## Block theory and fusion systems

Benjamin Sambale

Jena

02.05.2011

Benjamin Sambale Block theory and fusion systems

Blocks Characters in blocks Defect groups Conjectures

# Blocks

- Let G be a finite group and p be a prime.
- Let (K, R, F) be a *p*-modular system, i. e.
  - K is a field of characteristic 0 which contains all |G|-th roots of unity.
  - *R* is a complete discrete valuation ring with quotient field *K* and maximal ideal (*π*).
  - $F = R/(\pi)$  is an algebraically closed field of characteristic p.

Block theory Fusion systems Results Blocks Characters in block Defect groups Conjectures

The block algebra RG splits in a direct sum of minimal twosided ideals

$$RG = B_1 \oplus \ldots \oplus B_n.$$

#### Definition

The summands  $B_i$  are called blocks of RG.

- Every block B of RG is an algebra itself such that the unity element  $e_B$  is a primitive idempotent in the center of RG.
- The element  $e_B$  is called block idempotent.
- The canonical map  $R \rightarrow F$  induces a bijection between the blocks of RG and the blocks of FG.

Blocks Characters in blocks Defect groups Conjectures

## Characters in blocks

- Let *χ* ∈ Irr(*G*) be an (ordinary) irreducible character of *G* over *K*.
- For a conjugacy class C of G we define the class sum  $C^+ := \sum_{x \in C} x \in Z(FG)$ .
- Then for  $x \in C$  the map

$$\omega_{\chi}(C^+) := \frac{|C|}{\chi(1)}\chi(x) + (\pi) \in F$$

defines a homomorphism  $\omega_{\chi} : Z(FG) \rightarrow F$  of algebras.

• There is precisely one block idempotent  $e_B$  such that  $\omega_{\chi}(e_B) = 1$ . For all other block idempotents  $e_{B'}$  we have  $\omega_{\chi}(e_{B'}) = 0$ .



- In this case we say that  $\chi$  belongs to the block *B*. We write  $\chi \in Irr(B)$ .
- If χ, ψ ∈ Irr(B), then ω<sub>χ</sub> = ω<sub>ψ</sub> =: ω<sub>B</sub> is the central character of B.

### Definition

If the trivial character belongs to B, B is called the principal block of RG.

- In a similar way we assign every irreducible Brauer character φ of G to a block B. In this case we write φ ∈ IBr(B).
- This gives numerical invariants k(B) := |Irr(B)| and l(B) := |IBr(B)| for a block B of RG.
- The number k(B) is also the dimension of the center of B and the number l(B) is also the number of simple B-modules.

Blocks Characters in blocks **Defect groups** Conjectures

# Defect groups

- Let C ∈ Cl(G) be a conjugacy class and x ∈ C. Then a Sylow p-subgroup of C<sub>G</sub>(x) is called defect group of C. We write Def(C) for the set of defect groups of C.
- For subgroups  $S, T \leq G$  we write  $S \leq_G T$  if there exists a  $g \in G$  such that  $gSg^{-1} \leq T$ .
- For a *p*-subgroup  $P \leq G$  we define

 $I_P(FG) := \operatorname{span}_F \{ C^+ : C \in \operatorname{Cl}(G), \ Q \leq_G P \text{ for } Q \in \operatorname{Def}(C) \}.$ 

• Let B be a block of RG with block idempotent  $e_B$ .

Block theory Fusion systems Results Blocks Charac Defect Conject

Blocks Characters in blocks Defect groups Conjectures

 Then there exists a p-subgroup D ≤ G such that e<sub>B</sub> ∈ I<sub>D</sub>(FG), but e<sub>B</sub> ∉ I<sub>Q</sub>(FG) for all Q < D.</li>

## Definition

The group D is called defect group of B.

• *D* is unique up to conjugation and thus up to isomorphism.

### Example

The defect groups of the principal block of RG are just the Sylow *p*-subgroups of G.

- The structure (in particular k(B) and l(B)) of B is strongly influenced by D.
- For example B is a simple algebra if and only if D is trivial. In this case we have k(B) = l(B) = 1.

Blocks Characters in blocks **Defect groups** Conjectures

# The height of a character

- Let D be a defect group of B, and let  $\chi \in Irr(B)$ .
- Write  $|D| = p^d$  and  $|G| = p^a m$  such that  $p \nmid m$ . Then  $p^{a-d} \mid \chi(1)$ .

### Definition

The largest integer  $h(\chi) \in \mathbb{N}_0$  such that  $p^{a-d+h(\chi)} \mid \chi(1)$  is called height of  $\chi$ .

- We set  $k_i(B) := |\{\chi \in Irr(B) : h(\chi) = i\}|$  for  $i \in \mathbb{N}_0$ .
- It is known that  $k_0(B) > 0$  for every block B.

Blocks Characters in blocks **Defect groups** Conjectures

## The Brauer correspondence

## Definition

Let  $H \leq G$ . Then we define

$$\mathsf{Br}^{\mathsf{G}}_{\mathsf{H}}:\mathsf{Z}(\mathsf{FG}) o\mathsf{Z}(\mathsf{FH}),\ \mathsf{C}^+\mapsto(\mathsf{C}\cap\mathsf{H})^+,$$

where  $\emptyset^+ := 0$ .

- If H is a p-group,  $Br_H^G$  is a homomorphism of algebras, called the Brauer homomorphism.
- Let b be a block of RH. Then  $\omega_b \circ Br_H^G : Z(FG) \to F$ .
- If there exists a block *B* of *RG* such that  $\omega_b \circ Br_H^G = \omega_B$ , we say that *B* is a Brauer correspondent of *b* and conversely. We write  $b^G = B$ .

Blocks Characters in blocks **Defect groups** Conjectures

## Inertial indices

• Let B be a block of RG with defect group D and Brauer correspondent b in  $RDC_G(D)$ .

• We set 
$$N_G(D, b) := \{g \in N_G(D) : gbg^{-1} = b\}.$$

### Definition

Then  $e(B) := |N_G(D, b) : DC_G(D)|$  is called inertial index of B.

• It is known that  $p \nmid e(B) \mid |\operatorname{Aut}(D)|$ .



# Conjectures

Several open conjectures predict a connection between the block invariants k(B),  $k_i(B)$  and l(B) on the one hand and the defect group on the other hand.

## Brauer's k(B)-Conjecture, 1954

For a block *B* with defect group *D* we have  $k(B) \leq |D|$ .

## Olsson's Conjecture, 1975

For a block *B* with defect group *D* we have  $k_0(B) \leq |D:D'|$ .

Blocks Characters in blocks Defect groups Conjectures

### Brauer's Height Zero Conjecture, 1956

A block B has abelian defect group if and only if  $k(B) = k_0(B)$ .

## Alperin's Weight Conjecture, 1987

For a block *B* the number I(B) is the number of conjugacy classes of weights for *B*.

Here a weight for *B* is a pair of the form  $(P, \beta)$ , where  $P \leq G$  is a *p*-subgroup and  $\beta$  is a block of  $R[N_G(P)/P]$  with trivial defect group. Moreover,  $\beta$  is dominated by a Brauer correspondent of *B* in  $R N_G(P)$ .

Blocks Characters in blocks Defect groups Conjectures

### Alperin-McKay Conjecture, 1975

For a block B with defect group D and Brauer correspondent b in  $R N_G(D)$  we have  $k_0(B) = k_0(b)$ .

All these conjectures are known to be true for blocks with cyclic defect groups by the following result of Dade:

### Theorem (Dade)

Let B be a block of RG with cyclic defect group D. Then

$$k(B) = k_0(B) = \frac{|D| - 1}{e(B)} + e(B),$$
  $l(B) = e(B).$ 

The fusion system of a block Alperin's fusion theorem The case p = 2

## Definition of fusion systems

- Let *P* be a finite *p*-group, and let *F* be a category whose objects are the subgroups of *P* and whose morphisms are injective group homomorphisms.
- A subgroup  $Q \leq P$  is called fully  $\mathcal{F}$ -normalized if  $|N_P(Q)| \geq |N_P(Q_1)|$  whether Q and  $Q_1$  are  $\mathcal{F}$ -isomorphic.
- For a morphism  $\varphi: S \to P$  in  $\mathcal{F}$  we set

$$egin{aligned} \mathsf{N}_arphi &:= \{y \in \mathsf{N}_\mathcal{P}(\mathcal{S}) : \exists z \in \mathsf{N}_\mathcal{P}(arphi(\mathcal{S})) : \ & arphi(yxy^{-1}) = zarphi(x)z^{-1} \ orall x \in \mathcal{S} \}. \end{aligned}$$

#### Definition

The category  $\mathcal{F}$  is called (saturated) fusion system on P if the following properties hold:

- (i) For  $S \leq T \leq P$  the inclusion  $S \hookrightarrow T$  is a morphism in  $\mathcal{F}$ .
- (ii) For  $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S, T)$  we also have  $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S, \varphi(S))$  and  $\varphi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(\varphi(S), S)$ .
- (iii) For  $S, T \leq P$  we have  $\operatorname{Hom}_P(S, T) \subseteq \operatorname{Hom}_{\mathcal{F}}(S, T)$ .
- (iv) Inn(P) is a Sylow *p*-subgroup of  $Aut_{\mathcal{F}}(P)$ .
- (v) If  $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S, T)$  and  $\varphi(S)$  is fully  $\mathcal{F}$ -normalized, then  $\varphi$  extends to a morphism  $N_{\varphi} \to P$  in  $\mathcal{F}$ .

The fusion system of a block Alperin's fusion theorem The case p = 2

## The fusion system of a block

If B is a block of RG with defect group D, one can define a fusion system  $\mathcal{F}_D(B)$  on D in the following way:

- If  $Q \leq G$  is a *p*-subgroup and *b* is a block of  $RQC_G(Q)$  with  $b^G = B$ , we call the pair (Q, b) a *B*-subpair.
- For subpairs  $(S, b_S)$  and  $(T, b_T)$  with  $S \leq T$  and  $b_S^{TC_G(S)} = b_T^{TC_G(S)}$  we write  $(S, b_S) \leq (T, b_T)$ .
- Let  $\leq$  be the transitive closure of  $\trianglelefteq$  for subpairs.
- Take a Brauer correspondent  $b_D$  of B in  $RDC_G(D)$ .



- Then for each subgroup  $Q \leq D$  there is a unique block  $b_Q$  of  $RQC_G(Q)$  such  $(Q, b_Q) \leq (D, b_D)$ .
- For  $S, T \leq D$  we define the set of  $\mathcal{F}_D(B)$ -morphisms as follows

$$\mathsf{Hom}_{\mathcal{F}_{\mathcal{D}}(\mathcal{B})}(S,T) := \{ \varphi : S \to T : \exists g \in G : {}^{g}(S,b_{S}) \leq (T,b_{T}) \\ \land \varphi(x) = gxg^{-1} \ \forall x \in S \}.$$

• Here  ${}^{g}(S, b_{S}) := (gSg^{-1}, gb_{S}g^{-1})$  is also a *B*-subpair.

The fusion system of a block Alperin's fusion theorem The case p = 2

# Examples

### Example

If B is the principal block of RG, then  $\mathcal{F}_D(B) = \mathcal{F}_D(G)$  is just the fusion system coming from the conjugation action of G (Brauer's third main theorem). In particular every fusion system of a finite group is also a fusion system of a block.

If  $\mathcal{F}_D(B) = \mathcal{F}_D(D)$ , the block *B* is nilpotent. Then the structure of *B* is determined by the following result of Puig:

### Theorem (Puig)

If B is a nilpotent block of RG with defect group D, then  $B \cong (RD)^{n \times n}$  for some  $n \in \mathbb{N}$ . In particular

 $k(B) = k(D) := |\operatorname{Irr}(D)|, \quad k_i(B) = k_i(D), \quad l(B) = 1.$ 

#### Example

Let *B* be a block of *RG* with abelian defect group *D*. Then *B* is nilpotent if and only if e(B) = 1. In this case we have  $k(B) = k_0(B) = |D|$  and l(B) = 1.

The fusion system of a block Alperin's fusion theorem The case p = 2

## Alperin's fusion theorem

- Let  $\mathcal{F}$  be an arbitrary fusion system on a finite *p*-group *P*.
- Then the morphisms of  ${\mathcal F}$  are controlled by  ${\mathcal F}\text{-essential}$  subgroups.
- A subgroup  $Q \leq P$  is called  $\mathcal{F}$ -essential if the following conditions hold:
  - (i) Q is fully  $\mathcal{F}$ -normalized.
  - (ii) Q is  $\mathcal{F}$ -centric, i.e.  $C_P(Q_1) = Z(Q_1)$  if Q and  $Q_1$  are  $\mathcal{F}$ -isomorphic.
  - (iii)  $\operatorname{Out}_{\mathcal{F}}(Q)$  contains a strongly *p*-embedded subgroup *H*, i. e.  $p \mid |H|, p \nmid |\operatorname{Out}_{\mathcal{F}}(Q) : H| > 1$  and  $p \nmid |H \cap xHx^{-1}|$  for all  $x \in \operatorname{Out}_{\mathcal{F}}(Q) \setminus H$ .

Let  $\mathcal{E}$  be a set of representatives for the Aut<sub> $\mathcal{F}$ </sub>(P)-conjugacy classes of  $\mathcal{F}$ -essential subgroups.

### Theorem (Alperin's Fusion Theorem)

Every isomorphism in  $\mathcal{F}$  is a composition of finitely many isomorphisms of the form  $\varphi : S \to T$  such that  $S, T \leq Q \in \mathcal{E} \cup \{P\}$  and there exists  $\psi \in \operatorname{Aut}_{\mathcal{F}}(Q)$  with  $\psi_{|S} = \varphi$ . Moreover, if  $Q \neq P$ , we may assume that  $\psi$  is a p-element.

In many cases we have  $\mathcal{E} = \emptyset$ . Then  $\mathcal{F}$  is controlled by P.

#### Example

Every fusion system on an abelian p-group P is controlled by P.

## Example (Stancu)

Every fusion system on a metacyclic p-group P for an odd prime p is controlled by P.

If  $\mathcal{F}$  is controlled by P and  $\operatorname{Aut}_{\mathcal{F}}(P)$  is a p-group, then  $\mathcal{F} = \mathcal{F}_{P}(P)$ . In particular:

#### Example

Let B be a block with defect group D such that  $\mathcal{F}_D(B)$  is controlled by D (i. e. B is a controlled block) and Aut(D) is a p-group, then B is nilpotent.

## Essential subgroups

We deduce some group theoretical properties of  $\ensuremath{\mathcal{F}}\xspace$ -essential subgroups.

### Proposition

Let  $Q \leq P$  be  $\mathcal{F}$ -essential of rank r, i.e.  $|Q/\Phi(Q)| = p^r$ . Then

$$egin{aligned} \mathsf{Out}_\mathcal{F}(Q) &\leq \mathsf{Aut}(Q/\Phi(Q)) \cong \mathsf{GL}(r,p), \ |\mathsf{N}_\mathcal{P}(Q)/Q| &\leq p^{r(r-1)/2}, \ [x,Q] 
ot \subseteq \Phi(Q) \quad orall x \in \mathsf{N}_\mathcal{P}(Q) \setminus Q. \end{aligned}$$

Moreover,  $N_P(Q)/Q$  has nilpotency class at most r-1 and exponent at most  $p^{\lceil \log_p(r) \rceil}$ . In particular  $|N_P(Q)/Q| = p$  if r = 2.

### Proof.

- The kernel of the canonical map  $\operatorname{Aut}_{\mathcal{F}}(Q) \to \operatorname{Aut}(Q/\Phi(Q))$  is a *p*-group containing  $\operatorname{Inn}(Q)$ .
- On the other hand  $O_p(Aut_{\mathcal{F}}(Q)) = Inn(Q)$ , since Q is also  $\mathcal{F}$ -radical.
- This shows  $\operatorname{Out}_{\mathcal{F}}(Q) \leq \operatorname{Aut}(Q/\Phi(Q)) \cong \operatorname{GL}(r, p)$ . In particular  $\operatorname{N}_{P}(Q)/Q \leq \operatorname{Out}_{\mathcal{F}}(Q)$  acts faithfully on  $Q/\Phi(Q)$ .
- Moreover, we can regard  $N_P(Q)/Q$  as a subgroup of the group of upper triangular matrices with ones on the main diagonal.
- The other claims follow from this.

## The case p = 2

For p = 2 the groups with a strongly *p*-embedded subgroup are known by the following result of Bender:

### Theorem (Bender)

Let H be a finite group with a strongly 2-embedded subgroup. Then one of the following holds:

- (i) The Sylow 2-subgroups of H are cyclic or quaternion. In particular H is not simple.
- (ii) There exists a normal series  $1 \le M < L \le H$  such that M and H/L have odd order (and thus are solvable) and L/M is isomorphic to one of the following simple groups:

 $SL(2,2^n)$ ,  $PSU(3,2^n)$ ,  $Sz(2^{2n-1})$   $(n \ge 2)$ .



- The Sylow 2-subgroups of *H* in Bender's theorem are Suzuki 2-groups, i. e. they admit an automorphism which permutes the involutions transitively.
- Hence, we can apply Higman's results about Suzuki 2-groups.
- Moreover, for an  $\mathcal{F}$ -essential subgroup  $Q \leq P$  we can bound the order of  $N_P(Q)/Q$  by a comparison of the exponent of  $SL(2,2^n)$ ,  $PSU(3,2^n)$ ,  $Sz(2^{2n-1})$  on the one hand and GL(r,2) on the other hand.

#### Theorem

If p = 2 and  $Q \le P$  is  $\mathcal{F}$ -essential of rank r, then one of the following holds for  $N := N_P(Q)/Q$ :

- (i) N is cyclic of order at most  $2^{\lceil \log_2(r) \rceil}$ .
- (ii) N is quaternion of order at most  $2^{\lceil \log_2(r) \rceil + 1}$ .
- (iii) N is elementary abelian of order at most  $2^{\lfloor r/2 \rfloor}$ .

(iv) 
$$\Omega(N) = Z(N) = \Phi(N) = N'$$
 and  $|N| = |\Omega(N)|^2 \le 2^{\lfloor r/2 \rfloor}$ 

(v) 
$$\Omega(N) = Z(N) = \Phi(N) = N'$$
 and  $|N| = |\Omega(N)|^3 \le 2^{\lfloor r/2 \rfloor}$ 

In particular N has nilpotency class 1, 2 or maximal class. Moreover, N has exponent 2, 4, |N|/2 or |N|.



#### Proposition

If p = 2 and  $Q \leq P$  is  $\mathcal{F}$ -essential of rank at most 3, then  $|N_P(Q)/Q| = 2$  and  $\operatorname{Out}_{\mathcal{F}}(Q) \cong S_3$ .

#### Proposition

If p = 2 and  $Q \le P$  is  $\mathcal{F}$ -essential of rank 4, then  $|N_P(Q)/Q| \le 4$ and  $|Out_{\mathcal{F}}(Q)| \in \{6, 10, 18, 20, 30, 36, 60, 180\}.$ 

### Proposition

Let  $\mathcal{F}$  be a fusion system on a finite 2-group P with nilpotency class 2. Then every  $\mathcal{F}$ -essential subgroup  $Q \leq P$  is normal and P/Q is cyclic or elementary abelian.

## Proof.

- Since  $P' \subseteq Z(P) \subseteq C_P(Q) \subseteq Q$ , we have  $Q \leq P$  and P/Q is abelian.
- By the previous theorem P/Q is cyclic or elementary abelian.

The fusion system of a block Alperin's fusion theorem The case p = 2

### Proposition

If  $Q \in \{C_2 \times C_2, D_8, Q_8\}$  is a self-centralizing subgroup of P, then P has maximal class, i. e. P is a dihedral, semidihedral or quaternion group. This holds in particular if Q is  $\mathcal{F}$ -essential.

Metacyclic defect groups Defect group  $D_2n \times C_2m$ 

# Metacyclic defect groups

#### Theorem

Let B be a 2-block of RG with metacyclic defect group D. Then one of the following holds:

(1) B is nilpotent.

(2) D is a dihedral group of order  $2^n \ge 8$ . Then  $k(B) = 2^{n-2} + 3$ ,  $k_0(B) = 4$  and  $k_1(B) = 2^{n-2} - 1$ . According to two different fusion systems, l(B) is 2 or 3.

(3) D is a quaternion group of order 8. Then k(B) = 7,  $k_0(B) = 4$ and  $k_1(B) = l(B) = 3$ .

### Theorem (continuation)

- (4) D is a quaternion group of order  $2^n \ge 16$ . Then  $k_0(B) = 4$  and  $k_1(B) = 2^{n-2} 1$ . According to two different fusion systems, one of the following holds
  - (a)  $k(B) = 2^{n-2} + 4$ ,  $k_{n-2}(B) = 1$  and l(B) = 2. (b)  $k(B) = 2^{n-2} + 5$ ,  $k_{n-2}(B) = 2$  and l(B) = 3.
- (5) *D* is a semidihedral group of order  $2^n \ge 16$ . Then  $k_0(B) = 4$  and  $k_1(B) = 2^{n-2} 1$ . According to three different fusion systems, one of the following holds

(a) 
$$k(B) = 2^{n-2} + 3$$
 and  $l(B) = 2$ .  
(b)  $k(B) = 2^{n-2} + 4$ ,  $k_{n-2}(B) = 1$  and  $l(B) = 2$ .  
(c)  $k(B) = 2^{n-2} + 4$ ,  $k_{n-2}(B) = 1$  and  $l(B) = 3$ .

(6) *D* is a direct product of two isomorphic cyclic groups. Then  $k(B) = k_0(B) = \frac{|D|+8}{3}$  and l(B) = 3.

Metacyclic defect groups Defect group  $D_2n \times C_2m$ 

## Sketch of the proof

#### Lemma

If P is a metacyclic 2-group such that Aut(P) is not a 2-group, then  $P \cong Q_8$  or  $P \cong C_{2^m} \times C_{2^m}$  for some  $m \in \mathbb{N}$ .

• Let 
$$\mathcal{F} := \mathcal{F}_D(B) \neq \mathcal{F}_D(D)$$
.

- If D is abelian, the Lemma implies D ≅ C<sub>2<sup>m</sup></sub> × C<sub>2<sup>m</sup></sub>. Then by the work of Usami and Puig there exists a perfect isometry between B and its Brauer correspondent. The claim follows in this case.
- Hence, assume that *D* is nonabelian.



- The case  $D \cong Q_8$  was done by Olsson. Thus, we may assume that Aut(D) is a 2-group and the inertial index e(B) equals 1.
- Then there exists an  $\mathcal{F}$ -essential subgroup  $Q \leq D$ .
- Q is also metacyclic and  $Out_{\mathcal{F}}(Q)$  (and so Aut(Q)) is not a 2-group.
- Moreover,  $C_D(Q) = Z(Q)$ .
- In the case  $Q \cong Q_8$  it is easy to see that D must be a quaternion or semidihedral group.
- This case was also done by Olsson.

- Thus, assume  $Q \cong C_{2^m} \times C_{2^m}$ .
- If m ≥ 2, one can show that N<sub>D</sub>(Q)/Q does not act faithfully on Q/Φ(Q). This contradicts Out<sub>F</sub>(Q) ≤ Aut(Q/Φ(Q)).
- Hence, we have  $Q \cong C_2 \times C_2$ .
- Then  $D \cong D_{2^n}$  or  $D \cong SD_{2^n}$  for some  $n \in \mathbb{N}$  by one of the previous propositions.
- In the case  $D \cong D_{2^n}$  the result follows from a work by Brauer.
- All major conjectures are satisfied for 2-blocks with metacyclic defect groups.

Metacyclic defect groups Defect group  $D_2n \times C_2m$ 

# Defect group $D_{2^n} \times C_{2^m}$

#### Theorem

Let B be a 2-block of RG with defect group  $D_{2^n}\times C_{2^m}$  for  $n\geq 3$  and  $m\geq 0.$  Then

$$k(B) = 2^m (2^{n-2} + 3),$$
  $k_0(B) = 2^{m+2},$   
 $k_1(B) = 2^m (2^{n-2} - 1),$   $l(B) \in \{1, 2, 3\}.$ 

Alperin's weight conjecture and Robinson's ordinary weight conjecture are satisfied for *B*. Moreover, the gluing problem for *B* has a unique solution.

Metacyclic defect groups Defect group  $D_2n \times C_2m$ 

## Sketch of the proof

#### Let

$$D := \langle x, y \mid x^{2^{n-1}} = y^2 = 1, \ yxy^{-1} = x^{-1} \rangle \times \langle z \mid z^{2^m} = 1 \rangle$$

and  $\mathcal{F} := \mathcal{F}_D(B)$ .

 There are two candidates for *F*-essential subgroups up to conjugation:

$$\begin{aligned} Q_1 &:= \langle x^{2^{n-2}}, y, z \rangle \cong C_2 \times C_2 \times C_{2^m}, \\ Q_2 &:= \langle x^{2^{n-2}}, xy, z \rangle \cong C_2 \times C_2 \times C_{2^m}. \end{aligned}$$

- This gives four cases:
  - (aa)  $Q_1$  and  $Q_2$  are both  $\mathcal{F}$ -essential.
  - (ab)  $Q_1$  is  $\mathcal{F}$ -essential and  $Q_2$  is not.
  - (ba)  $Q_1$  is not  $\mathcal{F}$ -essential, but  $Q_2$  is.
  - (bb) There are no  $\mathcal{F}$ -essential subgroups.
- Case (ab) is symmetric to case (ba) (replace y by xy).
- In case (bb) the block B is nilpotent, since Aut(D) is a 2-group.
- In the next step we determine a set of representatives *R* for the conjugacy classes of *B*-subsections, i. e. pairs (α, b<sub>α</sub>) such that (⟨α⟩, b<sub>α</sub>) is a *B*-subpair.

Metacyclic defect groups Defect group  $D_2n \times C_2m$ 

• A result by Brauer shows that

$$k(B) = \sum_{(\alpha, b_{\alpha}) \in \mathcal{R}} l(b_{\alpha}).$$

- For  $\alpha \neq 1$  we have  $l(b_{\alpha}) = l(\overline{b_{\alpha}})$ , where  $\overline{b_{\alpha}}$  is a block of  $R[C_{\mathcal{G}}(\alpha)/\langle \alpha \rangle]$ .
- Using induction we can determine  $l(b_{\alpha})$  for  $\alpha \neq 1$  and thus also k(B) l(B).
- The final conclusion follows from considerations of generalized decomposition numbers and lower defect groups.
- We have *I*(*B*) = 1, 2 or 3 according to the cases (bb), (ab) or (aa) respectively. □