Survey on invariants of blocks of finite groups

Benjamin Sambale
Santa Cruz, CA, USA

Oberwolfach,
March 29, 2012

Setting

- Let G be a finite group and p be a prime.
- Let (K, R, F) be a p-modular system, i. e.
- K is a field of characteristic 0 which contains all $|G|$-th roots of unity.
- R is a complete discrete valuation ring with quotient field K and maximal ideal (π).
- $F=R /(\pi)$ is an algebraically closed field of characteristic p.

Blocks

- Let B be a block of the group algebra $R G$.
- Then one can consider the representation theory of B over K and over F.
- This leads to the number $k(B)$ of ordinary irreducible characters of B, and to the number $I(B)$ of irreducible Brauer characters of B.
- The ordinary characters split into $k_{i}(B)$ characters of height $i \geq 0$.
- Here the height describes the p-part of the degree of the character.

Defect groups

- These block invariants are usually strongly influenced by the defect group of the block B (Brauer).
- This is a p-subgroup $D \leq G$ which is unique up to conjugation.
- This motivates the following important task in representation theory:

Task

Determine the block invariants $k(B), k_{i}(B)$ and $I(B)$ with respect to a given defect group.

Fusion systems

- A fixed defect group allows only finitely many block invariants (Brauer-Feit).
- However, in most cases the defect group alone does not determine the block invariants precisely.
- Instead we have to investigate the way how D embeds into the whole group G.
- This information is encoded in the fusion system \mathcal{F} of B (introduced as Frobenius category by Puig).
- In particular one gets the inertial quotient $E(B)$ and its order $e(B):=|E(B)|$.
- For example, B is nilpotent if and only if \mathcal{F} is.

Cohomology

- Sometimes even the fusion system of B is not sufficient to determine the block invariants.
- Then we can study the central linking system associated with \mathcal{F} (Chermak).
- This leads to a certain 2-cocycle on the subcategory of the \mathcal{F} centric subgroups.
- In a similar way one can attach another 2-cocycle on the outer automorphism group of every \mathcal{F}-centric subgroup (KülshammerPuig).
- These cocycles determine the algebra structure of B in the case $D \unlhd G$ completely.

Methods

On the following slides I present a general method to determine the block invariants $k(B), k_{i}(B)$ and $I(B)$ of a block B with a fixed defect group D.
(1) Determine all (saturated) fusion systems \mathcal{F} on D :

- calculate automorphism groups
- identify candidates for essential subgroups
- apply Alperin's Fusion Theorem
- find concrete examples or prove exoticness of these fusion systems
- if only the nilpotent fusion system exists, we are done (Puig)
(2) Determine the B-subsections:
- find set \mathcal{R} of representatives for the \mathcal{F}-conjugacy classes of D
- this gives the B-subsections $\left(u, b_{u}\right)$ for $u \in \mathcal{R}$ up to conjugation
- here b_{u} is a Brauer correspondent of B in $C_{G}(u)$ and one can assume that b_{u} has defect group $C_{D}(u)$
- determine $I\left(b_{u}\right)$ for $u \neq 1$ by considering the dominated block of $\mathrm{C}_{G}(u) /\langle u\rangle$ with defect group $\mathrm{C}_{D}(u) /\langle u\rangle$
- compute $k(B)-I(B)=\sum_{1 \neq u \in \mathcal{R}} I\left(b_{u}\right)$ (Brauer)
- if $\mathrm{C}_{G}(u)$ controls \mathcal{F} for some $u \in \mathcal{R}$, then $I(B) \geq I\left(b_{u}\right)$ and $k(B) \geq k\left(b_{u}\right)$ (Külshammer-Okuyama)
- if D is abelian, we even have $I(B)=I\left(b_{u}\right)$ and $k(B)=$ $k\left(b_{u}\right)$ here (Watanabe)
(3) Determine the decomposition numbers:
- calculate the Cartan matrices C_{u} of b_{u} for $u \neq 1$ up to basic sets by induction on $|D|$
- enumerate the possible generalized decomposition matrices D_{u} corresponding to $u \neq 1$ such that $D_{u}^{\top} \overline{D_{u}}=C_{u}$ (by computer if necessary).
- here one can use an action of a Galois group on the irreducible characters
- this gives upper bounds for $k(B)$ and $k_{0}(B)$ which I will present later
- if bounds are sharp, we can stop at this point
- determine the matrix D_{1} of ordinary decomposition numbers as the integral orthogonal space of the generalized decomposition matrices
(4) Determine $I(B)$:
- compute the possible Cartan matrices of B as $C_{1}=D_{1}^{\top} D_{1}$ for all possible decomposition numbers
- determine the elementary divisors of C_{1}
- find the multiplicities of the nontrivial lower defect groups using results of Brauer, Broué and Olsson
- this gives the multiplicities of the nontrivial elementary divisors of the "right" Cartan matrix
- eliminate the contradictory cases for C_{1}
- finally $I(B)$ is the dimension of C_{1} and $k(B)$ follows as well
(5) Determine $k_{i}(B)$:
- investigate the contribution matrix $M_{u}:=|D| \overline{D_{u}} C_{u}^{-1} D_{u}^{\top}$ for a major subsection $\left(u, b_{u}\right)$ (i.e. B and b_{u} have the same defect)
- apply the p-adic valuation on the contributions and use a result of Brauer
- this gives $k_{i}(B)$ for $i \geq 0$

In many cases the number of possible decomposition matrices is too large to handle. Here one can try the following approach.
(6) Reduce to quasisimple groups:

- apply Fong Reduction and the Külshammer-Puig Theorem until we can assume

$$
\mathrm{Z}(G)=\mathrm{O}_{p^{\prime}}(G)=\mathrm{F}(G)
$$

- consider a block of the layer $E(G)$ which is covered by B
- deduce that G has only one component, so that $E(G)$ is quasisimple
- apply the classification of the finite simple groups
- use methods of Deligne, Lusztig and many others

For abelian defect groups one can use a method of Puig and Usami.
(7) Construct perfect isometries:

- construct a twisted group algebra L on $D \rtimes E(B)$ using the cocycle mentioned earlier
- show that a given isometry on a certain space of generalized characters which vanish on the p-regular elements can be extended to all generalized characters
- this gives a so-called local system in the sense of Broué
- the existence of a perfect isometry between the generalized characters of B and the generalized characters of L follows at once
- deduce the block invariants from L

More notation

- Let C_{n} be a cyclic group of order $n \geq 1$.
- We set $C_{n}^{m}:=\underbrace{C_{n} \times \ldots \times C_{n}}_{m \text { copies }}$.
- Let D_{8} (resp. Q_{8}) be the dihedral (resp. quaternion) group of order 8 . Let S_{3} be the symmetric group of degree 3.
- We denote a central product of groups by $G_{1} * G_{2}$.
- By p_{-}^{1+2} we describe the extraspecial group of order p^{3} and exponent p^{2} where p is odd.
- The following table lists many cases where the block invariants are known.

Results

p	D	$E(B)$	classification used?
arbitrary	cyclic	arbitrary	no
arbitrary	abelian	$e(B) \leq 4$	no
arbitrary	abelian	S_{3}	no
≥ 7	abelian	$C_{4} \times C_{2}$	no
$\notin\{2,7\}$	abelian	C_{3}^{2}	no
2	metacyclic	arbitrary	no
2	maximal class $*$ cyclic, incl. $*=\times$	arbitrary	only for $D \cong C_{2}^{3}$
2	minimal nonabelian	arbitrary	only for one family where $\|D\|=2^{2 r+1}$

Results

p	D	$E(B)$	classification used?
2	minimal nonmetacyclic	arbitrary	only for $D \cong C_{2}^{3}$
2	$\|D\| \leq 16$	$\nexists C_{15}$	yes
2	$C_{4} \backslash C_{2}$	arbitrary	no
2	$D_{8} * Q_{8}$	C_{5}	yes
2	$C_{2^{n}} \times C_{2}^{3}, n \geq 2$	arbitrary	yes
3	C_{3}^{2}	$\notin\left\{C_{8}, Q_{8}\right\}$	no
3	3_{-}^{1+2}	arbitrary	no
5	5_{-}^{1+2}	C_{2}	no

Remarks

- All these results were obtained without any restrictions on G.
- If one considers only p-solvable groups or blocks with maximal defect (for example), then much more can be proven.
- The table also shows that the method described above works better if the p-rank of D is small.

Conjectures

Many open conjectures in representation theory concern the relation between a block and its defect group. We list some of them:

- Alperin's Weight Conjecture predicts $I(B)$ as the number of B weights.
- Brauer's $k(B)$-Conjecture asserts $k(B) \leq|D|$.
- Brauer's Height Zero Conjecture states that D is abelian if and only if $k(B)=k_{0}(B)$.
- Olsson's Conjecture predicts that $k_{0}(B) \leq\left|D: D^{\prime}\right|$ where D^{\prime} is the commutator subgroup of D.
- The Alperin-McKay-Conjecture asserts $k_{0}(B)=k_{0}(b)$ where b is the Brauer correspondent of B in $N_{G}(D)$.

Remarks

- One implication of the Height Zero Conjecture was recently proven by Kessar and Malle using the classification.
- It is often possible to verify some of these conjectures without the precise knowledge of the block invariants.
- In particular for Brauer's and Olsson's Conjecture only bounds on the invariants are necessary.
- In this sense the following result is an important tool.

Theorem (S.)

Let $\left(u, b_{u}\right)$ be a B-subsection such that b_{u} has Cartan matrix $C_{u}=\left(c_{i j}\right)$ up to basic sets. Then for every positive definite, integral quadratic form $q\left(x_{1}, \ldots, x_{l\left(b_{u}\right)}\right)=\sum_{1 \leq i \leq j \leq I\left(b_{u}\right)} q_{i j} x_{i} x_{j}$ we have

$$
k_{0}(B) \leq \sum_{1 \leq i \leq j \leq I\left(b_{u}\right)} q_{i j} c_{i j} .
$$

In particular

$$
k_{0}(B) \leq \sum_{i=1}^{I\left(b_{u}\right)} c_{i i}-\sum_{i=1}^{I\left(b_{u}\right)-1} c_{i, i+1} .
$$

If $\left(u, b_{u}\right)$ is major, we can replace $k_{0}(B)$ by $k(B)$ in these formulas.

The proof of this theorem relies on the following proposition.

Proposition (Broué)

If $\chi \in \operatorname{Irr}(B)$ has height 0 , then the contribution of χ does not vanish for all $\left(u, b_{u}\right)$.

If the Cartan matrix C_{u} is not known, one can use the following weaker bound.

Theorem (Robinson)

Let $\left(u, b_{u}\right)$ be a B-subsection such that b_{u} has defect d. Then $k_{0}(B) \leq p^{d} \sqrt{I\left(b_{u}\right)}$. If $\left(u, b_{u}\right)$ is major and $I\left(b_{u}\right)=1$, we have

$$
\sum_{i=0}^{\infty} p^{2 i} k_{i}(B) \leq|D|
$$

We present some corollaries.

Corollary

Let $\left(u, b_{u}\right)$ be a B-subsection such that b_{u} has defect group Q. Then the following hold:
(i) If $Q /\langle u\rangle$ is cyclic, we have

$$
k_{0}(B) \leq\left(\frac{|Q /\langle u\rangle|-1}{I\left(b_{u}\right)}+I\left(b_{u}\right)\right)|\langle u\rangle| \leq|Q| .
$$

(ii) If $|Q /\langle u\rangle| \leq 9$, we have $k_{0}(B) \leq|Q|$.
(iii) Suppose $p=2$. If $Q /\langle u\rangle$ is metacyclic or minimal nonabelian, we have $k_{0}(B) \leq|Q|$.
If $\left(u, b_{u}\right)$ is major, we can replace $k_{0}(B)$ by $k(B)$ in all these formulas.

Brauer's $k(B)$-Conjecture

If the defect group is "small", the $k(B)$-Conjectures follow at once.

Corollary

Brauer's $k(B)$-Conjecture holds for all 2-blocks of defect at most 5 except possibly the extraspecial defect group $D_{8} * D_{8}$.

Corollary

Brauer's $k(B)$-Conjecture holds for all 3-blocks of defect at most 3.

Theorem (Gao for $p>2$)

Brauer's $k(B)$-Conjecture holds for all blocks with metacyclic defect groups.

Brauer's k(B)-Conjecture

The following older results were obtained similarly.

```
Theorem (Brauer)
If }||=\mp@subsup{p}{}{2}\mathrm{ , then }k(B)=\mp@subsup{k}{0}{}(B)\leq|D|
```


Theorem (Olsson)

If $I(B) \leq 2$ or $k(B)-I(B) \leq 2$, then

$$
k(B) \leq \sum_{i=0}^{\infty} p^{i} k_{i}(B) \leq|D|
$$

Olsson's Conjecture

As another application we have verified Olsson's Conjecture under certain circumstances.

Theorem (Héthelyi-Külshammer-S.)

Let $p>3$. Then Olsson's Conjecture holds for all p-blocks with defect groups of p-rank 2 and for all p-blocks with minimal nonabelian defect groups.

Using the action of a Galois group as mentioned earlier we obtained even stronger bounds.

More inequalities

Theorem (S.)

Let $p=2$, and let $\left(u, b_{u}\right)$ be a B-subsection such that $\langle u\rangle$ is fully \mathcal{F}-normalized and u is conjugate to $u^{-5^{n}}$ for some $n \in \mathbb{Z}$ in D. If $I\left(b_{u}\right) \leq 2$, then

$$
k_{0}(B) \leq 2\left|\mathrm{~N}_{D}(\langle u\rangle) /\langle u\rangle\right| .
$$

Here fully \mathcal{F}-normalized means that $\left|\mathrm{N}_{D}(\langle u\rangle)\right|$ is as large as possible among all \mathcal{F}-conjugates of u.

The case $p>2$

The analogous result for odd primes gives a weaker bound.

Theorem (S.)

Let $p>2$, and let $\left(u, b_{u}\right)$ be a B-subsection such that $I\left(b_{u}\right)=1$ and b_{u} has defect d. Moreover, let $\left|\operatorname{Aut}_{\mathcal{F}}(\langle u\rangle)\right|=p^{s} r$ where $p \nmid r$ and $s \geq 0$. Then we have

$$
k_{0}(B) \leq \frac{|\langle u\rangle|+p^{s}\left(r^{2}-1\right)}{|\langle u\rangle| r} p^{d} \leq p^{d}
$$

If (in addition) $\left(u, b_{u}\right)$ is major, we can replace $k_{0}(B)$ by $\sum_{i=0}^{\infty} p^{2 i} k_{i}(B)$.

Height Zero Conjecture

An application of the formula gives the following recent theorem.

Theorem (S.)

Brauer's Height Zero Conjecture holds for all blocks with defect group p_{-}^{1+2}.

A related result

The next related result was obtained using the theory of integral quadratic forms.

Theorem (S.)

Let C be the Cartan matrix of B. If $I(B) \leq 4$ and $\operatorname{det} C=|D|$, then

$$
k(B) \leq \frac{|D|-1}{I(B)}+I(B) .
$$

Moreover, this bound is sharp.

Remarks

- It should be pointed out that the knowledge of $I(B)$ usually implies the knowledge of $k(B)$ anyway. So this theorem has more theoretical value.
- The next theorem gives a useful sufficient condition for $\operatorname{det} C=$ $|D|$.

Theorem (Fujii)

Let C be the Cartan matrix of B. If $I\left(b_{u}\right)=1$ for all nontrivial B-subsections $\left(u, b_{u}\right)$, then $\operatorname{det} C=|D|$.

