Cartan matrices and Brauer's k (B)-Conjecture

Benjamin Sambale University of Jena

Blocks of Finite Groups and Beyond, Jena

$$
\text { July 23, } 2015
$$

Notation

- G - finite group
- p - prime
- B - p-block of G
- D - defect group of B
- $\operatorname{Irr}(B)$ - irreducible ordinary characters in B
- $\operatorname{IBr}(B)$ - irreducible Brauer characters in B
- $k(B):=|\operatorname{Irr}(B)|$
- $l(B):=|\operatorname{IBr}(B)|$

Notation

- For $\chi \in \operatorname{Irr}(B)$ there exist non-negative integers $d_{\chi \psi}$ such that

$$
\chi(x)=\sum_{\varphi \in \operatorname{IBr}(B)} d_{\chi \varphi} \varphi(x)
$$

for all p^{\prime}-elements $x \in G$.

- $Q=\left(d_{\chi \varphi}\right) \in \mathbb{Z}^{k(B) \times l(B)}$ - decomposition matrix of B
- Let $c_{i j}$ be the multiplicity of the i-th simple B-module as a composition factor of the j-th indecomposable projective B module
- $C=\left(c_{i j}\right) \in \mathbb{Z}^{l(B) \times l(B)}$ - Cartan matrix of B

Facts

- all of the $k(B)$ rows of Q are non-zero
- $C=Q^{\top} Q$ is symmetric and positive definite
- $|D|$ is the unique largest elementary divisor of C

Observation: There should be a relation between $k(B), C$ and $|D|$.

Facts

- Obvious: $l(B) \leq k(B) \leq \operatorname{tr}(C)$.
- Brandt: $k(B) \leq \operatorname{tr}(C)-l(B)+1$.
- Külshammer-Wada: $k(B) \leq \operatorname{tr}(C)-\sum c_{i, i+1}$ where $C=\left(c_{i j}\right)$.
- Wada: $k(B) \leq \rho(C) l(B)$ where $\rho(C)$ is the Perron-Frobenius eigenvalue of C.
- Brauer-Feit: $k(B) \leq|D|^{2}$.
- Brauer's $k(B)$-Conjecture: $k(B) \leq|D|$.

Indecomposable matrices

Example (naive)

$$
Q=\left(\begin{array}{cc}
1 & \cdot \\
\cdot & 1 \\
\cdot & 1
\end{array}\right) \Longrightarrow C=\left(\begin{array}{cc}
1 & \cdot \\
\cdot & 2
\end{array}\right) \Longrightarrow k(B)=3>2=|D| ?!
$$

Definition

A matrix $A \in \mathbb{Z}^{k \times l}$ is indecomposable (as a direct sum) if there is no $S \in \mathrm{GL}(l, \mathbb{Z})$ such that $A S=\left(\begin{array}{ll}* & \cdot \\ . & *\end{array}\right)$.

Indecomposable matrices

Proposition

The decomposition matrix Q is indecomposable.

- This has been known for $S=1$ in the definition above.
- The proof of the general result makes use the contribution matrix $M=|D| Q C^{-1} Q^{\top} \in \mathbb{Z}^{k(B) \times k(B)}$.
- The proposition remains true if the irreducible Brauer characters are replaced by an arbitrary basic set, i.e. a basis for the \mathbb{Z} module of generalized Brauer characters spanned by $\operatorname{IBr}(B)$.
- Open: Is C also indecomposable in the sense above?

A result

Lemma

Let $A \in \mathbb{Z}^{k \times l}$ be indecomposable of rank l without vanishing rows. Then

$$
\operatorname{det}\left(A^{\top} A\right) \geq l(k-l)+1
$$

Main Theorem I

With the notation above we have

$$
k(B) \leq \frac{\operatorname{det}(C)-1}{l(B)}+l(B) \leq \operatorname{det}(C)
$$

Remarks

- $\operatorname{det}(C)$ is locally determined by the theory of lower defect groups.
- Fujii gave a sufficient criterion for $\operatorname{det}(C)=|D|$.
- The Brauer-Feit bound is often stronger.
- What about equality?

Equality?

Proposition

Suppose that

$$
k(B)=\frac{\operatorname{det}(C)-1}{l(B)}+l(B) .
$$

Then the following holds:

- $\operatorname{det}(C)=|D|$.
- $C=\left(m+\delta_{i j}\right)_{i, j}$ up to basic sets where $m:=\frac{|D|-1}{l(B)}$.
- All irreducible characters of B have height 0 .

Examples

- Let $d \geq 1, t \mid p^{d}-1$ and $T \leq \mathbb{F}_{p^{d}}^{\times}$such that $|T|=t$. Then the principal block of $\mathbb{F}_{p^{d}} \rtimes T$ satisfies the proposition with $l(B)=t$.
- If D is cyclic, then the proposition applies by Dade's Theorem.
- In view of Brauer's Height Zero Conjecture, one expects that the defect groups are abelian.
- The stronger condition $k(B)=\operatorname{det}(C)$ implies $k(B)=|D|$ and $l(B) \in\{1,|D|-1\}$. In both cases D is abelian by results of Okuyama-Tsushima and Héthelyi-Külshammer-Kessar-S.
- The classification of the blocks with $k(B)=|D|$ is open even in the local case where $D \unlhd G$ (Schmid).

Some consequences

- Brandt's result $k(B) \leq \operatorname{tr}(C)-l(B)+1$ holds for any basic set. This makes it possible to apply the LLL reduction.
- $l(B) \leq 3 \Longrightarrow k(B) \leq|D|$. This improves a result by Olsson. The proof makes use of the reduction theory of quadratic forms.
- If D is abelian and B has Frobenius inertial quotient, then

$$
k(B) \leq \frac{|D|-1}{l(B)}+l(B) .
$$

This relates to work by Kessar-Linckelmann. If the inertial quotient is also abelian, then Alperin's Conjecture predicts equality.

Major subsections

- Many of the previous results remain true if C is replaced by a "local" Cartan matrix.
- Let $u \in \mathrm{Z}(D)$, and let b_{u} be a Brauer correspondent of B in $\mathrm{C}_{G}(u)$ with Cartan matrix C_{u}.
- The pair $\left(u, b_{u}\right)$ is called major subsection.
- It is known that b_{u} has defect group D.
- Moreover, $C_{u}=Q_{u}^{\mathrm{T}} \overline{Q_{u}}$ where $Q_{u} \in \mathbb{C}^{k(B) \times l\left(b_{u}\right)}$ is the generalized decomposition matrix of B with respect to $\left(u, b_{u}\right)$.

Problems

- In general, Q_{u} is not integral, but consists of algebraic integers of a cyclotomic field. Take coefficients with respect to an integral basis instead.
- $\operatorname{det}\left(C_{u}\right)>|D|$ unless $u=1$ or $l\left(b_{u}\right)=1$.
- Nevertheless, b_{u} dominates a block $\overline{b_{u}}$ of $\mathrm{C}_{G}(u) /\langle u\rangle$ with Cartan matrix $\overline{C_{u}}=|\langle u\rangle|^{-1} C_{u}$.
- It is not clear if there is a corresponding factorization $\overline{C_{u}}=R^{\top} R$ where R has at most $|\langle u\rangle|^{-1} k(B)$ non-zero rows (but there is a factorization where R has $k\left(\overline{b_{u}}\right)$ rows).

Some local results

- (S.) $l\left(b_{u}\right) \leq 2 \Longrightarrow k(B) \leq|D|$.
- (Héthelyi-Külshammer-S.)

$$
k(B) \leq \sum_{1 \leq i \leq j \leq l\left(b_{u}\right)} q_{i j} c_{i j}
$$

where

$$
q=\sum_{1 \leq i \leq j \leq l\left(b_{u}\right)} q_{i j} X_{i} X_{j}
$$

is a positive definite, integral quadratic form and $C_{u}=\left(c_{i j}\right)$. This generalizes Külshammer-Wada.

Example

The last formula often implies $k(B) \leq|D|$, but not always:

Example

Let B be the principal 2-block of $A_{4} \times A_{4}$. Then $l(B)=9$ and

$$
C=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) \otimes\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) \quad \text { (Kronecker product). }
$$

There is no quadratic form q such that

$$
\sum_{1 \leq i \leq j \leq l\left(b_{u}\right)} q_{i j} c_{i j} \leq 16=|D| .
$$

A different approach

- C_{u} determines a positive definite, integral quadratic form

$$
q(x):=|D| x C_{u}^{-1} x^{\top} \quad\left(x \in \mathbb{Z}^{l\left(b_{u}\right)}\right)
$$

- The equivalence class of q does not depend on the basic set for b_{u}.
- $\mu\left(b_{u}\right):=\min \left\{q(x): 0 \neq x \in \mathbb{Z}^{l\left(b_{u}\right)}\right\}$.
- Behaves nicely: $\mu\left(b_{u}\right)=\mu\left(\overline{b_{u}}\right)$.

Lemma

- (Brauer) $\mu\left(b_{u}\right) \geq l\left(b_{u}\right) \Longrightarrow k(B) \leq|D|$.
- (Robinson) $\mu\left(b_{u}\right)=1 \Longrightarrow k(B) \leq|D|$.

Example

The inequality $\mu(B) \geq l(B)$ is often true, but not always:

Example

Let B be the principal 2-block of $Z_{2}^{3} \rtimes\left(Z_{7} \rtimes Z_{3}\right)$. Then

$$
8 C^{-1}=\left(\begin{array}{ccccc}
4 & 2 & 2 & 2 & 2 \\
2 & 5 & 1 & 1 & 1 \\
2 & 1 & 5 & 1 & 1 \\
2 & 1 & 1 & 5 & 1 \\
2 & 1 & 1 & 1 & 5
\end{array}\right)
$$

and $\mu(B)=4<5=l(B)$. Nevertheless, there is no factorization $C=R^{\top} R$ where R has more than 8 non-zero rows.

A result

Proposition (S.)

Let $\left(u, b_{u}\right)$ be a major subsection such that u has order p^{r}. If $\operatorname{det}\left(\overline{C_{u}}\right)=|D| p^{-r}$, then $k(B) \leq|D|$.

The proof uses the following observation to show $\mu\left(b_{u}\right) \geq l\left(b_{u}\right)$.

Lemma

Let $\underset{\sim}{A} \in \mathbb{Z}^{k \times l}$ be indecomposable of rank l without vanishing rows. Let $\widetilde{A}=A^{\top} A$. Then

$$
\min \left\{\operatorname{det}(\widetilde{A}) x \widetilde{A}^{-1} x^{\top}: 0 \neq x \in \mathbb{Z}^{l}\right\} \geq l
$$

Some consequences

Corollary

(1) (Brauer) If D is abelian of rank ≤ 2, then $k(B) \leq|D|$.
(2) If D is non-abelian of order p^{3}, then $k(B) \leq|D|$.
(3) If $D /\langle u\rangle$ is metacyclic and $p \leq 5$, then $k(B) \leq|D|$.

Brauer's original proof of (1) uses of Dade's theory of cyclic defect groups. The new proof is quite elementary. Part (3) relies on the following two results:

Tools

Theorem (Watanabe)

If D is non-abelian and metacyclic of odd order, then $l(B) \mid p-1$ and C has only two elementary divisors up to multiplicity.

Theorem (Mordell)

Let $S \in \mathbb{Z}^{l \times l}$ be symmetric and positive semidefinite with $l \leq 5$. Then there exists $R \in \mathbb{Z}^{k \times l}$ such that $S=R^{T} R$.

Unfortunately, Mordell's Theorem fails for $l \geq 6$ as one can see by the Gram matrix of the E_{6} lattice.

Inertial indices

In the following we assume that the defect group D of B is abelian.

- Let b_{D} be a Brauer correspondent of B in $\mathrm{C}_{G}(D)$. Then

$$
I(B):=\mathrm{N}_{G}\left(D, b_{D}\right) / \mathrm{C}_{G}(D)
$$

is the inertial quotient of B.

- $I(B) \leq \operatorname{Aut}(D)$ is a p^{\prime}-group.
- $D=[D, I(B)] \times \mathrm{C}_{D}(I(B))$.
- B is nilpotent iff $I(B)=1$. In this case $k(B) \leq|D|$.

Some results

- (Kessar-Malle) all irreducible characters in B have height 0 (uses CFSG)
- (Brauer, Kessar-Malle) $k(B) \leq \sqrt{l\left(b_{u}\right)}|D|$.
- (Robinson) If $I(B)$ is abelian, then $k(B) \leq|D|$.
- (S.) $k(B) \leq|D|^{\frac{3}{2}}$.
- (S.) $|I(B)| \leq 255 \Longrightarrow k(B) \leq|D|$.

The proofs rely on the existence of regular orbits.

A blockwise Z*-theorem

> Theorem (Watanabe)
> For $u \in \mathrm{C}_{D}(I(B))$ we have $k(B)=k\left(b_{u}\right)$ and $l(B)=l\left(b_{u}\right)$. Moreover, C and C_{u} have the same elementary divisors counting multiplicities.

- Even more, the centers $\mathrm{Z}(B)$ and $\mathrm{Z}\left(b_{u}\right)$ are isomorphic algebras over an algebraically closed field of characteristic p.
- Open: Is $C=C_{u}$ up to basic sets?

Another local result

Theorem (S.)

Suppose there exists $u \in D$ such that $\mathrm{C}_{I(B)}(u)$ acts freely on $\left[D, \mathrm{C}_{I(B)}(u)\right]$. Then $k(B) \leq|D|$. This applies in particular, if $\mathrm{C}_{I(B)}(u)$ has prime order or if $\left[D, \mathrm{C}_{I(B)}(u)\right]$ is cyclic.

- The proof uses the Broué-Puig *-construction to show that $\overline{C_{u}}=R^{\top} R$ where R has $|\langle u\rangle|^{-1} k(B)$ rows.
- By a result of Halasi-Podoski there is always some $u \in D$ such that $\mathrm{C}_{I(B)}(u)$ has a regular orbit on $\left[D, \mathrm{C}_{I(B)}(u)\right]$.

Some consequences

Corollary

- If $I(B)$ contains an abelian subgroup of prime index or index 4 , then $k(B) \leq|D|$.
- If the commutator subgroup $I(B)^{\prime}$ has prime order or order 4, then $k(B) \leq|D|$.
- If $I(B)$ has prime order or order 4 , then $l(B) \leq|I(B)|$.

Regular orbits

Proposition (S.)

Let P be an abelian p-group, and let $A \leq \operatorname{Aut}(P)$ be a p^{\prime}-group. If P has no elementary abelian direct summand (i.e. $\Omega(P) \subseteq \Phi(P)$), then A has a regular orbit on P.

Sketch of proof:

- Since A acts faithfully on $\Omega_{2}(P)$, we may assume that $\exp (P)=$ p^{2}.
- An argument by Hartley-Turull shows that P is A-isomorphic to $\Omega(P) \times \Omega(P)$.
- A theorem by Halasi-Podoski provides a regular orbit on $\Omega(P) \times$ $\Omega(P)$.

Regular orbits

Main Theorem II

Suppose that D has no elementary abelian direct summand of order p^{4}. Then $k(B) \leq|D|$.

- If p^{4} is replaced by p^{3}, then the previous proposition guarantees an element $u \in D$ such that $\left[D, \mathrm{C}_{I(B)}(u)\right]$ is cyclic.
- The general proof goes along the lines of the $k(G V)$-problem which is concerned with the local situation $G=D \rtimes I(B)$.
- One also relies on the existence of perfect isometries for small inertial quotients (Puig-Usami).

Small defects, small primes

Corollary

Brauer's $k(B)$-Conjecture holds for blocks of defect at most 3 .
If $p=2$, then $I(B)$ is solvable by Feit-Thompson. This makes it possible to advance by computing C in small cases explicitly:

Proposition

If $p=2$ and D has no elementary abelian direct summand of order 2^{8}, then $k(B) \leq|D|$.

In particular, Brauer's $k(B)$-Conjecture for $p=2$ holds for abelian defect groups of rank at most 7 .

Concluding remarks

- Despite the fact that some of the techniques from the solution of the $k(G V)$-problem carry over, the situation of arbitrary abelian defect groups is significantly harder.
- For instance, there is no reduction to the case where $I(B)$ acts irreducibly on D. This can be seen by the following example.

Example

Let $p=2$ and $D \rtimes I(B) \cong\left(Z_{2}^{5} \rtimes\left(Z_{31} \rtimes Z_{5}\right)\right) \times\left(Z_{2}^{3} \rtimes\left(Z_{7} \rtimes Z_{3}\right)\right)$. Then the largest orbit has length $31 \cdot 7$, i. e. there exists $u \in D$ such that $\mathrm{C}_{I(B)}(u) \cong Z_{15}$. It is currently not known how to deal with this case.

Counterexample?

Suppose that $k(B)>|D|$. How does C look like?

- integral, symmetric, positive definite, permissible elementary divisors
- $l(B) \geq 4$
- $\operatorname{det}(C)>|D|$
- $1<\mu(B)<l(B)$
- $\sum_{1 \leq i \leq j \leq l(B)} q_{i j} c_{i j}>|D|$ for all positive definite, integral quadratic forms q
- (Brauer) Let $\left(m_{i j}\right)=|D| Q C^{-1} Q^{\top}$ be the contribution matrix. Then $m_{i i}$ is either divisible by p^{2} or not divisible by p.
- If $m_{i j}=0$, then $p^{2} \mid m_{i i}$ and $p^{2} \mid m_{j j}$.

Example (less naive)

$$
Q=\left(\begin{array}{ccccc}
1 & 1 & . & . & . \\
1 & . & 1 & . & . \\
. & 1 & . & 1 & 1 \\
. & . & 1 & 1 & 1 \\
. & . & . & 1 & -1 \\
. & . & . & 1 & -1 \\
. & . & . & . & 1 \\
. & . & . & . & 1
\end{array}\right), \quad C=\left(\begin{array}{ccccc}
2 & 1 & 1 & . & . \\
1 & 2 & . & 1 & 1 \\
1 & . & 2 & 1 & 1 \\
. & 1 & 1 & 4 & . \\
. & 1 & 1 & . & 6
\end{array}\right) .
$$

Then $k(B)=8$ and C has elementary divisors $1,1,2,2,4$. However, $m_{88}=2$. Therefore C does not occur.

- In fact, I do not know any matrix C which fulfills all the constraints above.
- This means that the combination of the presented methods should be quite powerful.
- By the way, if you are interested in my book, I have plenty of free copies. Just let me know.

