}(S,T) \subseteq \operatorname{Hom}_G(S,T)$ for $S,T \leq D$ (makes use of *Brauer pairs*).

In the following let $\mathcal{F} = \mathcal{F}_D(B)$.

Example 3.3. If $B = B_0(G)$ is the principal block $(1 \in \operatorname{Irr}(B))$, then $D \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_D(G)$.

Open: Is $\mathcal{F} = \mathcal{F}_D(H)$ for some finite group H?

Definition 3.4. B is called *nilpotent* if \mathcal{F} is trivial.

Theorem 3.5 (PUIG). If B is nilpotent, then $B \cong (FD)^{n \times n}$ for some $n \ge 1$. In particular, B and FD are Morita equivalent, i. e. they have equivalent module categories.

Example 3.6. G p-nilpotent iff $B_0(G)$ nilpotent.

Theorem 3.7 (KÜLSHAMMER). If $D \leq G$, then \mathcal{F} is controlled and B is Morita equivalent to a twisted group algebra $F_{\alpha}[D \rtimes \operatorname{Out}_{\mathcal{F}}(P)]$ where $\alpha \in \operatorname{H}^{2}(\operatorname{Out}_{\mathcal{F}}(P), F^{\times})$.

Theorem 3.8 (KÜLSHAMMER). If G is p-solvable, then \mathcal{F} is constrained and B is Morita equivalent to $F_{\alpha}H$ where H is a model for \mathcal{F} and $\alpha \in \mathrm{H}^{2}(H, F^{\times})$.

Theorem 3.9. If D is a metacyclic 2-group, then one of the following holds:

- (1) B is nilpotent.
- (2) D is dihedral, semidihedral or quaternion and B has tame representation type (Morita equivalence classes classified up to scalars).
- (3) $D \cong C_{2^n}^2$ and B is Morita equivalent to $F[D \rtimes C_3]$.
- (4) $D \cong C_2^2$ and B is Morita equivalent to $B_0(A_5)$.

Remark 3.10. Puig's theorem classifies blocks with "minimal" fusion. The following is the other extreme.

Theorem 3.11. If every two non-trivial elements of D are \mathcal{F} -conjugate, then one of the following holds:

- (1) D is elementary abelian and the possible $\operatorname{Aut}_{\mathcal{F}}(D)$ are classified by Hering (transitive linear groups).
- (2) $D = 3^{1+2}_+$ and $\mathcal{F} = \mathcal{F}_D(H)$ where $H \in \{{}^2F_4(2)', J_4\}.$
- (3) $D = 5^{1+2}_+$, $\mathcal{F} = \mathcal{F}_D(Th)$ and B is Morita equivalent to $B_0(Th)$.

Conjecture 3.12 (Blockwise Z*-conjecture). *B* is Morita equivalent to its Brauer correspondent B_Z in $C_G(Z(\mathcal{F}))$.

Remark 3.13. Let $B = B_0(G)$. Since $B_0(G) \cong B_0(G/\mathcal{O}_{p'}(G))$, we may assume that $\mathcal{O}_{p'}(G) = 1$. Then the Z*-theorem implies $Z(\mathcal{F}) = Z(G)$ and $B = B_Z$.

Theorem 3.14 (KÜLSHAMMER-OKUYAMA, WATANABE). $|Irr(B)| \ge |Irr(B_Z)|$ and $|IBr(B)| \ge |IBr(B_Z)|$ with equality in both cases if D is abelian.

Conjecture 3.15 (ROUQUIER). If $\mathfrak{hyp}(\mathcal{F})$ is abelian, then B is derived equivalent to its Brauer correspondent B_H in $N_G(\mathfrak{hyp}(\mathcal{F}))$.

Remark 3.16. Suppose that D is abelian. In view of Conjecture 3.12, lets assume that $Z(\mathcal{F}) \leq Z(G)$. Then $N_G(\mathfrak{hyp}(\mathcal{F})) = N_G(D)$ (since $D = \mathfrak{hyp}(\mathcal{F}) \times Z(\mathcal{F})$) and Rouquier's conjecture becomes *Broué's conjecture*.

Theorem 3.17 (WATANABE). If $\mathfrak{hyp}(\mathcal{F})$ is cyclic, then

$$|\operatorname{Irr}(B)| = |\operatorname{Irr}(B_H)| = |\operatorname{Irr}(D \rtimes \operatorname{Out}_{\mathcal{F}}(D))|,$$

$$|\operatorname{IBr}(B)| = |\operatorname{IBr}(B_H)| = |\operatorname{Out}_F(D)|.$$

Remark 3.18. If p > 2 and D non-abelian metacyclic, then Theorem 3.17 applies.