Survey on invariants of blocks of finite groups

Benjamin Sambale Santa Cruz, CA, USA

> Oberwolfach, March 29, 2012

Setting

- Let G be a finite group and p be a prime.
- Let (K, R, F) be a *p*-modular system, i. e.
 - K is a field of characteristic 0 which contains all |G|-th roots of unity.
 - *R* is a complete discrete valuation ring with quotient field *K* and maximal ideal (*π*).
 - $F = R/(\pi)$ is an algebraically closed field of characteristic p.

Blocks

- Let B be a block of the group algebra RG.
- Then one can consider the representation theory of B over K and over F.
- This leads to the number k(B) of ordinary irreducible characters of B, and to the number l(B) of irreducible Brauer characters of B.
- The ordinary characters split into $k_i(B)$ characters of height $i \ge 0$.
- Here the height describes the *p*-part of the degree of the character.

Defect groups Fusion systems Cohomology

Defect groups

- These block invariants are usually strongly influenced by the defect group of the block *B* (Brauer).
- This is a *p*-subgroup $D \leq G$ which is unique up to conjugation.
- This motivates the following important task in representation theory:

Task

Determine the block invariants k(B), $k_i(B)$ and l(B) with respect to a given defect group.

Defect groups Fusion systems Cohomology

Fusion systems

- A fixed defect group allows only finitely many block invariants (Brauer-Feit).
- However, in most cases the defect group alone does not determine the block invariants precisely.
- Instead we have to investigate the way how D embeds into the whole group G.
- This information is encoded in the fusion system \mathcal{F} of B (introduced as Frobenius category by Puig).
- In particular one gets the inertial quotient E(B) and its order e(B) := |E(B)|.
- For example, B is nilpotent if and only if \mathcal{F} is.

Defect groups Fusion systems Cohomology

Cohomology

- Sometimes even the fusion system of *B* is not sufficient to determine the block invariants.
- Then we can study the central linking system associated with \mathcal{F} (Chermak).
- This leads to a certain 2-cocycle on the subcategory of the *F*-centric subgroups.
- In a similar way one can attach another 2-cocycle on the outer automorphism group of every \mathcal{F} -centric subgroup (Külshammer-Puig).
- These cocycles determine the algebra structure of B in the case $D \trianglelefteq G$ completely.

Introduction and notation Attached structures Methods Results and conjectures Structures Structures Attached structures Structures Structures Subsection Decomposition numbers Quasisimple groups Perfect isometries

Methods

On the following slides I present a general method to determine the block invariants k(B), $k_i(B)$ and I(B) of a block B with a fixed defect group D.

(1) Determine all (saturated) fusion systems \mathcal{F} on D:

- calculate automorphism groups
- identify candidates for essential subgroups
- apply Alperin's Fusion Theorem
- find concrete examples or prove exoticness of these fusion systems
- if only the nilpotent fusion system exists, we are done (Puig)

Introduction and notation Attached structures Methods Results and conjectures Attached structures Methods Perfect isometries

(2) Determine the *B*-subsections:

- \bullet find set ${\mathcal R}$ of representatives for the ${\mathcal F}\text{-conjugacy classes}$ of D
- this gives the B-subsections (u, b_u) for $u \in \mathcal{R}$ up to conjugation
- here b_u is a Brauer correspondent of B in $C_G(u)$ and one can assume that b_u has defect group $C_D(u)$
- determine $l(b_u)$ for $u \neq 1$ by considering the dominated block of $C_G(u)/\langle u \rangle$ with defect group $C_D(u)/\langle u \rangle$
- compute $k(B) l(B) = \sum_{1 \neq u \in \mathcal{R}} l(b_u)$ (Brauer)
- if C_G(u) controls *F* for some u ∈ *R*, then l(B) ≥ l(b_u) and k(B) ≥ k(b_u) (Külshammer-Okuyama)
- if D is abelian, we even have $l(B) = l(b_u)$ and $k(B) = k(b_u)$ here (Watanabe)

Introduction and notation Attached structures Methods Results and conjectures Structures Attached structures Methods Perfect isometries

- (3) Determine the decomposition numbers:
 - calculate the Cartan matrices C_u of b_u for $u \neq 1$ up to basic sets by induction on |D|
 - enumerate the possible generalized decomposition matrices D_u corresponding to $u \neq 1$ such that $D_u^T \overline{D_u} = C_u$ (by computer if necessary).
 - here one can use an action of a Galois group on the irreducible characters
 - this gives upper bounds for k(B) and $k_0(B)$ which I will present later
 - if bounds are sharp, we can stop at this point
 - determine the matrix D_1 of ordinary decomposition numbers as the integral orthogonal space of the generalized decomposition matrices

Subsections Decomposition numbers Quasisimple groups Perfect isometries

(4) Determine I(B):

- compute the possible Cartan matrices of *B* as $C_1 = D_1^T D_1$ for all possible decomposition numbers
- determine the elementary divisors of C_1
- find the multiplicities of the nontrivial lower defect groups using results of Brauer, Broué and Olsson
- this gives the multiplicities of the nontrivial elementary divisors of the "right" Cartan matrix
- eliminate the contradictory cases for C_1
- finally I(B) is the dimension of C_1 and k(B) follows as well

Introduction and notation Attached structures Methods Results and conjectures Structures Methods Results and conjectures

(5) Determine $k_i(B)$:

- investigate the contribution matrix M_u := |D| D_u C_u⁻¹ D_u^T for a major subsection (u, b_u) (i.e. B and b_u have the same defect)
- apply the *p*-adic valuation on the contributions and use a result of Brauer
- this gives $k_i(B)$ for $i \ge 0$

In many cases the number of possible decomposition matrices is too large to handle. Here one can try the following approach.

Introduction and notation Attached structures Methods Results and conjectures Attached structures Methods Results and conjectures

(6) Reduce to quasisimple groups:

• apply Fong Reduction and the Külshammer-Puig Theorem until we can assume

$$\mathsf{Z}(G) = \mathsf{O}_{p'}(G) = \mathsf{F}(G)$$

- consider a block of the layer E(G) which is covered by B
- deduce that G has only one component, so that E(G) is quasisimple
- apply the classification of the finite simple groups
- use methods of Deligne, Lusztig and many others

For abelian defect groups one can use a method of Puig and Usami.

Introduction and notation Attached structures Methods Results and conjectures Attached structures Methods Perfect isometries

(7) Construct perfect isometries:

- construct a twisted group algebra L on D ⋊ E(B) using the cocycle mentioned earlier
- show that a given isometry on a certain space of generalized characters which vanish on the *p*-regular elements can be extended to all generalized characters
- this gives a so-called local system in the sense of Broué
- the existence of a perfect isometry between the generalized characters of *B* and the generalized characters of *L* follows at once
- deduce the block invariants from L

Results Conjectures Inequalities

More notation

• Let C_n be a cyclic group of order $n \ge 1$.

• We set
$$C_n^m := \underbrace{C_n \times \ldots \times C_n}_{m \text{ copies}}$$
.

- Let D_8 (resp. Q_8) be the dihedral (resp. quaternion) group of order 8. Let S_3 be the symmetric group of degree 3.
- We denote a central product of groups by $G_1 * G_2$.
- By p_{-}^{1+2} we describe the extraspecial group of order p^3 and exponent p^2 where p is odd.
- The following table lists many cases where the block invariants are known.

Results Conjectures Inequalities

Results

р	D	E(B)	classification used?
arbitrary	cyclic	arbitrary	no
arbitrary	abelian	$e(B) \leq 4$	no
arbitrary	abelian	<i>S</i> ₃	no
≥ 7	abelian	$C_4 \times C_2$	no
$\notin \{2,7\}$	abelian	C_{3}^{2}	no
2	metacyclic	arbitrary	no
2	maximal class $*$ cyclic, incl. $* = \times$	arbitrary	only for $D \cong C_2^3$
2	minimal nonabelian	arbitrary	only for one family where $ D = 2^{2r+1}$

Results Conjectures Inequalities

Results

p	D	<i>E</i> (<i>B</i>)	classification used?
2	minimal nonmetacyclic	arbitrary	only for $D \cong C_2^3$
2	$ D \le 16$	$\ncong C_{15}$	yes
2	$C_4 \wr C_2$	arbitrary	no
2	$D_8 * Q_8$	<i>C</i> ₅	yes
2	$C_{2^n} imes C_2^3$, $n\geq 2$	arbitrary	yes
3	C_{3}^{2}	$\notin \{C_8, Q_8\}$	no
3	3^{1+2}_{-}	arbitrary	no
5	5^{1+2}_{-}	<i>C</i> ₂	no

Results Conjectures Inequalities

Remarks

- All these results were obtained without any restrictions on G.
- If one considers only *p*-solvable groups or blocks with maximal defect (for example), then much more can be proven.
- The table also shows that the method described above works better if the *p*-rank of *D* is small.

Results Conjectures Inequalities

Conjectures

Many open conjectures in representation theory concern the relation between a block and its defect group. We list some of them:

- Alperin's Weight Conjecture predicts *I*(*B*) as the number of *B*-weights.
- Brauer's k(B)-Conjecture asserts $k(B) \leq |D|$.
- Brauer's Height Zero Conjecture states that D is abelian if and only if $k(B) = k_0(B)$.
- Olsson's Conjecture predicts that k₀(B) ≤ |D : D'| where D' is the commutator subgroup of D.
- The Alperin-McKay-Conjecture asserts $k_0(B) = k_0(b)$ where b is the Brauer correspondent of B in N_G(D).

Results Conjectures Inequalities

Remarks

- One implication of the Height Zero Conjecture was recently proven by Kessar and Malle using the classification.
- It is often possible to verify some of these conjectures without the precise knowledge of the block invariants.
- In particular for Brauer's and Olsson's Conjecture only bounds on the invariants are necessary.
- In this sense the following result is an important tool.

Theorem (S.)

Let (u, b_u) be a B-subsection such that b_u has Cartan matrix $C_u = (c_{ij})$ up to basic sets. Then for every positive definite, integral quadratic form $q(x_1, \ldots, x_{l(b_u)}) = \sum_{1 \le i \le j \le l(b_u)} q_{ij} x_i x_j$ we have

$$k_0(B) \leq \sum_{1 \leq i \leq j \leq l(b_u)} q_{ij}c_{ij}.$$

In particular

$$k_0(B) \leq \sum_{i=1}^{l(b_u)} c_{ii} - \sum_{i=1}^{l(b_u)-1} c_{i,i+1}.$$

If (u, b_u) is major, we can replace $k_0(B)$ by k(B) in these formulas.

The proof of this theorem relies on the following proposition.

Proposition (Broué)

If $\chi \in Irr(B)$ has height 0, then the contribution of χ does not vanish for all (u, b_u) .

If the Cartan matrix C_u is not known, one can use the following weaker bound.

Theorem (Robinson)

Let (u, b_u) be a B-subsection such that b_u has defect d. Then $k_0(B) \leq p^d \sqrt{l(b_u)}$. If (u, b_u) is major and $l(b_u) = 1$, we have

$$\sum_{i=0}^{\infty} p^{2i} k_i(B) \le |D|.$$

We present some corollaries.

Corollary

Let (u, b_u) be a *B*-subsection such that b_u has defect group *Q*. Then the following hold:

(i) If $Q/\langle u \rangle$ is cyclic, we have

$$k_0(B) \leq \left(rac{|Q/\langle u
angle|-1}{l(b_u)}+l(b_u)
ight)|\langle u
angle| \leq |Q|.$$

(ii) If $|Q/\langle u \rangle| \le 9$, we have $k_0(B) \le |Q|$.

(iii) Suppose p = 2. If $Q/\langle u \rangle$ is metacyclic or minimal nonabelian, we have $k_0(B) \leq |Q|$.

If (u, b_u) is major, we can replace $k_0(B)$ by k(B) in all these formulas.

Results Conjectures Inequalities

Brauer's k(B)-Conjecture

If the defect group is "small", the k(B)-Conjectures follow at once.

Corollary

Brauer's k(B)-Conjecture holds for all 2-blocks of defect at most 5 except possibly the extraspecial defect group $D_8 * D_8$.

Corollary

Brauer's k(B)-Conjecture holds for all 3-blocks of defect at most 3.

Theorem (Gao for p > 2)

Brauer's k(B)-Conjecture holds for all blocks with metacyclic defect groups.

Results Conjectures Inequalities

Brauer's k(B)-Conjecture

The following older results were obtained similarly.

Theorem (Brauer)

If
$$|D| \le p^2$$
, then $k(B) = k_0(B) \le |D|$.

Theorem (Olsson)

If
$$l(B) \leq 2$$
 or $k(B) - l(B) \leq 2$, then

$$k(B) \leq \sum_{i=0}^{\infty} p^i k_i(B) \leq |D|.$$

Results Conjectures Inequalities

Olsson's Conjecture

As another application we have verified Olsson's Conjecture under certain circumstances.

Theorem (Héthelyi-Külshammer-S.)

Let p > 3. Then Olsson's Conjecture holds for all p-blocks with defect groups of p-rank 2 and for all p-blocks with minimal nonabelian defect groups.

Using the action of a Galois group as mentioned earlier we obtained even stronger bounds.

Results Conjectures Inequalities

More inequalities

Theorem (S.)

Let p = 2, and let (u, b_u) be a B-subsection such that $\langle u \rangle$ is fully \mathcal{F} -normalized and u is conjugate to u^{-5^n} for some $n \in \mathbb{Z}$ in D. If $l(b_u) \leq 2$, then

 $k_0(B) \leq 2|\mathsf{N}_D(\langle u \rangle)/\langle u \rangle|.$

Here fully \mathcal{F} -normalized means that $|N_D(\langle u \rangle)|$ is as large as possible among all \mathcal{F} -conjugates of u.

Results Conjectures Inequalities

The case p > 2

The analogous result for odd primes gives a weaker bound.

Theorem (S.)

Let p > 2, and let (u, b_u) be a *B*-subsection such that $l(b_u) = 1$ and b_u has defect *d*. Moreover, let $|Aut_{\mathcal{F}}(\langle u \rangle)| = p^s r$ where $p \nmid r$ and $s \ge 0$. Then we have

$$k_0(B) \leq rac{|\langle u
angle| + p^s(r^2 - 1)}{|\langle u
angle| r} p^d \leq p^d.$$

If (in addition) (u, b_u) is major, we can replace $k_0(B)$ by $\sum_{i=0}^{\infty} p^{2i} k_i(B)$.

Results Conjectures Inequalities

Height Zero Conjecture

An application of the formula gives the following recent theorem.

Theorem (S.)

Brauer's Height Zero Conjecture holds for all blocks with defect group p_{-}^{1+2} .

Results Conjectures Inequalities

A related result

The next related result was obtained using the theory of integral quadratic forms.

Theorem (S.)

Let C be the Cartan matrix of B. If $I(B) \leq 4$ and det C = |D|, then

$$k(B) \leq \frac{|D|-1}{l(B)} + l(B).$$

Moreover, this bound is sharp.

Results Conjectures Inequalities

Remarks

- It should be pointed out that the knowledge of I(B) usually implies the knowledge of k(B) anyway. So this theorem has more theoretical value.
- The next theorem gives a useful sufficient condition for det C = |D|.

Theorem (Fujii)

Let C be the Cartan matrix of B. If $I(b_u) = 1$ for all nontrivial B-subsections (u, b_u) , then det C = |D|.