Algebraische Zahlentheorie

Benjamin Sambale

4. September 2022

1 Zahlkörper

Ein Zahlkörper K ist eine endliche (und damit algebraische) Körpererweiterung von \mathbb{Q} . Nach dem Fundamentalsatz der Algebra kann man K als Teilkörper von \mathbb{C} auffassen. Man nennt $x \in K$ ganzalgebraisch, falls das Minimalpolynom von x über \mathbb{Q} in $\mathbb{Z}[X]$ liegt. Die ganzalgebraischen Elemente in K bilden den Ganzheitsring (oder Hauptordnung) \mathbb{Z}_K . Wegen $K = \{\frac{x}{y} : x, y \in \mathbb{Z}_K, y \neq 0\}$ ist K der Quotientenkörper von \mathbb{Z}_K .

Ein Gitter von K ist eine freie abelsche Gruppe $\Gamma \leq (K, +)$ vom Rang $|K : \mathbb{Q}|$. Die Ordnung von Γ ist der Teilring

$$\mathfrak{o}_{\Gamma} := \{ x \in K : x\Gamma \subseteq \Gamma \} \subseteq \mathbb{Z}_K.$$

Gitter Γ und Δ heißen äquivalent (im weiteren Sinn), falls $x \in K$ mit $x\Gamma = \Delta$ existiert. Die Gitter mit Ordnung \mathbb{Z}_K nennt man gebrochene Ideale. Die in \mathbb{Z}_K enthaltenen gebrochenen Ideale sind die gewöhnlichen Ideale außer dem Nullideal. Die vom Nullideal verschiedenen Primideale in \mathbb{Z}_K sind genau die maximalen Ideale. Sie bilden eine Basis der freien abelschen Gruppe J_K aller gebrochenen Ideale bzgl. Multiplikation (dies gilt allgemeiner für Dedekindringe). Für $\mathfrak{a} \in J_K$ und $\mathfrak{P} \subseteq \mathbb{Z}_K$ maximal sei $v_{\mathfrak{P}}(\mathfrak{a}) \in \mathbb{Z}$ der Exponent von \mathfrak{P} in der Primfaktorzerlegung von \mathfrak{a} . Dies liefert eine Bewertung mit folgenden Rechenregeln:

$$v_{\mathfrak{P}}(\mathfrak{a}\mathfrak{b}) = v_{\mathfrak{P}}(\mathfrak{a}) + v_{\mathfrak{P}}(\mathfrak{b}), \qquad v_{\mathfrak{P}}(\mathfrak{a} + \mathfrak{b}) \leq \min\{v_{\mathfrak{P}}(\mathfrak{a}), v_{\mathfrak{P}}(\mathfrak{b})\}, \qquad \mathfrak{a} \subseteq \mathfrak{b} \Longrightarrow v_{\mathfrak{P}}(\mathfrak{b}) \leq v_{\mathfrak{P}}(\mathfrak{a}).$$

Man setzt außerdem $v_{\mathfrak{P}}(x) := v_{\mathfrak{P}}(x\mathbb{Z}_K)$ für $x \in \mathbb{Z}_K$.

Die gebrochenen Hauptideale der Form $(x) = x\mathbb{Z}_K$ für $x \in K$ bilden einen Normalteiler $H_K \subseteq J_K$. Die Idealklassengruppe

$$C_K := J_K/H_K$$

ist endlich und ihre Ordnung $h_K := |C_K|$ heißt Klassenzahl von K. Die Elemente von C_K sind Äquivalenzklassen im obigen Sinn. Es gilt

$$\mathbb{Z}_K$$
 faktoriell $\iff \mathbb{Z}_K$ Hauptidealring $\iff h_K = 1$.

Ist K kein imaginär-quadratischer Zahlkörper (siehe unten), so würde die verallgemeinerte riemannsche Vermutung außerdem implizieren:

$$\mathbb{Z}_K$$
 euklidisch $\Longrightarrow h_K = 1$.

2 Erweiterungen von Zahlkörpern

Seien nun $K \subseteq L \subseteq M$ Zahlkörper. Dann gilt der $Gradsatz \mid M : K \mid = \mid M : L \mid \mid L : K \mid$. Jedes maximale Ideal $\mathfrak{P} \subseteq \mathbb{Z}_L$ bestimmt durch $\mathfrak{p} := \mathfrak{P} \cap \mathbb{Z}_K$ ein maximales Ideal von \mathbb{Z}_K . Für jedes maximale Ideal $\mathfrak{p} \subseteq \mathbb{Z}_K$ gibt es umgekehrt eine eindeutige Zerlegung

$$\mathfrak{p}\mathbb{Z}_L = \sum_{\mathfrak{p} \subset \mathfrak{P} \lhd \mathbb{Z}_L} \mathfrak{P}^{v_{\mathfrak{P}}(\mathfrak{p}\mathbb{Z}_L)},$$

wobei man $e(\mathfrak{P}|\mathfrak{p}) := v_{\mathfrak{P}}(\mathfrak{p}\mathbb{Z}_L)$ den Verzweigungsindex von \mathfrak{P} über \mathfrak{p} nennt. Im Fall $e(\mathfrak{P}|\mathfrak{p}) > 1$ nennt man \mathfrak{P} verzweigt und anderenfalls unverzweigt bzgl. K. Durch die natürliche Einbettung $\mathbb{Z}_K/\mathfrak{p} \to \mathbb{Z}_L/\mathfrak{P}$ wird $\mathbb{Z}_L/\mathfrak{P}$ zu einer endlichen Körpererweiterung über $\mathbb{Z}_K/\mathfrak{p}$, deren Grad man Restklassenindex $f(\mathfrak{P}|\mathfrak{p})$ nennt. Es gilt die fundamentale Gleichung

$$|L:K| = \sum_{\mathfrak{P} \supseteq \mathfrak{p}} e(\mathfrak{P}|\mathfrak{p}) f(\mathfrak{P}|\mathfrak{p}). \tag{2.1}$$

Im Fall $|L:K| = e(\mathfrak{P}|\mathfrak{p})$ (bzw. $e(\mathfrak{P}|\mathfrak{p}) = f(\mathfrak{P}|\mathfrak{p}) = 1$ für alle \mathfrak{P}) nennt man \mathfrak{p} voll verzweigt (bzw. voll zerlegt) bzgl. L. Sei p die einzige Primzahl in \mathfrak{p} , also $\mathbb{Z} \cap \mathfrak{p} = (p)$. Ist $p \nmid e(\mathfrak{P}|\mathfrak{p})$ für alle \mathfrak{P} , so heißt \mathfrak{p} zahm und anderenfalls wild bzgl. L.

Sind $\mathfrak{P}_K \subseteq \mathfrak{P}_L \subseteq \mathfrak{P}_M$ maximale Ideale, so gilt die Transitivität

$$e(\mathfrak{P}_M|\mathfrak{P}_K) = e(\mathfrak{P}_M|\mathfrak{P}_L)e(\mathfrak{P}_L|\mathfrak{P}_K), \qquad f(\mathfrak{P}_M|\mathfrak{P}_K) = f(\mathfrak{P}_M|\mathfrak{P}_L)f(\mathfrak{P}_L|\mathfrak{P}_K). \tag{2.2}$$

Durch $\mathfrak{N}_{L|K}(\mathfrak{P}) := \mathfrak{p}^{f(\mathfrak{P}|\mathfrak{p})}$ erhält man einen inklusionserhaltenden Homomorphismus $\mathfrak{N}_{L|K} : J_L \to J_K$, der *Relativnorm* heißt. Für $\mathfrak{a} \subseteq \mathbb{Z}_K$ gilt $\mathfrak{N}_{L|K}(\mathfrak{a}\mathbb{Z}_L) = \mathfrak{a}^{|L:K|}$. Außerdem ist die Relativnorm transitiv

$$\mathfrak{N}_{M|K} = \mathfrak{N}_{L|K} \mathfrak{N}_{M|L}.$$

Im Fall $K = \mathbb{Q}$ ist $\mathfrak{p} = (p)$ für eine Primzahl p und man erhält die Absolutnorm $\mathfrak{N}(\mathfrak{a}) := |\mathbb{Z}_L : \mathfrak{a}|$ von $\mathfrak{a} \subseteq \mathbb{Z}_L$ mit $\mathfrak{N}_{L|\mathbb{Q}}(\mathfrak{a}) = (\mathfrak{N}(\mathfrak{a}))$ (chinesischer Restsatz).

Jedes $x \in L$ induziert eine K-lineare Abbildung $f_x : L \to L$, $a \mapsto xa$. Man nennt $S_{L|K}(x) := \operatorname{tr} f_x \in K$ die (relative) Spur und $N_{L|K}(x) := \det f_x \in K$ die (relative) Norm von x über K. Wie üblich gilt

$$S_{L|K}(\lambda x + \mu y) = \lambda S_{L|K}(x) + \mu S_{L|K}(y), \qquad \qquad N_{L|K}(\lambda x y) = \lambda^{|L:K|} N_{L|K}(x) \, \mathcal{N}_{L|K}(y)$$

für $x,y\in L$ und $\lambda,\mu\in K$. Man kann L stets in einer Galois-Erweiterung \widehat{L} einbetten. Es gilt dann

$$S_{L|K}(x) = \sum_{\sigma \in \operatorname{Gal}(\widehat{L}|K)/\operatorname{Gal}(\widehat{L}|L)} \sigma(x), \qquad N_{L|K}(x) = \prod_{\sigma \in \operatorname{Gal}(\widehat{L}|K)/\operatorname{Gal}(\widehat{L}|L)} \sigma(x).$$

Daraus erhält man

$$S_{M|K} = S_{L|K} S_{M|L},$$
 $N_{M|K} = N_{L|K} N_{M|L}.$

Im Fall $K=\mathbb{Q}$ ist außerdem $|N(x)|:=|N_{L|\mathbb{Q}}(x)|=\mathfrak{N}(x\mathbb{Z}_L)$ für $x\in L$. Ist dann r die Anzahl der Nebenklassen $\sigma\in \mathrm{Gal}(\widehat{L}|\mathbb{Q})/\mathrm{Gal}(\widehat{L}|L)$ mit $\sigma(L)\subseteq\mathbb{R}$, so ist die Einheitengruppe \mathbb{Z}_L^{\times} ein direktes Produkt einer endlichen zyklischen Gruppe (Einheitswurzeln) mit einer freien abelschen Gruppe vom Rang $\frac{1}{2}(|L:\mathbb{Q}|+r)-1$ (Dirichletscher Einheitensatz).

3 Diskriminanten

Eine \mathbb{Z} -Basis b_1, \ldots, b_n von \mathbb{Z}_K nennt man Ganzheitsbasis (existiert stets). Mit der Abkürzung $S := S_{K|\mathbb{Q}}$ ist

$$d_K := \det(S(b_i b_i)_{i,j})$$

die Diskriminante von K. Diese hängt nicht von der Wahl der Ganzheitsbasis ab. Nach dem Stickelberger Diskriminantensatz ist $d_K \equiv 0, 1 \pmod{4}$.

Als separable Körpererweiterung besitzt K ein primitives Element $x \in \mathbb{Z}_K$, d.h. $K = \mathbb{Q}(x)$. Gilt $\mathbb{Z}_K = \mathbb{Z}[x]$, so nennt man K monogen (für eine Nullstelle x von $X^3 + X^2 - 2X + 8$ ist $\mathbb{Q}(x)$ beispielsweise nicht monogen). Sei $f \in \mathbb{Q}[X]$ das Minimalpolynom von x mit Nullstellen $x_1, \ldots, x_n \in \mathbb{C}$. Dann nennt man

$$\Delta(f) := \prod_{i < j} (x_i - x_j)^2 \in \mathbb{Z}$$

die Diskriminante von f. Sei lässt sich mittels elementarsymmetrischer Funktionen durch die Koeffizienten von f ausdrücken. Es gilt

$$\Delta(f) = |\mathbb{Z}_K : \mathbb{Z}[x]|^2 d_K.$$

Man nennt

$$\mathbb{Z}_L^* := \{ x \in L : S_{L|K}(x\mathbb{Z}_L) \subseteq \mathbb{Z}_K \}$$

das zu \mathbb{Z}_L duale Gitter bzgl. K. Die Relativdifferente $\mathfrak{D}_{L|K} \subseteq \mathbb{Z}_L$ wird durch die Gleichung

$$\mathfrak{D}_{L|K}\mathbb{Z}_L^* = \mathbb{Z}_L$$

in J_L definiert. Man nennt $\mathfrak{d}_{L|K} := \mathfrak{N}_{L|K}(\mathfrak{D}_{L|K})$ die Relativdiskriminante von L über K. Im Fall $K = \mathbb{Q}$ nennt man $\mathfrak{D}_L := \mathfrak{D}_{L|\mathbb{Q}}$ Differente von L. Es gilt der erste Dedekind-Hauptsatz $\mathfrak{N}(\mathfrak{D}_L) = |d_L|$ und $\mathfrak{d}_{L|\mathbb{Q}} = (d_L)$. Im Allgemeinen gilt die Transitivität

$$\mathfrak{D}_{M|K} = \mathfrak{D}_{L|K} \mathfrak{D}_{M|L}, \qquad \qquad \mathfrak{d}_{M|K} = \mathfrak{d}_{L|K}^{|M:L|} \mathfrak{N}_{L|K} (\mathfrak{d}_{M|L}).$$

Speziell für $K = \mathbb{Q}$ ergibt sich $d_L^{|M:L|} \mid d_M$. Sei $x \in \mathbb{Z}_L$ primitiv über K (d. h. L = K(x)) mit Minimalpolynom $f \in K[X]$. Dann heißt $\delta_{L|K}(x) := f'(x) \in \mathbb{Z}_L$ Zahldiskriminante von x, wobei $f' \in K[X]$ die Ableitung von f bezeichnet. Es gilt

$$\delta_{L|K}(x)\mathbb{Z}_L = \mathfrak{D}_{L|K}\mathfrak{F},$$

wobei $\mathfrak{F} \subseteq \mathbb{Z}_L$ Führer von x genannt wird. Der zweite Dedekind-Hauptsatz besagt

$$\mathfrak{D}_{L|K} = \sum_{\substack{x \in \mathbb{Z}_L \\ L = K(x)}} \delta_{L|K}(x) \mathbb{Z}_L.$$

Für maximale Ideale $\mathfrak{p} \subseteq \mathfrak{P}$ von K und L gilt der dritte Dedekind-Hauptsatz (Differentensatz)

$$v_{\mathfrak{P}}(\mathfrak{D}_{L|K}) \ge e(\mathfrak{P}|\mathfrak{p}) - 1$$

mit Gleichheit genau dann, wenn $e(\mathfrak{P}|\mathfrak{p})$ nicht durch die in \mathfrak{p} enthaltene Primzahl p teilbar ist. Durch Normbildung erhält man den Diskriminantensatz

$$v_{\mathfrak{p}}(\mathfrak{d}_{L|K}) \ge \sum_{\mathfrak{P} \supseteq \mathfrak{p}} f(\mathfrak{P}|\mathfrak{p})(e(\mathfrak{P}|\mathfrak{p}) - 1)$$

mit Gleichheit genau dann, wenn $\mathfrak p$ zahm bzgl. L ist. Insbesondere treten genau die (endlich vielen) verzweigten Ideale in $\mathfrak d_{L|K}$ auf. Der Hermitesche Diskriminantensatz besagt, dass nur endlich viele Zahlkörper mit vorgegebener Diskriminante existieren. Nach Minkowskis Diskriminantensatz ist $\mathbb Q$ der einzige Zahlkörper mit $|d_K|=1$.

Ist $L = K_1K_2$ das Kompositum von Zahlkörpern K_1 und K_2 über K, so gilt außerdem

$$v_{\mathfrak{p}}(\mathfrak{d}_{L|K}) > 0 \Longleftrightarrow v_{\mathfrak{p}}(\mathfrak{d}_{K_1|K}) + v_{\mathfrak{p}}(\mathfrak{d}_{K_2|K}) > 0$$

und $\mathfrak{D}_{K_2|K} \subseteq \mathfrak{D}_{L|K_1}$. Im Fall $K = \mathbb{Q}$ stimmen die Primteiler von d_L und $d_{K_1}d_{K_2}$ überein. Ist in diesem Fall sogar $\operatorname{ggT}(d_{K_1}, d_{K_2}) = 1$, so gilt $K_1 \cap K_2 = \mathbb{Q}$ und $d_L = d_{K_1}^{|K_2:\mathbb{Q}|} d_{K_2}^{|K_1:\mathbb{Q}|}$. Eine Ganzheitsbasis von L erhält man dann wie beim Gradsatz durch Multiplikation von Ganzheitsbasen von K_1 und K_2 (die entsprechende Diskriminantenmatrix ist ein Kroneckerprodukt).

4 Polynome

Sei x ein ganzes primitives Element des Zahlkörpers K mit Minimalpolynom $\mu \in \mathbb{Z}[X]$. Sei p eine Primzahl, die $|\mathbb{Z}_K : \mathbb{Z}[x]|$ nicht teilt. Sei $\overline{\mu} \in \mathbb{F}_p[X]$ die Reduktion modulo p mit Primfaktorzerlegung

$$\overline{\mu} = \prod_{i=1}^{n} \overline{\gamma}_{i}^{e_{i}}.$$

Seien $\gamma_i \in \mathbb{Z}[X]$ mit Reduktion $\overline{\gamma}_i$ modulo p. Dann ist $p\mathbb{Z}_K = \prod \mathfrak{p}_i^{e_i}$ die fundamentale Gleichung bzgl. p mit $\mathfrak{p}_i = \gamma_i(x)\mathbb{Z}[x] + p\mathbb{Z}_K$ für $i = 1, \ldots, n$. Die Restklassengrade sind außerdem $f(\mathfrak{p}_i|p) = \deg \overline{\gamma}_i$.

Ist allgemeiner $\mu \in \mathbb{Z}[X]$ ein (irreduzibles) Eisensteinpolynom zur Primzahl p mit Nullstelle x, so ist p voll verzweigt im Ganzheitsring \mathbb{Z}_K von $K = \mathbb{Q}(x)$ und $|\mathbb{Z}_K : \mathbb{Z}[x]| \not\equiv 0 \pmod{p}$. Ist umgekehrt $p\mathbb{Z}_K = \mathfrak{P}^{|K:\mathbb{Q}|}$ für einen Zahlkörper K, so ist $K = \mathbb{Q}(x)$ für alle $x \in \mathfrak{P} \setminus \mathfrak{P}^2$ und das Minimalpolynom von x ist ein Eisensteinpolynom bzgl. p.

5 Galois-Erweiterungen

Sei nun $K \subseteq L$ eine Galois-Erweiterung mit $G := \operatorname{Gal}(L|K)$. Dann operiert G transitiv auf der Menge der maximalen Ideale von \mathbb{Z}_L , die ein festes maximales Ideal von \mathbb{Z}_K enthalten. In (2.1) sind daher e und f konstant; es gilt also |G| = |L:K| = efg, wobei g die Anzahl der maximalen Ideale von \mathbb{Z}_L ist, die \mathfrak{p} enthalten. Für ein maximales Ideal $\mathfrak{P} \subseteq \mathbb{Z}_L$ sei

$$G_{-1} := \{ \sigma \in G : \sigma(\mathfrak{P}) = \mathfrak{P} \} < G$$

die Zerlegungsgruppe und

$$G_k := \{ \sigma \in G_{-1} : \sigma(x) \equiv x \pmod{\mathfrak{P}^{k+1}} \mid \forall x \in \mathbb{Z}_L \} \le G_{-1}$$

die k-te Verzweigungsgruppe für $k \geq 0$ (G_0 heißt auch Trägheitsgruppe). Die entsprechenden Fixkörper heißen $Zerlegungsk\"{o}rper$ $K_{-1} := L^{G_{-1}}$, $Tr\"{a}gheitsk\"{o}rper$ $K_0 := L^{G_0}$ und $Verzweigungsk\"{o}rper$ $K_1 := L^{G_1}$. Es existiert ein k mit $G \geq G_{-1} \geq \ldots \geq G_k = 1$. Des Weiteren gilt

$$|G: G_{-1}| = g, G_{-1}/G_0 \cong \mathbb{Z}/f\mathbb{Z}, |G_0| = e,$$

$$G_0/G_1 \le (\mathbb{Z}_L/\mathfrak{P})^{\times} \cong \mathbb{Z}/(\mathfrak{N}(\mathfrak{p})^f - 1)\mathbb{Z}, G_l/G_{l+1} \le \mathbb{Z}_L/\mathfrak{P}$$

für $l \geq 1$. Insbesondere ist G_0/G_1 eine zyklische p'-Gruppe und G_l/G_{l+1} eine elementarabelsche p-Gruppe für die in \mathfrak{P} enthaltene Primzahl p. Aus (2.2) folgt, dass \mathfrak{p} bzgl. K_0 unverzweigt ist. Schließlich ist

$$v_{\mathfrak{P}}(\mathfrak{D}_{L|K}) = \sum_{n=0}^{\infty} (|G_n| - 1).$$

Sei nun $\mathfrak p$ unverzweigt, d. h. $G_0=1$. Dann ist $G_{-1}\cong \operatorname{Gal}(\mathbb Z_L/\mathfrak P|\mathbb Z_K/\mathfrak p)\cong \mathbb Z/f\mathbb Z$ und es existiert ein Frobenius-Element $\gamma\in G_{-1}$ mit $\gamma(x)\equiv x^{|\mathbb Z_K/\mathfrak p|}$ (mod $\mathfrak P$) für alle $x\in\mathbb Z_L$. Da die $\mathfrak p$ enthaltenden maximalen Ideale von $\mathbb Z_L$ in G konjugiert sind, bestimmt $\mathfrak p$ auf diese Weise eine Konjugationsklasse von Frobenius-Elementen in G. Der Dichtigkeitssatz von Tschebotarjoff besagt, dass der Anteil aller unverzweigten Primideale von $\mathbb Z_K$, die die Konjugationsklasse von γ bestimmen genau $\frac{1}{|\mathbb C_G(\gamma)|}$ beträgt. Im Spezialfall $K=\mathbb Q$ und $L=\mathbb Q_n$ erhält man den Dirichletschen Primzahlsatz: Für $a\in\mathbb Z$ mit $\operatorname{ggT}(a,n)=1$ beträgt der Anteil aller Primzahlen $p\in a+n\mathbb Z$ genau $\frac{1}{\varphi(n)}$. Speziell für n=10 erhält man: Eine zufällig gewählte Primzahl endet zu je 25% auf eine der Ziffern 1, 3, 7 oder 9.

6 Quadratische Zahlkörper

Schließlich sei K ein quadratischer Zahlkörper, d. h. $|K:\mathbb{Q}|=2$. Dann existiert genau eine quadratfreie Zahl $m\in\mathbb{Z}$ mit $K=\mathbb{Q}(\sqrt{m})=\mathbb{Q}+\mathbb{Q}\sqrt{m}$. Im Fall m<0 nennt man K imaginär-quadratisch und anderenfalls reell-quadratisch. Es gilt

$$d_K = \begin{cases} m & \text{falls } m \equiv 1 \pmod{4}, \\ 4m & \text{sonst} \end{cases}$$

und

$$\mathbb{Z}_K = \mathbb{Z} + \mathbb{Z} \frac{d_K + \sqrt{d_K}}{2}.$$

Bekanntlich ist $\mathbb{Q} \subseteq K$ eine Galois-Erweiterung mit nicht-trivialem Automorphismus $\sigma : \sqrt{m} \mapsto -\sqrt{m}$. Damit ergibt sich $S(a+b\sqrt{m})=2a$ sowie $N(a+b\sqrt{m})=a^2-b^2m$. Die Einheitengruppe hängt wie folgt von m ab:

$$\mathbb{Z}_{K}^{\times} = \left\{ x \in \mathbb{Z}_{K} : N(x) = \pm 1 \right\} = \begin{cases} \langle -1 \rangle \cong \mathbb{Z}/2\mathbb{Z} & \text{falls } m < -3, \\ \langle \frac{1}{2}(1 + \sqrt{-3}) \rangle \cong \mathbb{Z}/6\mathbb{Z} & \text{falls } m = -3, \\ \langle \sqrt{-1} \rangle \cong \mathbb{Z}/4\mathbb{Z} & \text{falls } m = -1, \\ \langle -1 \rangle \times \langle \epsilon_{K} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} & \text{falls } m > 0. \end{cases}$$

Dabei ist ϵ_K durch die Bedingung $\epsilon_K > 1$ eindeutig bestimmt und heißt *Grundeinheit* von K. Mit dem *Kettenbruchalgorithmus* lässt sich ϵ_K berechnen (z. B. $1 + \sqrt{2}$; Stichwort: *Pellsche Gleichung*).

Für eine Primzahl p hat die fundamentale Gleichung nur drei Lösungen:

- p ist genau dann (voll) verzweigt, wenn $p \mid d_K$,
- p ist genau dann (voll) zerlegt, wenn $p \neq 2$, $\left(\frac{d_K}{p}\right) = 1$ oder p = 2, $d_k \equiv 1 \pmod 8$ gilt,
- p ist genau dann $tr\ddot{a}ge$, wenn $p \neq 2$, $\left(\frac{d_K}{p}\right) = -1$ oder p = 2, $d_k \equiv 5 \pmod{8}$ gilt.

Hierbei ist $\left(\frac{d_K}{p}\right)$ das Legendre-Symbol, also $\left(\frac{d_K}{p}\right)=1$ genau dann, wenn $d_k\equiv x^2\pmod p$ für ein $x\in\mathbb{Z}$ gilt.

Gebrochene Ideale $\mathfrak{a}, \mathfrak{b} \in J_K$ heißen äquivalent im engeren Sinn, falls ein $x \in K$ mit $\mathfrak{a} = x\mathfrak{b}$ und N(x) > 0 existiert. Die gebrochenen Hauptideale (x) mit N(x) > 0 bilden eine Untergruppe $H_K^+ \leq H_K$. Man nennt $C_K^+ := J_K/H_K^+$ Gruppe der engeren Idealklassen und setzt $h_K^+ := |C_K^+| \in \{h_K, 2h_K\}$. Genau dann gilt $h_K = h_K^+$, wenn $d_K > 0$ und $N(\epsilon_K) = -1$. Für die Anzahl der Primteiler s von d_K gilt

$$C_K^+/(C_K^+)^2 \cong (\mathbb{Z}/2\mathbb{Z})^{s-1}.$$

Im Fall s=1 ist $h_K=h_K^+\equiv 1\pmod 2$. Im Fall s>2 folgt $h_K>1$. Die imaginär-quadratischen Zahlkörper mit Klassenzahl 1 sind durch

$$-m \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$$

gegeben (Heegner-Zahlen). Unter denen entsprechen die euklidischen Zahlkörper den Werten $-m \in \{1,2,3,7,11\}$. Man vermutet, dass es unendlich viele reellquadratische Zahlkörper mit Klassenzahl 1 gibt (z. B. $m=2,3,5,6,7,\ldots$; für m=3 ist $h_K^+=2$). In jedem Fall ist \mathbb{Z}_K genau dann euklidisch bzgl. der Norm N, wenn

$$m \in \{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$$

Wie oben erwähnt sind vermutlich auch die anderen reell-quadratischen Zahlkörper mit Klassenzahl 1 euklidisch (bzgl. einer anderen Norm). Dies wurde bis auf höchstens zwei Ausnahmen bewiesen.

Jedes Gitter von K hat bis auf Äquivalenz die Form $\Gamma = \mathbb{Z} + \alpha \mathbb{Z}$ wobei $\alpha = a + b\omega$ mit $a, b \in \mathbb{Q}, b \neq 0$ und

$$\omega := \begin{cases} \frac{1+\sqrt{m}}{2} & \text{falls } m \equiv 1 \pmod{4}, \\ \sqrt{m} & \text{sonst.} \end{cases}$$

Die entsprechende Ordnung ist $\mathbb{Z} + f\omega\mathbb{Z}$, wobei $f \in \mathbb{N}$ durch

$$v_p(f) = v_p(b) - \min\{0, v_p(a), v_p(b), v_p(N(\alpha))\}\$$

für jede Primzahl p bestimmt ist. Man nennt f den Führer von Γ .

7 Kreisteilungskörper

Sei $n=\prod_{i=1}^s p_i^{a_i}$ die Primfaktorzerlegung von $n\neq 1$. Der n-te Kreisteilungskörper $\mathbb{Q}_n=\mathbb{Q}(\zeta_n)$ ist eine Galois-Erweiterung über \mathbb{Q} vom Grad $\varphi(n)=\prod p_i^{a_i-1}(p_i-1)$ (eulersche φ -Funktion). Für die Galoisgruppe gilt

$$\operatorname{Gal}(\mathbb{Q}_n|\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \prod (\mathbb{Z}/p_i^{a_i}\mathbb{Z})^{\times}.$$

Für p > 2 ist $(\mathbb{Z}/p^a\mathbb{Z})^{\times}$ zyklisch der Ordnung $\varphi(p^a) = p^{a-1}(p-1)$ (die p-Sylowgruppe wird von $1 + p + p^a\mathbb{Z}$ erzeugt). Für p = 2 ist

$$(\mathbb{Z}/2^{a}\mathbb{Z})^{\times} = \langle -1 + 2^{a}\mathbb{Z} \rangle \times \langle 5 + 2^{a}\mathbb{Z} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{a-2}\mathbb{Z}.$$

Insbesondere ist $Gal(\mathbb{Q}_n|\mathbb{Q})$ abelsch. Nach dem Hauptsatz der Galoistheorie ist jeder Teilkörper von \mathbb{Q}_n (Kreiskörper) ebenfalls eine Galois-Erweiterung von \mathbb{Q} mit abelscher Galoisgruppe. Nach Kronecker-Weber ist umgekehrt jeder abelsche Zahlkörper (Galois-Erweiterung mit abelscher Galoisgruppe) ein Kreiskörper.

Der Ganzheitsring von \mathbb{Q}_n ist $\mathbb{Z}_{\mathbb{Q}_n} = \mathbb{Z}[\zeta_n]$ mit Diskriminante

$$d_{\mathbb{Q}_n} = (-1)^{\varphi(n)s/2} \prod p_i^{\varphi(n)(a_i-1/(p_i-1))}.$$

Insbesondere ist \mathbb{Q}_n monogen. Außerdem ist auch $\mathbb{Q}_n \cap \mathbb{R}$ monogen mit Ganzheitsring $\mathbb{Z}[\zeta_n + \zeta_n^{-1}]$.

Nach Dirichlet hat $\mathbb{Z}_{\mathbb{Q}_n}^{\times}$ Rang $\frac{1}{2}\varphi(n)-1$. Insbesondere ist $\mathbb{Z}_{\mathbb{Q}_n}^{\times}$ unendlich, falls n>6. Die Untergruppe der Kreisteilungseinheiten

$$U_n := \mathbb{Z}_{\mathbb{Q}_n}^{\times} \cap \langle \pm \zeta_n^i, 1 - \zeta_n^i : i = 0, \dots, n - 1 \rangle$$

hat endlichen Index in $\mathbb{Z}_{\mathbb{Q}_n}^{\times}$, falls $n \not\equiv 2 \pmod{4}$. Für jede Primzahlpotenz p^m stimmt der Index $|\mathbb{Z}[\zeta_{p^m} + \zeta_{p^m}^{-1}]^{\times} : U_{p^m} \cap \mathbb{R}|$ mit der Klassenzahl von $\mathbb{Q}_{p^m} \cap \mathbb{R}$ überein.

Nach Dedekind ist jede Primzahl $p \nmid n$ unverzweigt in \mathbb{Q}_n . In (2.1) ist f die Ordnung von $p + n\mathbb{Z}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ und $g = \varphi(n)/f$. Insbesondere ist p genau dann voll zerlegt, wenn $p \equiv 1 \pmod{n}$ gilt. Andererseits ist

$$p_i \mathbb{Z}_{\mathbb{Q}_n} = \prod_{i=1}^g \mathfrak{P}_j^{\varphi(p_i^{a_i})}$$

mit Restklassengrad $f = |\langle p_i + n'\mathbb{Z} \rangle|$, wobei $n' = n/p_i^{a_i}$. Wie jede Galois-Erweiterung besitzt auch \mathbb{Q}_n eine Normalbasis über \mathbb{Q} (d. h. $\operatorname{Gal}(\mathbb{Q}_n|\mathbb{Q})$ permutiert die Basisvektoren). Der Ganzheitsring $\mathbb{Z}_{\mathbb{Q}_n}$ besitzt genau dann eine Normalbasis, wenn n quadratfrei ist. Der Satz von Hilbert-Speiser besagt allgemeiner, dass der Ganzheitsring eines abelschen Zahlkörpers K genau eine Normalbasis besitzt, wenn jede Primzahl zahm bzgl. K ist. In jedem Fall wird \mathbb{Z}_K als abelsche Gruppe von den Bahnensummen der Einheitswurzeln unter der Galoisgruppe erzeugt.

Genau dann ist $\mathbb{Z}_{\mathbb{Q}_n}$ ein Hauptidealring, wenn

$$n \in \{1, \dots, 22\} \cup \{24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84, 90\}$$

(dies liefert nur 30 verschiedene Körper wegen $\mathbb{Q} = \mathbb{Q}_2$ usw.). Für eine Primzahl p ist $\mathbb{Z}_{\mathbb{Q}_p}$ also genau dann ein Hauptidealring, wenn $p \leq 19$.