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Notations

G is a finite group
p is a prime number
B is a p-block of G
D is a defect group of B
Irr(B) is the set of irreducible ordinary characters of B
k(B) := |Irr(B)|
IBr(B) is the set of irreducible Brauer characters of B
l(B) := |IBr(B)|
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Heights

For χ ∈ Irr(B) define the height h(χ) ∈ N0 by

χ(1)p = ph(χ)|G : D|p.

ki (B) := |{χ ∈ Irr(B) : h(χ) = i}| for i ≥ 0.
D ′ is the commutator subgroup of D

Olsson’s Conjecture (1975)

For every block B with defect group D we have k0(B) ≤ |D : D ′|.
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Known results

In general Olsson’s Conjecture for a block B would follow from
the Alperin-McKay Conjecture for B which asserts k0(B) =
k0(b) for the Brauer correspondent b of B in NG (D).
In particular, Olsson’s Conjecture holds for p-solvable, symmet-
ric or alternating groups G .
If D is abelian, Olsson’s Conjecture for B would follow from
Brauer’s k(B)-Conjecture which asserts k(B) ≤ |D|.
Olsson’s Conjecture is satisfied if D is metacyclic.
If D is extraspecial of order p3, Olsson’s Conjecture was proved
by Hendren in some, but not all cases. These cases concern the
inertial group of B .
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Subsections

Let u ∈ D, and let bu be a block of CG (u) with Brauer corre-
spondent B .
Then the pair (u, bu) is called subsection for B .

Proposition (Robinson)

If bu has defect d, then we have k0(B) ≤ pd
√

l(bu).

The conjugation of subsections takes place in the fusion system
F of B .
The block B is controlled if F is controlled by the inertial group
of B .
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Subsections

A given subsection (u, bu) can be replaced by a conjugate such
that 〈u〉 is fully F-normalized in D.
This means that |ND(〈u〉)| is as large as possible among all
F-conjugates of u.
In this case CD(u) is a defect group of bu.
If B is controlled, then all subgroups of D are fully F -normalized.
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The case p = 2

Theorem
Let p = 2, and let (u, bu) be a subsection such that 〈u〉 is fully
F -normalized and u is conjugate to u−5n

for some n ∈ Z in D. If
l(bu) ≤ 2, then

k0(B) ≤ 2|ND(〈u〉)/〈u〉|.

The idea of the proof goes back to Brauer and uses the gen-
eralized decomposition numbers du

χϕ for χ ∈ Irr(B) and ϕ ∈
IBr(bu).
Here the following result by Broué is important.
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Sketch of the proof

Proposition (Broué)

If χ ∈ Irr(B) has height 0, then du
χϕ 6= 0 for some ϕ ∈ IBr(bu).

It is known that du−5n

χϕ = du
χϕ′ for some ϕ′ ∈ IBr(bu), since u

and u−5n
are F-conjugate.

On the other hand duγ
χϕ = γ(du

χϕ) for an automorphism γ in the
Galois group Gal(Q(ζ)|Q) ∼= Aut(〈u〉) where ζ is a |〈u〉|-th root
of unity.
A comparison of these numbers implies the result.
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Example

Let D be a modular 2-group and x ∈ D such that |D : 〈x〉| = 2.
Since 〈x〉E D, the subgroup 〈x〉 is fully F-normalized.
Moreover, l(bx) = 1, because bx has cyclic defect group
CD(x) = 〈x〉.
However, x and x−5n

are not conjugate in D for all n ≥ 0.
It is known that B is nilpotent and thus

k0(B) = |D : D ′| = |D|/2.

This example shows that the conjugation condition is necessary.
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Application

Corollary

Let D be a 2-group and x ∈ D such that |D : 〈x〉| ≤ 4, and suppose
that one of the following holds:

x is conjugate to x−5n
in D for some n ∈ Z,

〈x〉E D.
Then Olsson’s Conjecture holds for all blocks with defect group D.

This includes the 2-groups of maximal class for which Olsson’s
Conjecture was already proved by Brauer and Olsson.
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The case p > 2

We call a B-subsection (u, bu) major if bu and B have the same
defect.

Theorem
Let p > 2, and let (u, bu) be a subsection such that l(bu) = 1 and
bu has defect d. Moreover, let |AutF (〈u〉)| = ps r where p - r and
s ≥ 0. Then we have

k0(B) ≤ |〈u〉|+ ps(r2 − 1)

|〈u〉| · r
pd .

If (in addition) (u, bu) is major, we can replace k0(B) by
∞∑
i=0

p2iki (B).
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Assume that D = 〈u〉 is cyclic.
Then l(bu) = 1 and r := |AutF (〈u〉)| is the inertial index of B .
Thus, the theorem implies

k0(B) ≤ k(B) ≤
∞∑
i=0

p2iki (B) ≤ |D| − 1
r

+ r .

By Dade’s Theorem on blocks with cyclic defect groups in fact
equality holds.
This shows that the inequality is sharp.
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Remarks

If AutF (〈u〉) is a p-group or AutF (〈u〉) = Aut(〈u〉), the theorem
implies Robinson’s result k0(B) ≤ pd (for l(bu) = 1).
In all other cases the inequality is even better.
The claim about major subsections also improves another result
by Robinson:

Proposition (Robinson)

If (u, bu) is a major subsection such that l(bu) = 1, then

∞∑
i=0

p2iki (B) ≤ |D|.

Benjamin Sambale New inequalities concerning Olsson’s Conjecture



Introduction
Subsections

Controlled Blocks

The case p = 2
The case p > 2
A related result

A related result

The following proposition was obtained by different methods. Here
p is arbitrary.

Proposition

Let (u, bu) be a subsection such that bu has defect group Q. If Q/〈u〉
is cyclic, then

k0(B) ≤
(
|Q/〈u〉| − 1

l(bu)
+ l(bu)

)
|〈u〉| ≤ |Q|.
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Controlled Blocks

Assume that B is a controlled block, and the subsection (u, bu)
satisfies l(bu) = 1.
Then Robinson’s result takes the form

k0(B) ≤ |CD(u)|.

Thus, in order to prove Olsson’s Conjecture it suffices to find
an element u ∈ D such that l(bu) = 1 and |CD(u)| ≤ |D : D ′|.
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Controlled Blocks

Theorem
Let D be a finite p-group, where p is an odd prime, and suppose
that one of the following holds:

D has maximal class,
D has class 2 and |D : Φ(D)| = p2,
D ′ is cyclic and |D : Φ(D)| = p2,
D has p-rank 2.

Then Olsson’s Conjecture holds for all controlled blocks with defect
group D.

Here the p-rank denotes the maximal rank of an abelian subgroup.
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Sketch of the proof

Let B be a controlled block with defect group D.
It is known that the inertial quotient L of B is a p′-subgroup of
Aut(D).
In all cases except the last one we have |D : Φ(D)| = p2.
Hence, we may identify L with a subgroup of GL(2, p).
Next we show that the set S := {u ∈ D : |D : CD(u)| = |D ′|}
is nonempty, and L has a regular orbit T on S .
This implies that the block bu for some u ∈ T has inertial index
1.
Moreover, it is known that bu is also controlled, and thus nilpo-
tent.
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This shows l(bu) = 1.
Now assume that D has p-rank 2.
Then a result of Blackburn implies that we only have to con-
sider two infinite families of p-groups given by generators and
relations.
Here one can use that L acts faithfully on Ω(D)/Φ(Ω(D)); again
a group of order p2.
Recall that Ω(D) := 〈x ∈ D : xp = 1〉.
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Remarks

The condition |D : CD(u)| = |D ′| implies that

D ′ = {[u, v ] : v ∈ D};

in particular every element of D ′ is a commutator.
Hence, our method does not suffice in order to prove Olsson’s
Conjecture for all controlled blocks.
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Applications

It was shown by Díaz, Ruiz and Viruel that most blocks with a
defect group of p-rank 2 are in fact controlled.
Here for p > 3 only an extraspecial defect group D of order p3

and exponent p is possible for a non-controlled block.
In this case Hendren showed that there is always a non-major
subsection (u, bu) provided p > 7.
Then bu has defect group CD(u) and CD(u)/〈u〉 is cyclic.
Since |D : D ′| = p2 = |CD(u)|, Olsson’s Conjecture follows
from one of the previous propositions.
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Applications

Now let p ∈ {5, 7}.
Then by the work of Ruiz and Viruel we only have to consider
a few fusion systems for B .
Kessar and Stancu proved that for p = 7 the relevant fusion
systems do not occur for blocks.
For p = 5 the only fusion system without non-major subsections
is the fusion system of the simple Thompson group.
Here we have applied the classification of the finite simple groups
in order to show Olsson’s Conjecture.
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These considerations lead to the following theorem:

Theorem
Let p > 3. Then Olsson’s Conjecture holds for all p-blocks with
defect groups of p-rank 2.

For p = 3 there are also non-controlled blocks with defect groups of
maximal class and p-rank 2.
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Applications

Similar arguments give:

Theorem
Let p 6= 3. Then Olsson’s Conjecture holds for all p-blocks with
minimal nonabelian defect groups.

Here a group D is called minimal nonabelian if all proper subgroups
of D are abelian, but D is not.
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