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What is shown?
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Viruses!

Li et al., Why large icosahedral viruses need scaffolding proteins, PNAS 115 (2018)

Peeters, Taormina, Group theory of icosahedral virus capsid vibrations: A top-down
approach, J. Theoret. Biol. 256 (2009)
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Naive symmetry counting

The herpes virus permits the following symmetries:

rotations 60

reflections 15

total 75?
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Naive symmetry counting

The herpes virus permits the following symmetries:

rotations 60
reflections 15
combinations 45

total 120!

Group theory simplifies counting!
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Introduction

Synopsis
In representation theory, mathematical objects are studied by their actions
on sets, vector spaces, graphs, categories etc.

Example

The symmetry group G of the cube permutes the 8 vertices.
This gives rise to a group homomorphism φ : G→ S8.

1 2

4

5 6

78

3

120◦

φ
(1, 3, 6)(4, 7, 5)
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Introduction

Example
There is also a linear action ψ : G→ GL(3,R).

1 2

4

5 6

78

3

120◦

ψ
 0 −1 0

0 0 1
−1 0 0



Advantage: Computations are easier inside S8 or GL(3,R) than in G.
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Applications

Representation theory has numerous applications
within mathematics:

▶ group theory (Frobenius kernels, Odd order theorem)
▶ combinatorics (Young diagrams, graph automorphisms)
▶ number theory (Langlands program, Artin L-series)
▶ geometry (Coxeter groups, Lie groups)
▶ topology (fundamental groups, classifying spaces)

outside mathematics:
▶ biology (virology, molecular systems)
▶ chemistry (crystallography, spectroscopy)
▶ physics (particle physics, quantum mechanics)
▶ computer science (cryptography, coding theory)
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Representations of groups

From now on let G be an abstract finite group.
Let F be a field (e. g. C,Fp,Q(ζ),Qp, . . .).

Goal
Find a representation ∆: G→ GL(d, F ) such that

degree d is small (efficient computation).
kernel Ker(∆) is small (preserving information).

Extreme examples

The trivial representation ∆tr : G → GL(1, F ), g 7→ 1 contains no
information on G.
The regular representation ∆reg : G → GL(|G|, F ), g 7→ (δx,gy)x,y∈G
is injective, but d = |G| is large.
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Irreducible representations

The regular representation decomposes with respect to a suitable basis:

G→ GL(d1, F )× . . .×GL(dk, F ),

g 7→

A1 ∗
. . .

0 Ak



Study the irreducible representations ∆i : G→ GL(di, F ), g 7→ Ai.
Extend linearly to a representation of algebras:

∆̂i : FG→ F di×di

where FG =
∑

g∈G Fg is the group algebra of G.
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Ordinary representation theory

Suppose that |G| ≠ 0 in F (i. e. char(F ) ∤ |G|).

Then FG is semisimple by Maschke’s Theorem, i. e.

Ker(∆̂1) ∩ . . . ∩Ker(∆̂k) = 0.

If additionally F is algebraically closed (e. g. F = C), then ∆̂i is
surjective and we obtain the Artin–Wedderburn isomorphism

FG ∼= F d1×d1 × . . .× F dl×dl

(not all ∆̂i are needed).
This situation is well-understood.
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Modular representation theory

From now on assume that p := char(F ) is a prime dividing |G|
and F is algebraically closed.

Decompose FG into indecomposable algebras

FG = B1 × . . .×Bn.

Call B1, . . . , Bn the (p-)blocks of FG.
Each irreducible representation belongs to exactly one block.
The block containing ∆tr is called the principal block.
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A comparison

Example
For the symmetry group of the cube G ∼= S4 × C2 we have

CG ∼= C4 ×
(
C2×2

)2 × (
C3×3

)4
.

On the other hand, F2G is just the principal block.
For G = S20 and F = F2 not even the degrees d1, . . . , dk are known!
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Defect groups

The algebra structure of a block B is measured by its defect group D
(a p-subgroup of G).

Theorem (Brauer)

B is a simple algebra iff D = 1. In this case, B ∼= F d×d for some d ≥ 1.

The defect group of the principal block is a Sylow p-subgroup of G.
In particular, not all blocks are simple.
In general the isomorphism type of B (even its dimension) cannot be
described by D alone.
Instead, classify blocks up to Morita equivalence, i. e. determine the
module category B-mod.
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Finiteness conjectures

Motivation:

Conjecture (Donovan)
For every p-group D there exist only finitely many Morita equivalence classes
of blocks with defect group D.

Conversely, many features of D can be read off from B-mod. However:

Theorem (García–Margolis–Del Río, 2021)
There exist p-groups P ̸∼= Q such that FP ∼= FQ.
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Representation type

Theorem (Hamernik, Dade, Janusz, Kupisch)
B has finite representation type iff D is cyclic. In this case, B-mod is
determined by the Brauer tree of B.

Example

The principal 3-block of G = S4 has Brauer tree

No block with Brauer tree 4 is known!
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Tame blocks

Theorem (Bondarenko–Drozd)
B has tame representation type iff p = 2 and D is a dihedral, semidihedral
or quaternion group.

Erdmann described tame blocks as path algebras. For dihedral D, mod-B
was determined by Macgregor (2021).

Example
The principal 2-block of G = S4 has defect group D ∼= D8 and quiver/rela-
tions

◦ ◦α

β

η

γ

βη = ηγ = γβ = α2 = 0,

αβγ = βγα, η2 = γαβ.
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Some wild blocks

Very little is known for blocks of wild representation type.

A cyclic extension of a cyclic group is called metacyclic.

Theorem (Eaton–Kessar–Külshammer–S.)
If D is a metacyclic 2-group, then one of the following holds:

(1) B has tame representation type.
(2) B is nilpotent. Then B ∼= (FD)d×d for some d ≥ 1.
(3) D ∼= C2d × C2d with d ≥ 2 and B is Morita equivalent to F [D ⋊ C3].
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Methods

Characters are the “shadows” of representations:
χ : G→ C, g 7→ tr(∆(g)).

Fusion systems are categories which describe the embedding D ↪→ G.
Cartan matrices encode the decomposition of the regular representation
into indecomposable summands.
They give rise to positive definite quadratic forms and can be simplified
by Minkowski reduction or the LLL algorithm.
Clifford theory reduces problems to (quasi)simple groups. They can be
settled using the classification of finite simple groups.
Computer algebra systems like GAP, Magma, Maple, Oscar, Chevie help
to generate data and to formulate conjectures.
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Character table Cartan matrices CFSG GAP Defect groups References

The character table of S4

S4 1 (12) (12)(34) (123) (1234)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

Theorem (S.)
The character table of a group determines the representation type of a given
block.
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Character table Cartan matrices CFSG GAP Defect groups References

The Cartan matrix of the principal 2-block of SL(3, 4)


34 23 23 16 16
23 17 16 12 12
23 16 17 12 12
16 12 12 10 9
16 12 12 9 10

 LLL−−→


2 1 1 . 1
1 2 1 . .
1 1 3 1 1
. . 1 2 1
1 . 1 1 7

 =: C̃

Theorem (S.)

If C̃ is equivalent (as quadratic form) to the Cartan matrix of a block B,
then dimF Z(B) ≤ tr(C̃).

In the example above we obtain dimZ(B) ≤ 16 ≤ 64 = |D|.
This confirms Brauer’s k(B)-Conjecture for B.
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The classification of finite simple groups

Theorem (CFSG)
Every finite simple group belongs to one of the following families:

cyclic groups of prime order,

(trivial)

alternating groups of degree ≥ 5,

(combinatorics)

matrix groups of Lie type,

(algebraic geometry)

26 sporadic groups.

(computer algebra)
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A GAP code to compute Cartan matrices

Cartanmatrix:=function(ct,p,b)
local chars,classes,orders,i,A,Q,C;
chars:=Positions(PrimeBlocks(ct,p).block,b);
orders:=OrdersClassRepresentatives(ct);
classes:=PositionsProperty(orders,i->i mod p=0);
A:=Irr(ct){chars}{classes}; #partial character table
Q:=NullspaceIntMat(IntegralizedMat(A).mat);
C:=Q*TransposedMat(Q); #Cartan matrix up equivalence
return LLLReducedGramMat(C).remainder; #LLL reduction

end;
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Definition of defect groups

Let
1B =

∑
g∈G

λgg ∈ FG

be the identity element of a p-block B of FG.

A defect group of B is p-subgroup D ≤ G maximal such that there
exists g ∈ CG(D) with λg ̸= 0.
One can show that D is unique up to conjugation in G.
In particular, the isomorphism type of D is uniquely determined by B.
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