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1 Motivation

Let G be a finite group and H ≤ G. Elements x, y ∈ H are called fused if they are conjugate in G, but
not in H.

Aim: Find “small” subgroup K ⊇ H controlling fusion in H, i. e. x, y ∈ H are fused in G iff x, y are
fused in K.

Main interest: H ∈ Sylp(G).

In the following let P ∈ Sylp(G).

Theorem 1.1 (Burnside). NG(P ) controls fusion in Z(P ).

Theorem 1.2 (Frobenius). If P controls fusion in P (“no fusion”), then G is p-nilpotent, i. e.
G = N o P .

Theorem 1.3 ((Hyper)focal subgroup theorem).

〈xy−1 : x, y ∈ P are conjugate in G〉 = G′ ∩ P (focal subgroup),

〈xy−1 : x, y ∈ P are conjugate by a p′-element〉 = Op(G) ∩ P (hyperfocal subgroup)

where G′ = [G,G] and Op(G) = 〈p′-elements〉.

Theorem 1.4 (Z∗-theorem). If x ∈ Z(P ) is not fused to any other element of P , then xOp′(G) ∈
Z(G/Op′(G)) where Op′(G) is the largest normal p′-subgroup of G.

Theorem 1.5 (ZJ-theorem). Suppose that p > 2 and G does not involve Qd(p) := C2
p o SL2(p). Then

NG(Z(J(P ))) controls fusion in P where J(P ) is the Thompson subgroup of P .
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2 Fusion systems

Definition 2.1 (Puig). A (saturated) fusion system on a finite p-group P is a category F with

• objects = subgroups of P

• morphisms = injective group homomorphisms such that

– HomP (S, T ) := {ϕ : S → T : ∃g ∈ P : ϕ(s) = sg = g−1sg ∀s ∈ S} ⊆ HomF (S, T ) for
S, T ≤ P ,

– ϕ ∈ HomF (S, T ) =⇒ ϕ ∈ HomF (S, ϕ(S)), ϕ−1 ∈ HomF (ϕ(S), S),

– for every S ≤ P there exists an isomorphism S → T in F such thatAutP (T ) ∈ Sylp(AutF (T ))
and every isomorphism ϕ : R → T in F extends to {x ∈ NP (R) : ∃y ∈ NP (T ) : ϕ(rx) =
ϕ(r)y ∀r ∈ R}.

Example 2.2. Every finite group G induces a fusion system FP (G) on P ∈ Sylp(G) via HomF (S, T ) :=
HomG(S, T ) for S, T ≤ P (Exercise). In particular, there is always the trivial fusion system FP (P ).
There are exotic fusion systems not arising from finite groups. For example on the non-abelian group
P = 71+2

+ of order 73 and exponent 7.

Theorem 2.3 (Frobenius). FP (G) = FP (P ) =⇒ G p-nilpotent.

In the following let F be a fusion system on P . We call x, y ∈ P F-conjugate if there exists a morphism
in F sending x to y.

Definition 2.4. Q < P is called essential if

• for every isomorphism Q→ S in F we have |NP (Q)| ≥ |NP (S)| and CP (S) ≤ S,

• there exists a strongly p-embedded subgroup H < OutF (Q) := AutF (Q)/ Inn(Q), i. e. |H|p 6= 1
and |H ∩Hx|p = 1 for every x ∈ OutF (Q) \H (cf. Frobenius complement).

Remark 2.5. Essential subgroupsQ are self-centralizing (CP (Q) ≤ Q) and radical, i. e.Op(AutF (Q)) =
Inn(Q) (Exercise).

Theorem 2.6 (Alperin’s fusion theorem). Every isomorphism in F is a composition of restrictions
from AutF (P ) ∪

⋃
Q essential

AutF (Q).

Theorem 2.7. A group G contains a strongly p-embedded subgroup iff one of the following holds:

(1) Op(G) = 1 and the Sylow p-subgroups of G are cyclic or quaternion.

(2) Op′(G/Op′(G)) is one of the following:

• PSL(2, pn) for n ≥ 2,

• PSU(3, pn) for n ≥ 1,

• Sz(22n+1) for p = 2 and n ≥ 1,

• 2G2(3
2n−1) for p = 3 and n ≥ 1,

• A2p for p ≥ 5,

• PSL3(4), M11 for p = 3,

• Aut(Sz(32)), 2F4(2)
′, McL, Fi22 for p = 5,
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• J4 for p = 11.

Consequence: Most fusion systems are controlled, i. e. there are no essential subgroups and F =
FP (P oOutF (P )). In fact “most” fusion systems are trivial.

Theorem 2.8 (Burnside). P abelian =⇒ F controlled.

Example 2.9. P cyclic 2-group =⇒ F trivial.

Definition 2.10.

(1) Let Op(F) be the largest subgroup Q ≤
⋂

E essential
E such that f(Q) = Q ∀f ∈ HomF (Q,P )

(Exercise: Show well-defined).

(2) F is called constrained, if CP (Op(F)) ≤ Op(F).

Theorem 2.11 (Model theorem). Every constrained fusion system F has a unique model G, i. e.
P ∈ Sylp(G), Op(F) = Op(G), CG(Op(G)) ≤ Op(G) and F = FP (G). In particular, F is non-exotic.

Example 2.12.

(1) controlled =⇒ constrained (Op(F) = P ).

(2) FD8(S4) is constrained (Op(F) = V4), but not controlled.

(3) FD8(GL3(2)) is not constrained (Exercise).

Definition 2.13. A group G is called metacyclic if there exists N E G such that N and G/N are
cyclic.

Theorem 2.14. If P is metacyclic, then one of the following holds:

(1) F is trivial.

(2) P is abelian and AutF (P ) is a p′-subgroup of GL2(p).

(3) p > 2, P = C2n o C2m , F is controlled and OutF (P ) ≤ Cp−1.

(4) p = 2, D is dihedral, semidihedral or quaternion (≤ 7 non-trivial fusion systems per order, all
coming from “decorated” simple groups).

Definition 2.15.

Z(F) := {x ∈ P : f(x) = x ∀f ∈ HomF (〈x〉, P )} (center),

hyp(F) := 〈f(x)x−1 : x ∈ Q ≤ P, f ∈ Op(AutF (Q))〉 (hyperfocal subgroup).

Proposition 2.16.

(1) F trivial ⇐⇒ hyp(F) = 1 (Exercise).

(2) P abelian =⇒ P = hyp(F)× Z(F) (Exercise).

(3) hyp(F) cyclic =⇒ F controlled and OutF (P ) ≤ Cp−1.
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3 Blocks

Let F be an algebraically closed field of characteristic p, and let B be a block of FG, i. e. an inde-
composable direct summand of the group algebra FG. As usual, the irreducible ordinary and modular
characters can be distributed into blocks.

Definition 3.1. A defect group of B is a maximal p-subgroup D ≤ G such that there exists ψ ∈
Irr(NG(D)) with ( ∑

χ∈Irr(B)

χ(1)(χ, ψG)
)
p
= ψG(1)p.

Definition 3.2 (Alperin-Broué). B determines a fusion system FD(B) onD such thatHomF (S, T ) ⊆
HomG(S, T ) for S, T ≤ D (makes use of Brauer pairs).

In the following let F = FD(B).

Example 3.3. If B = B0(G) is the principal block (1 ∈ Irr(B)), then D ∈ Sylp(G) and F = FD(G).

Open: Is F = FD(H) for some finite group H?

Definition 3.4. B is called nilpotent if F is trivial.

Theorem 3.5 (Puig). If B is nilpotent, then B ∼= (FD)n×n for some n ≥ 1. In particular, B and
FD are Morita equivalent, i. e. they have equivalent module categories.

Example 3.6. G p-nilpotent iff B0(G) nilpotent.

Theorem 3.7 (Külshammer). If DEG, then F is controlled and B is Morita equivalent to a twisted
group algebra Fα[D oOutF (P )] where α ∈ H2(OutF (P ), F

×).

Theorem 3.8 (Külshammer). If G is p-solvable, then F is constrained and B is Morita equivalent
to FαH where H is a model for F and α ∈ H2(H,F×).

Theorem 3.9. If D is a metacyclic 2-group, then one of the following holds:

(1) B is nilpotent.

(2) D is dihedral, semidihedral or quaternion and B has tame representation type (Morita equivalence
classes classified up to scalars).

(3) D ∼= C2
2n and B is Morita equivalent to F [D o C3].

(4) D ∼= C2
2 and B is Morita equivalent to B0(A5).

Remark 3.10. Puig’s theorem classifies blocks with “minimal” fusion. The following is the other
extreme.

Theorem 3.11. If every two non-trivial elements of D are F-conjugate, then one of the following
holds:

(1) D is elementary abelian and the possible AutF (D) are classified by Hering (transitive linear groups).

(2) D = 31+2
+ and F = FD(H) where H ∈ {2F4(2)

′, J4}.

(3) D = 51+2
+ , F = FD(Th) and B is Morita equivalent to B0(Th).
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Conjecture 3.12 (Blockwise Z∗-conjecture). B is Morita equivalent to its Brauer correspondent BZ
in CG(Z(F)).

Remark 3.13. Let B = B0(G). Since B0(G) ∼= B0(G/Op′(G)), we may assume that Op′(G) = 1.
Then the Z∗-theorem implies Z(F) = Z(G) and B = BZ .

Theorem 3.14 (Külshammer-Okuyama, Watanabe). |Irr(B)| ≥ |Irr(BZ)| and |IBr(B)| ≥ |IBr(BZ)|
with equality in both cases if D is abelian.

Conjecture 3.15 (Rouquier). If hyp(F) is abelian, then B is derived equivalent to its Brauer cor-
respondent BH in NG(hyp(F)).

Remark 3.16. Suppose that D is abelian. In view of Conjecture 3.12, lets assume that Z(F) ≤ Z(G).
Then NG(hyp(F)) = NG(D) (since D = hyp(F) × Z(F)) and Rouquier’s conjecture becomes Broué’s
conjecture.

Theorem 3.17 (Watanabe). If hyp(F) is cyclic, then

|Irr(B)| = |Irr(BH)| = |Irr(D oOutF (D))|,
|IBr(B)| = |IBr(BH)| = |OutF (D)|.

Remark 3.18. If p > 2 and D non-abelian metacyclic, then Theorem 3.17 applies.
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