Introduction Subsections Controlled Blocks

New inequalities concerning Olsson's Conjecture

Benjamin Sambale

(joint work with L. Héthelyi and B. Külshammer)

11.11.2011

Benjamin Sambale New inequalities concerning Olsson's Conjecture

Introduction Subsections Controlled Blocks

Notations

- G is a finite group
- p is a prime number
- B is a p-block of G
- D is a defect group of B
- Irr(B) is the set of irreducible ordinary characters of B
- $k(B) := |\operatorname{Irr}(B)|$
- IBr(B) is the set of irreducible Brauer characters of B
- *I*(*B*) := |IBr(*B*)|

• For $\chi \in Irr(B)$ define the height $h(\chi) \in \mathbb{N}_0$ by

$$\chi(1)_p = p^{h(\chi)} |G:D|_p.$$

•
$$k_i(B) := |\{\chi \in Irr(B) : h(\chi) = i\}|$$
 for $i \ge 0$.

• D' is the commutator subgroup of D

Olsson's Conjecture (1975)

For every block B with defect group D we have $k_0(B) \leq |D:D'|$.

Known results

- In general Olsson's Conjecture for a block B would follow from the Alperin-McKay Conjecture for B which asserts $k_0(B) = k_0(b)$ for the Brauer correspondent b of B in $N_G(D)$.
- In particular, Olsson's Conjecture holds for *p*-solvable, symmetric or alternating groups *G*.
- If D is abelian, Olsson's Conjecture for B would follow from Brauer's k(B)-Conjecture which asserts $k(B) \leq |D|$.
- Olsson's Conjecture is satisfied if D is metacyclic.
- If D is extraspecial of order p^3 , Olsson's Conjecture was proved by Hendren in some, but not all cases. These cases concern the inertial group of B.

Introduction	The case $p = 2$
Subsections	The case $p > 2$
Controlled Blocks	

Subsections

- Let $u \in D$, and let b_u be a block of $C_G(u)$ with Brauer correspondent B.
- Then the pair (u, b_u) is called subsection for *B*.

Proposition (Robinson)

If b_u has defect d, then we have $k_0(B) \leq p^d \sqrt{l(b_u)}$.

- The conjugation of subsections takes place in the fusion system ${\cal F}$ of ${\cal B}.$
- The block *B* is controlled if \mathcal{F} is controlled by the inertial group of *B*.

Introduction	The case $p = 2$
Subsections	The case $p > 2$
Controlled Blocks	

Subsections

- A given subsection (u, b_u) can be replaced by a conjugate such that ⟨u⟩ is fully *F*-normalized in D.
- This means that $|N_D(\langle u \rangle)|$ is as large as possible among all \mathcal{F} -conjugates of u.
- In this case $C_D(u)$ is a defect group of b_u .
- If B is controlled, then all subgroups of D are fully \mathcal{F} -normalized.

Introduction	The case
Subsections	The case
Controlled Blocks	

The case p = 2

Theorem

Let p = 2, and let (u, b_u) be a subsection such that $\langle u \rangle$ is fully \mathcal{F} -normalized and u is conjugate to u^{-5^n} for some $n \in \mathbb{Z}$ in D. If $l(b_u) \leq 2$, then $k_0(B) \leq 2|\mathsf{N}_D(\langle u \rangle)/\langle u \rangle|.$

- The idea of the proof goes back to Brauer and uses the generalized decomposition numbers $d^u_{\chi\varphi}$ for $\chi \in Irr(B)$ and $\varphi \in IBr(b_u)$.
- Here the following result by Broué is important.

Introduction Subsections Controlled Blocks The case p = 2The case p > 2A related result

Sketch of the proof

Proposition (Broué)

If $\chi \in Irr(B)$ has height 0, then $d^u_{\chi\varphi} \neq 0$ for some $\varphi \in IBr(b_u)$.

- It is known that $d_{\chi\varphi}^{u^{-5^n}} = d_{\chi\varphi'}^u$ for some $\varphi' \in \mathsf{IBr}(b_u)$, since u and u^{-5^n} are \mathcal{F} -conjugate.
- On the other hand $d_{\chi\varphi}^{u\gamma} = \gamma(d_{\chi\varphi}^u)$ for an automorphism γ in the Galois group $Gal(\mathbb{Q}(\zeta)|\mathbb{Q}) \cong Aut(\langle u \rangle)$ where ζ is a $|\langle u \rangle|$ -th root of unity.
- A comparison of these numbers implies the result.

Example

- Let D be a modular 2-group and $x \in D$ such that $|D : \langle x \rangle| = 2$.
- Since $\langle x \rangle \trianglelefteq D$, the subgroup $\langle x \rangle$ is fully \mathcal{F} -normalized.
- Moreover, $l(b_x) = 1$, because b_x has cyclic defect group $C_D(x) = \langle x \rangle$.
- However, x and x^{-5^n} are not conjugate in D for all $n \ge 0$.
- It is known that B is nilpotent and thus

$$k_0(B) = |D:D'| = |D|/2.$$

• This example shows that the conjugation condition is necessary.

Introduction	The case μ
Subsections	The case μ
Controlled Blocks	

Application

Corollary

Let D be a 2-group and $x \in D$ such that $|D : \langle x \rangle| \le 4$, and suppose that one of the following holds:

- x is conjugate to x^{-5^n} in D for some $n \in \mathbb{Z}$,
- $\langle x \rangle \leq D$.

Then Olsson's Conjecture holds for all blocks with defect group D.

This includes the 2-groups of maximal class for which Olsson's Conjecture was already proved by Brauer and Olsson.

IntroductionThe case p = 2SubsectionsThe case p > 2Controlled BlocksA related result

The case p > 2

We call a *B*-subsection (u, b_u) major if b_u and *B* have the same defect.

Theorem

Let p > 2, and let (u, b_u) be a subsection such that $l(b_u) = 1$ and b_u has defect d. Moreover, let $|Aut_{\mathcal{F}}(\langle u \rangle)| = p^s r$ where $p \nmid r$ and $s \ge 0$. Then we have

$$k_0(B) \leq rac{|\langle u
angle| + p^s(r^2 - 1)}{|\langle u
angle| \cdot r} p^d.$$

If (in addition) (u, b_u) is major, we can replace $k_0(B)$ by $\sum_{i=0}^{\infty} p^{2i} k_i(B)$.

Introduction	The case $p = 2$
Subsections	The case $p > 2$
Controlled Blocks	

Example

- Assume that $D = \langle u \rangle$ is cyclic.
- Then $I(b_u) = 1$ and $r := |Aut_{\mathcal{F}}(\langle u \rangle)|$ is the inertial index of B.
- Thus, the theorem implies

$$k_0(B) \le k(B) \le \sum_{i=0}^{\infty} p^{2i} k_i(B) \le \frac{|D|-1}{r} + r.$$

- By Dade's Theorem on blocks with cyclic defect groups in fact equality holds.
- This shows that the inequality is sharp.

Introduction	The case $p = 2$
Subsections	The case $p > 2$
Controlled Blocks	

Remarks

- If Aut_F(⟨u⟩) is a p-group or Aut_F(⟨u⟩) = Aut(⟨u⟩), the theorem implies Robinson's result k₀(B) ≤ p^d (for I(b_u) = 1).
- In all other cases the inequality is even better.
- The claim about major subsections also improves another result by Robinson:

Proposition (Robinson)

If (u, b_u) is a major subsection such that $l(b_u) = 1$, then

$$\sum_{i=0}^{\infty} p^{2i} k_i(B) \le |D|.$$

Introduction	The case $p = 2$
Subsections	I he case <i>p</i> > 2
Controlled Blocks	A related result

A related result

The following proposition was obtained by different methods. Here p is arbitrary.

Proposition

Let (u, b_u) be a subsection such that b_u has defect group Q. If $Q/\langle u \rangle$ is cyclic, then

$$k_0(B) \leq \left(rac{|Q/\langle u
angle| - 1}{l(b_u)} + l(b_u)
ight) |\langle u
angle| \leq |Q|.$$

A theorem Remarks Applications

Controlled Blocks

- Assume that B is a controlled block, and the subsection (u, b_u) satisfies $l(b_u) = 1$.
- Then Robinson's result takes the form

$$k_0(B) \leq |\mathsf{C}_D(u)|.$$

• Thus, in order to prove Olsson's Conjecture it suffices to find an element $u \in D$ such that $l(b_u) = 1$ and $|C_D(u)| \le |D:D'|$.

Controlled Blocks

Theorem

Let D be a finite p-group, where p is an odd prime, and suppose that one of the following holds:

- D has maximal class,
- D has class 2 and $|D: \Phi(D)| = p^2$,
- D' is cyclic and $|D : \Phi(D)| = p^2$,
- D has p-rank 2.

Then Olsson's Conjecture holds for all controlled blocks with defect group D.

Here the *p*-rank denotes the maximal rank of an abelian subgroup.

Sketch of the proof

- Let B be a controlled block with defect group D.
- It is known that the inertial quotient L of B is a p'-subgroup of Aut(D).
- In all cases except the last one we have $|D : \Phi(D)| = p^2$.
- Hence, we may identify L with a subgroup of GL(2, p).
- Next we show that the set $S := \{u \in D : |D : C_D(u)| = |D'|\}$ is nonempty, and L has a regular orbit T on S.
- This implies that the block b_u for some $u \in T$ has inertial index 1.
- Moreover, it is known that b_u is also controlled, and thus nilpotent.

Introduction Subsections Controlled Blocks A theorem Remarks Applications

Sketch of the proof

- This shows $I(b_u) = 1$.
- Now assume that *D* has *p*-rank 2.
- Then a result of Blackburn implies that we only have to consider two infinite families of *p*-groups given by generators and relations.
- Here one can use that L acts faithfully on $\Omega(D)/\Phi(\Omega(D))$; again a group of order p^2 .
- Recall that $\Omega(D) := \langle x \in D : x^p = 1 \rangle$.

Remarks

• The condition $|D : C_D(u)| = |D'|$ implies that

$$D'=\{[u,v]:v\in D\};$$

in particular every element of D' is a commutator.

• Hence, our method does not suffice in order to prove Olsson's Conjecture for all controlled blocks.

Applications

- It was shown by Díaz, Ruiz and Viruel that most blocks with a defect group of *p*-rank 2 are in fact controlled.
- Here for p > 3 only an extraspecial defect group D of order p³ and exponent p is possible for a non-controlled block.
- In this case Hendren showed that there is always a non-major subsection (u, b_u) provided p > 7.
- Then b_u has defect group $C_D(u)$ and $C_D(u)/\langle u \rangle$ is cyclic.
- Since $|D : D'| = p^2 = |C_D(u)|$, Olsson's Conjecture follows from one of the previous propositions.

- Now let $p \in \{5, 7\}$.
- Then by the work of Ruiz and Viruel we only have to consider a few fusion systems for *B*.
- Kessar and Stancu proved that for p = 7 the relevant fusion systems do not occur for blocks.
- For p = 5 the only fusion system without non-major subsections is the fusion system of the simple Thompson group.
- Here we have applied the classification of the finite simple groups in order to show Olsson's Conjecture.

Applications

These considerations lead to the following theorem:

Theorem

Let p > 3. Then Olsson's Conjecture holds for all p-blocks with defect groups of p-rank 2.

For p = 3 there are also non-controlled blocks with defect groups of maximal class and *p*-rank 2.

Introduction	A theorem
Subsections	Remarks
Controlled Blocks	Applications

Applications

Similar arguments give:

Theorem

Let $p \neq 3$. Then Olsson's Conjecture holds for all p-blocks with minimal nonabelian defect groups.

Here a group D is called minimal nonabelian if all proper subgroups of D are abelian, but D is not.