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1 Motivation

Let G be a finite group and H < G. Elements x,y € H are called fused if they are conjugate in G, but
not in H.

Aim: Find “small” subgroup K D H controlling fusion in H, i.e. x,y € H are fused in G iff z,y are
fused in K.

Main interest: H € Syl,(G).
In the following let P € Syl,(G).
Theorem 1.1 (BURNSIDE). Ng(P) controls fusion in Z(P).

Theorem 1.2 (FROBENIUS). If P controls fusion in P (“no fusion”), then G is p-nilpotent, i. e.
G=N xP.

Theorem 1.3 ((Hyper)focal subgroup theorem).

1

(xy~"' : 2,y € P are conjugate in G) = G'N P (focal subgroup),

~L:z,y € P are conjugate by a p'-element) = OP(G) N P (hyperfocal subgroup)

{zy
where G' =[G, G] and OP(G) = (p'-elements).

Theorem 1.4 (Z*-theorem). If x € Z(P) is not fused to any other element of P, then x Oy (G) €
Z(G/ Oy (G)) where Oy (G) is the largest normal p'-subgroup of G.

Theorem 1.5 (ZJ-theorem). Suppose that p > 2 and G does not involve Qd(p) = Cg x SLa(p). Then
N (Z(J(P))) controls fusion in P where J(P) is the Thompson subgroup of P.
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2 Fusion systems

Definition 2.1 (Puic). A (saturated) fusion system on a finite p-group P is a category F with
e objects = subgroups of P
e morphisms = injective group homomorphisms such that

— Homp(S,T) :=={p: S - T :3g € P: p(s) =5 =g lsgVs c S} C Homz(S,T) for
S, T < P,

- pE Hom]:(S,T) = pEc HOID]:(S,QO(S)), So_l € HOHl]—‘(QO(S),S),

— for every S < P there exists an isomorphism S — T in F such that Autp(T') € Syl,(Aut#(T))
and every isomorphism ¢ : R — T in F extends to {z € Np(R) : Jy € Np(T) : o(r*) =
o(r)¥ ¥r € R}.

Example 2.2. Every finite group G induces a fusion system Fp(G) on P € Syl,(G) via Homz(S,T) :=
Homg(S,T) for S,T < P (Exercise). In particular, there is always the trivial fusion system Fp(P).
There are exotic fusion systems not arising from finite groups. For example on the non-abelian group
P = 7?2 of order 73 and exponent 7.

Theorem 2.3 (FROBENIUS). Fp(G) = Fp(P) = G p-nilpotent.
In the following let F be a fusion system on P. We call z,y € P F-conjugate if there exists a morphism
in F sending z to y.
Definition 2.4. Q) < P is called essential if
e for every isomorphism @ — S in F we have [Np(Q)| > |[Np(S)| and Cp(S) < S,

e there exists a strongly p-embedded subgroup H < Outz(Q) := Aut#(Q)/Inn(Q), i.e. |H|, # 1
and |H N H”|, =1 for every x € Outz(Q) \ H (cf. Frobenius complement).

Remark 2.5. Essential subgroups @ are self-centralizing (Cp(Q) < Q) and radical, i.e. Op(Aut£(Q)) =
Inn(Q) (Exercise).

Theorem 2.6 (ALPERIN’s fusion theorem). Fuvery isomorphism in F is a composition of restrictions
from Autz(P)U  |J Autr(Q).

Q essential
Theorem 2.7. A group G contains a strongly p-embedded subgroup iff one of the following holds:
(1) Op(G) =1 and the Sylow p-subgroups of G are cyclic or quaternion.
(2) O (G/ O, (G)) is one of the following:

e PSL(2,p") forn > 2,

e PSU(3,p") forn > 1,

o Sz(22"tY) forp =2 andn > 1,

e 2GL(37 Y forp=3 andn > 1,

o Ay, forp =5,

e PSL3(4), M1 forp =3,

o Aut(Sz(32)), 2Fy(2)', McL, Fiyy for p =5,



e J, forp=11.

Consequence: Most fusion systems are controlled, i.e. there are no essential subgroups and F =
Fp(P x Outz(P)). In fact “most” fusion systems are trivial.

Theorem 2.8 (BURNSIDE). P abelian = F controlled.

Example 2.9. P cyclic 2-group = F trivial.

Definition 2.10.

(1) Let Op(F) be the largest subgroup @ < N ~ E such that f(Q) = Q Vf € Homz(Q, P)
(Exercise: Show well-defined). 7 sentid

(2) F is called constrained, if Cp(Op(F)) < Op(F).

Theorem 2.11 (Model theorem). Every constrained fusion system F has a unique model G, i.e.
P € Syl (G), Op(F) = Oy(G), Ca(0p(Q)) < Op(G) and F = Fp(G). In particular, F is non-exotic.

Example 2.12.

(1) controlled = constrained (O,(F) = P).

(2) Fpg(Sy) is constrained (O, (F) = V4), but not controlled.
(3) Fpg(GL3(2)) is not constrained (Exercise).

Definition 2.13. A group G is called metacyclic if there exists N < G such that N and G/N are
cyclic.

Theorem 2.14. If P is metacyclic, then one of the following holds:
(1) F is trivial.

(2) P is abelian and Autxz(P) is a p'-subgroup of GLa(p).

(3) p>2, P=Con x Com, F is controlled and Outz(P) < Cp_1.

(4) p = 2, D is dihedral, semidihedral or quaternion (< 7 non-trivial fusion systems per order, all
coming from “decorated” simple groups).

Definition 2.15.

ZF) = {v € P: f(x) = a ¥f € Homp((a), P} (center)
byp(F) := (f(x)z™' 12 € Q < P, f € OP(Autx(Q)))  (hyperfocal subgroup).
Proposition 2.16.
(1) F trivial <= bhyp(F) = 1 (Ezercise).
(2) P abelian = P = byp(F) x Z(F) (Erercise).
(3) byp(F) cyclic = F controlled and Outx(P) < Cp_;.



3 Blocks

Let F' be an algebraically closed field of characteristic p, and let B be a block of F'G, i.e. an inde-
composable direct summand of the group algebra F'G. As usual, the irreducible ordinary and modular
characters can be distributed into blocks.

Definition 3.1. A defect group of B is a maximal p-subgroup D < G such that there exists ¢ €
Irr(Ng(D)) with

(X x0e9) =l

x€lrr(B)
Definition 3.2 (ALPERIN-BROUE). B determines a fusion system Fp(B) on D such that Hom#(S,T") C
Homg(S,T) for S,T < D (makes use of Brauer pairs).

In the following let F = Fp(B).
Example 3.3. If B = By(G) is the principal block (1 € Irr(B)), then D € Syl,(G) and F = Fp(G).

Open: Is F = Fp(H) for some finite group H?
Definition 3.4. B is called nilpotent if F is trivial.

Theorem 3.5 (PuIG). If B is nilpotent, then B = (F D)™™ for some n > 1. In particular, B and
FD are Morita equivalent, i. e. they have equivalent module categories.

Example 3.6. G p-nilpotent iff By(G) nilpotent.

Theorem 3.7 (KULSHAMMER). If D <G, then F is controlled and B is Morita equivalent to a twisted
group algebra Fy[D x Outz(P)] where a € H2(Outx(P), F*).

Theorem 3.8 (KULSHAMMER). If G is p-solvable, then F is constrained and B is Morita equivalent
to Fo H where H is a model for F and o € H?(H, F).

Theorem 3.9. If D is a metacyclic 2-group, then one of the following holds:
(1) B is nilpotent.

(2) D is dihedral, semidihedral or quaternion and B has tame representation type (Morita equivalence
classes classified up to scalars).

(3) D = C3, and B is Morita equivalent to F[D x Cs].
(4) D = C3 and B is Morita equivalent to By(As).

Remark 3.10. Puig’s theorem classifies blocks with “minimal” fusion. The following is the other
extreme.

Theorem 3.11. If every two non-trivial elements of D are F-conjugate, then one of the following
holds:

(1) D is elementary abelian and the possible Autz(D) are classified by Hering (transitive linear groups).
(2) D =32 and F = Fp(H) where H € {?Fy(2)", Ju}.
8) D =52 F = Fp(Th) and B is Morita equivalent to By(Th).

Jr



Conjecture 3.12 (Blockwise Z*-conjecture). B is Morita equivalent to its Brauer correspondent By
in Cq(Z(F)).

Remark 3.13. Let B = By(G). Since By(G) = Bo(G/ Oy (G)), we may assume that Oy (G) = 1.
Then the Z*-theorem implies Z(F) = Z(G) and B = By.

Theorem 3.14 (KULSHAMMER-OKUYAMA, WATANABE). |Irr(B)| > |Irr(Byz)| and |IBr(B)| > |IBr(Byz)|
with equality in both cases if D is abelian.

Conjecture 3.15 (ROUQUIER). If hyp(F) is abelian, then B is derived equivalent to its Brauer cor-
respondent By in Ng(hyp(F)).

Remark 3.16. Suppose that D is abelian. In view of |Conjecture 3.12| lets assume that Z(F) < Z(G).
Then Ng(hyp(F)) = Ng(D) (since D = hyp(F) x Z(F)) and Rouquier’s conjecture becomes Broué’s

conjecture.

Theorem 3.17 (WATANABE). If hyp(F) is cyclic, then

|Irr(B)| = [Irr(Bg)| = [Irr(D x Outz (D)),
1Be(B)| = [Br(By)| = [Outp (D).

Remark 3.18. If p > 2 and D non-abelian metacyclic, then applies.



