Fusion systems in representation theory

Three lectures at the University of Valencia

Benjamin Sambale*

February 2023

1 Fusion in groups

Definition 1.1. Let $H \leq G$ be finite groups. Elements $x, y \in H$ (or subsets) are called *fused* in G if they are conjugate in G, but not in H.

Example 1.2.

- (i) The permutations $(123), (132) \in A_3$ are fused in S_3 .
- (ii) Let $X, Y \leq H$ be isomorphic subgroups via an isomorphism $\varphi \colon X \to Y$. We embed H into G := Sym(H) via the regular representation $\sigma \colon H \to G$, $h \mapsto \sigma_h$ where $\sigma_h(g) = hg$ for $g, h \in H$. Let $\hat{\varphi} \in G$ be any extension of φ . Then for $x \in X$ and $y \in Y$ we compute

 $(\hat{\varphi}\sigma_x\hat{\varphi}^{-1})(y) = \hat{\varphi}(x\varphi^{-1}(y)) = \varphi(x)y = \sigma_{\varphi(x)}(y).$

Hence, φ is realized by the conjugation with $\hat{\varphi}$ in G^{1} .

(iii) A consequence of (ii) is that elements $x, y \in H$ of the same order are conjugate in some finite group $G \geq H$.

Goal: Find "small" subgroups $K \supseteq H$ controlling fusion in H, i. e. $x, y \in H$ are fused in G if and only if x, y are fused in K.

Main interest: $H \in Syl_p(G)$.

In the following let $P \in \text{Syl}_p(G)$. Let $O_{p'}(G)$ be the largest normal p'-subgroup of G. If no elements of P are fused in G, then G is called *p*-nilpotent.

Theorem 1.3 (FROBENIUS). The following assertions are equivalent:

- (1) G is p-nilpotent.
- (2) $N_G(Q)/C_G(Q)$ is a p-group for all $Q \leq P$.
- (3) $G = \mathcal{O}_{p'}(G)P$.

^{*}Leibniz Universität Hannover, Germany, sambale@math.uni-hannover.de

¹This construction fails for infinite groups since for example the isomorphism $\mathbb{Z} \to 2\mathbb{Z}$ does not extend to $\mathbb{Z} \to \mathbb{Z}$. In those situations one can use HNN-*extensions*.

Example 1.4. Every p'-group and every nilpotent group is p-nilpotent.

Theorem 1.5 (BURNSIDE). $N_G(P)$ controls fusion in Z(P).

Proof. Let $x, y \in Z(P)$ and $g \in G$ such that ${}^{g}x := gxg^{-1} = y$. Then $P \leq C_{G}(y)$ and ${}^{g}P \leq {}^{g}C_{G}(x) = C_{G}(gx) = C_{G}(y)$. By Sylow's theorem, there exists $c \in C_{G}(y)$ such that ${}^{cg}P = P$. Now $h := cg \in N_{G}(P)$ such that ${}^{h}x = {}^{c}({}^{g}x) = {}^{c}y = y$.

Theorem 1.6 (Z*-theorem²). If $z \in Z(P)$ is not fused to any other element in P, then $G = O_{p'}(G)C_G(z)$.

Proof. Glauberman proved the theorem for p = 2 using representation theory, while the only known proof for p > 2 is via the classification of finite simple groups (CFSG for short).

By Burnside's theorem, the Z*-theorem is equivalent to $G = O_{p'}(G)C_G(Z)$ where $Z := Z(N_G(P)) \cap P$.

Example 1.7. If P is a (generalized) quaternion 2-group, then $G = O_{2'}(G)C_G(Z(P))$ since Z(P) is generated by the unique involution in P.³

Goldschmidt and Flores–Foote classified more generally groups G with $A \leq P$ such that no element of A is fused to an element of $P \setminus A$ (i.e. A is strongly closed in P). Let

 $J(P) := \langle A \leq P : A \text{ abelian of maximal order} \rangle$

be the Thompson subgroup of $P.^4$

Theorem 1.8 (THOMPSON). If $p \ge 5$, then G is p-nilpotent if and only if $N_G(J(P))/C_G(J(P))$ is a p-group.

Theorem 1.9 (GLAUBERMAN'S ZJ-theorem). Let p > 2. Then G is p-nilpotent if and only if $N_G(Z(J(P)))$ is p-nilpotent. If G has no section isomorphic to $Qd(p) := C_p^2 \rtimes SL_2(p)$, then $N_G(Z(J(P)))$ controls fusion in P.

Example 1.10. For $p \ge 5$, every (*p*-)solvable group is Qd(p)-free.

Theorem 1.11 (STELLMACHER). If p = 2 and G has no section isomorphic to $Qd(2) \cong S_4$, then $N_G(W)$ controls fusion in P for some characteristic subgroup W of P. If $P \neq 1$, then $W \neq 1$.

Let G' = [G, G] be the commutator subgroup and $O^p(G) = \langle p' \text{-elements} \rangle$ the *p*-residue of G.

Theorem 1.12 ((Hyper)focal subgroup theorem).

 $\mathfrak{foc}_G(P) := \langle xy^{-1} : x, y \in P \text{ are conjugate in } G \rangle = G' \cap P \quad \text{(focal subgroup)},$ $\mathfrak{hyp}_G(P) := \langle xy^{-1} : x, y \in P \text{ are conjugate by a } p'\text{-element} \rangle = \mathcal{O}^p(G) \cap P \quad \text{(hyperfocal subgroup)}.$

²It is often assumed that x has order p, but this is unnecessary

³This special case of the Z^{*}-theorem was first proved by Brauer–Suzuki.

⁴Several non-equivalent definitions of the Thompson subgroup are used in the literature.

The transfer map yields $G/\mathcal{O}^p(G) \cong P/\mathfrak{hyp}_G(P)$.

Theorem 1.13 (GRÜN's theorem).

$$\mathfrak{foc}_G(P) = [\mathrm{N}_G(P), P] \langle P \cap Q' : Q \in \mathrm{Syl}_p(G) \rangle.$$

Let $\Phi(P)$ be the Frattini subgroup of P.

Theorem 1.14. The following assertions are equivalent:

- (1) G is p-nilpotent.
- (2) $\mathfrak{hyp}_G(P) = 1.$
- (3) $\mathfrak{hyp}_G(P) \leq \Phi(P)$.

Theorem 1.15 (TATE's transfer theorem). For $P \leq H \leq G$ we have

$$\mathfrak{foc}_G(P) = \mathfrak{foc}_H(P) \iff \mathfrak{hyp}_G(P) = \mathfrak{hyp}_H(P) \iff \mathfrak{foc}_G(P)\Phi(P) = \mathfrak{foc}_H(P)\Phi(P).$$

If $\mathfrak{foc}_G(P) = \mathfrak{foc}_H(P)$, we say that *H* controls transfer in *P*. In this case *H* determines whether *G* is *p*-nilpotent by Theorem 1.14.

Theorem 1.16 (YOSHIDA's transfer theorem). If P has no quotient isomorphic to $C_p \wr C_p$, then $N_G(P)$ controls transfer in P.

Example 1.17.

- (i) If $|P| \leq p^p$ or $\exp(P) = p$ (exponent) or c(P) < p (nilpotency class), then $N_G(P)$ controls transfer in P. This follows from the properties of $C_p \wr C_p$.
- (ii) Let p = 2 and $G = S_4$. Then $N_G(P) = P \cong D_8 \cong C_2 \wr C_2$ does not control transfer in P since otherwise G would be 2-nilpotent. For p > 2 and

$$G = \mathbb{F}_{p}^{p} \rtimes \left\langle \begin{pmatrix} 1 & & & 0 \\ & -1 & & \\ & & \ddots & \\ 0 & & & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 1 & & & 0 \end{pmatrix} \right\rangle \leq \mathrm{ASL}(p, p),$$

again $N_G(P) = P \cong C_p \wr C_p$ does not control transfer in P.

Theorem 1.18 (GLAUBERMAN). If $p \ge 5$, then there exists a characteristic subgroup K of P such that $N_G(K)$ controls transfer in P and $Z(P) \le K$.

The simple group PSL(2, 17) shows that Theorem 1.18 fails for p = 2 (here P is a maximal subgroup). It is an open problem whether Theorem 1.18 holds for p = 3. For $p \ge 7$ one can take K = J(P).

2 Fusion systems

For arbitrary groups $S, T \leq P$ let $\operatorname{Hom}_P(S, T)$ be the set of homomorphisms $S \to T$ induced by inner automorphisms of P, i.e.

$$\operatorname{Hom}_P(S,T) := \left\{ \varphi \colon S \to T : \exists g \in P : \varphi(s) = {}^g s \; \forall s \in S \right\}.$$

Definition 2.1 (PUIG⁵). A fusion system on a finite p-group P is a category \mathcal{F} with objects $Obj(\mathcal{F}) = \{S : S \leq P\}$ and morphisms $Hom_{\mathcal{F}}(S,T) \subseteq \{S \to T : injective group homomorphism\}$ such that

- $\operatorname{Hom}_P(S,T) \subseteq \operatorname{Hom}_{\mathcal{F}}(S,T)$ for $S,T \leq P$,
- $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S,T) \implies \varphi \in \operatorname{Hom}_{\mathcal{F}}(S,\varphi(S)), \, \varphi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(\varphi(S),S).$

Example 2.2.

- (i) Let P be a p-subgroup of a finite group G. Then $\operatorname{Hom}_{\mathcal{F}}(S,T) := \operatorname{Hom}_{G}(S,T)$ for $S, T \leq P$ defines a fusion system on P, which we denote by $\mathcal{F}_{P}(G)$. In particular, there is always the *trivial* fusion system $\mathcal{F}_{P}(P)$, which is a subcategory of every fusion system on P.
- (ii) The universal fusion system $\mathcal{F} := \mathcal{U}(P)$ on P is defined by

 $\operatorname{Hom}_{\mathcal{F}}(S,T) := \{ S \to T \text{ injective homomorphism} \}.$

Every fusion system on P is a subcategory of $\mathcal{U}(P)$.

Theorem 2.3 (PARK). For every fusion system \mathcal{F} on P there exists a finite group G containing P such that $\mathcal{F} = \mathcal{F}_P(G)$.

Theorem 2.3 remains true even for arbitrary finite groups P with appropriate definitions (see Example 1.2(ii) for $\mathcal{F} = \mathcal{U}(P)$).

Definition 2.4. Let \mathcal{F} be a fusion system on P and $S, T \leq P$.

- S, T are called \mathcal{F} -conjugate if there exists an isomorphism $\varphi \colon S \to T$ in \mathcal{F} .
- S is called \mathcal{F} -automized if $\operatorname{Aut}_P(S) \in \operatorname{Syl}_p(\operatorname{Aut}_{\mathcal{F}}(S))$.
- S is called \mathcal{F} -centralized⁶ if $|C_P(S)| \ge |C_P(T)|$ for all \mathcal{F} -conjugates T of S.
- S is called \mathcal{F} -normalized if $|N_P(S)| \ge |N_P(T)|$ for all \mathcal{F} -conjugates T of S.
- For an isomorphism $\varphi \colon S \to T$ let N_{φ} be the preimage of $\operatorname{Aut}_{P}(S) \cap \varphi^{-1}\operatorname{Aut}_{P}(T)\varphi$ under the conjugation map $\operatorname{N}_{P}(S) \to \operatorname{Aut}_{P}(S), x \mapsto c_{x}$, i.e.

$$N_{\varphi} := \{ x \in \mathcal{N}_P(S) : \varphi c_x \varphi^{-1} \in \operatorname{Aut}_P(T) \}.$$

• T is called \mathcal{F} -receptive if every isomorphism $\varphi \colon S \to T$ in \mathcal{F} extends to N_{φ} (note that $SC_P(S) \leq N_{\varphi} \leq N_P(S)$).

⁵Puig calls them *Frobenius categories*

 $^{^6} often \ called \ fully \ \mathcal{F}\text{-centralized}/normalized$

Example 2.5.

- (i) If $S, T \leq P \leq G$ are fused in G, then they are $\mathcal{F}_P(G)$ -conjugate.
- (ii) If $P \in \operatorname{Syl}_p(G)$, then P is automized in $\mathcal{F}_P(G)$, because $PC_G(P)/C_G(P) \in \operatorname{Syl}_p(N_G(P)/C_G(P))$.
- (iii) Every central subgroup of P is \mathcal{F} -centralized and every normal subgroup is \mathcal{F} -normalized.
- (iv) Every \mathcal{F} -receptive subgroup is \mathcal{F} -centralized: Let $T \leq P$ be receptive and $\varphi \colon S \to T$ an isomorphism in \mathcal{F} . Then φ extends to $\hat{\varphi} \colon N_{\varphi} \to T$. For $s \in S$ and $g \in C_P(S)$ we have $\hat{\varphi}(g)\varphi(s)\hat{\varphi}(g)^{-1} = \hat{\varphi}(gsg^{-1}) = \varphi(s)$ and $\hat{\varphi}(C_P(S)) \leq C_P(T)$. Since morphisms are injective, it follows that $|C_P(S)| \leq |C_P(T)|$.
- (v) Every \mathcal{F} -centralized, \mathcal{F} -automized subgroup $S \leq P$ is \mathcal{F} -normalized. This follows from $|N_P(S)| = |\operatorname{Aut}_P(S)||C_P(S)|$.
- (vi) Let $S := \langle (12)(34) \rangle \leq P := \langle (1234), (13) \rangle \leq G := S_4$ and $\mathcal{F} := \mathcal{F}_P(G)$. Then S is neither \mathcal{F} -centralized nor \mathcal{F} -normalized since S is \mathcal{F} -conjugate to $Z(P) = \langle (13)(24) \rangle$.

Theorem 2.6. The following assertions for a fusion system \mathcal{F} on P are equivalent:

- (1) (ROBERTS-SHPECTOROV) Every subgroup of P is \mathcal{F} -conjugate to an automized, receptive subgroup.
- (2) P is automized and every subgroup of P is \mathcal{F} -conjugate to a normalized, receptive subgroup.
- (3) (STANCU) P is automized and every normalized subgroup of P is receptive.
- (4) (BROTO-LEVI-OLIVER) Every normalized subgroup of P is centralized and automized and every centralized subgroup is receptive.

Under these circumstances we call \mathcal{F} saturated.

For a saturated fusion system \mathcal{F} on P and $S \leq P$ we have

- (i) S is \mathcal{F} -centralized if and only if S is \mathcal{F} -receptive.
- (ii) S is \mathcal{F} -normalized if and only if S is \mathcal{F} -centralized and \mathcal{F} -automized.

Theorem 2.7. If $P \in Syl_n(G)$, then $\mathcal{F}_P(G)$ is saturated.

Proof. We prove Theorem 2.6(1) for $\mathcal{F} := \mathcal{F}_P(G)$. Let $Q \leq P$ and $N_P(Q) \leq R \in \text{Syl}_p(N_G(Q))$. By Sylow's theorem, there exists $g \in G$ such that

$$T := {}^{g}Q \le {}^{g}R \le P.$$

Since ${}^{g}R \in \operatorname{Syl}_{p}({}^{g}\operatorname{N}_{G}(Q)) = \operatorname{Syl}_{p}(\operatorname{N}_{G}(T))$, we have ${}^{g}R = \operatorname{N}_{P}(T)$ and T is \mathcal{F} -automized.

Now let $\varphi \colon S \to T$ be an arbitrary isomorphism in \mathcal{F} . Then there exists $a \in G$ with $\varphi(s) = {}^{a}s$ for all $s \in S$. For $x \in N_{\varphi}$ there exists $y \in N_{P}(T)$ such that

$$^{axa^{-1}}t = (\varphi c_x \varphi^{-1})(t) = {}^y t$$

for all $t \in T$. Hence, $y^{-1}axa^{-1} \in C_G(T)$ and $axa^{-1} \in N_P(T)C_G(T)$. By definition, $N_{\varphi} \leq N_P(S)$ is a *p*-group and ${}^{a}N_{\varphi}$ is a *p*-subgroup of $N_P(T)C_G(T)$. Since $N_P(T)$ is a Sylow *p*-subgroup of $N_G(T) \geq$ $N_P(T)C_G(T)$, there exist $h \in N_P(T)$ and $z \in C_G(T)$ with ${}^{hza}N_{\varphi} \leq N_P(T)$. Then also ${}^{za}N_{\varphi} \leq N_P(T) \leq$ *P*. For $s \in S$ we have ${}^{za}s = {}^{z}\varphi(s) = \varphi(s)$. Hence, the conjugation with *za* is an extension of φ to N_{φ} in \mathcal{F} . Consequently, *T* is \mathcal{F} -receptive. \Box **Example 2.8.** Let |P| > p. A theorem of Gaschütz' asserts that P has an outer automorphism of p-power order. Hence, P is not automized in $\mathcal{U}(P)$ and $\mathcal{U}(P)$ is not saturated.

Theorem 2.9 (ROBINSON, LEARY–STANCU). For every saturated fusion system \mathcal{F} on P there exists an infinite group G with $P \in Syl_n(G)$ such that $\mathcal{F} = \mathcal{F}_P(G)$.

Definition 2.10. A saturated fusion system \mathcal{F} is called *exotic* if there is no *finite* group G with $P \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_P(G)$.

Example 2.11.

- (i) For p = 2 the only known exotic fusion systems are defined on the Sylow 2-subgroups of $\text{Spin}_7(q) \cong 2.\Omega_7(q)$ where q is an odd prime power. These are called the *Solomon fusion systems*. For q = 3 we have $|P| = 2^{10}$.
- (ii) For p > 2 many families of exotic fusion systems have been discovered recently. For instance, Ruiz–Viruel constructed an exotic fusion system \mathcal{F} on the extraspecial group P of order 7^3 with exponent 7 such that all non-trivial elements of P are \mathcal{F} -conjugate.

Most of the fusion and transfer theorems for finite groups stated in Section 1 have been translated to fusion systems. For instance, a saturated fusion system \mathcal{F} is trivial if and only if $\operatorname{Aut}_{\mathcal{F}}(Q)$ is a *p*-group for every $Q \leq P$. This will be generalized in the next section. To state some more theorems, we need the following constructions.

Definition 2.12. Let \mathcal{F} be a saturated fusion system on P and $Q \leq P$.

- The fusion system $C_{\mathcal{F}}(Q)$ on $C_P(Q)$ consists of the morphisms $\varphi \colon S \to T$ such that there exists a morphism $\psi \colon QS \to QT$ in \mathcal{F} with $\psi_S = \varphi$ and $\psi_Q = id_Q$.
- The fusion system $N_{\mathcal{F}}(Q)$ on $N_P(Q)$ consists of the morphisms $\varphi \colon S \to T$ such that there exists a morphism $\psi \colon QS \to QT$ in \mathcal{F} with $\psi_S = \varphi$ and $\psi(Q) = Q$.
- The fusion system $QC_{\mathcal{F}}(Q)$ on $QC_P(Q)$ consists of the morphisms $\varphi \colon S \to T$ such that there exists a morphism $\psi \colon QS \to QT$ in \mathcal{F} with $\psi_S = \varphi$ and $\psi_Q \in \text{Inn}(Q)$.

Recall that every subgroup $Q \leq P$ is \mathcal{F} -conjugate to an \mathcal{F} -normalized subgroup. In this case, Puig has shown that $C_{\mathcal{F}}(Q)$, $N_{\mathcal{F}}(Q)$ and $QC_{\mathcal{F}}(Q)$ are saturated.

Example 2.13. If $Q \leq P \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_P(G)$. If Q is \mathcal{F} -normalized, then $C_{\mathcal{F}}(Q) = \mathcal{F}_{C_P(Q)}(C_G(Q))$, $N_{\mathcal{F}}(Q) = \mathcal{F}_{N_P(Q)}(N_G(Q))$ and $QC_{\mathcal{F}}(Q) = \mathcal{F}_{QC_P(Q)}(QC_G(Q))$.

Theorem 2.14 (KESSAR–LINCKELMANN). A saturated fusion system \mathcal{F} on P with p > 2 is trivial if and only if $N_{\mathcal{F}}(Z(J(P)))$ is trivial.

Definition 2.15. For a saturated fusion system \mathcal{F} on P we define

$$\begin{split} \mathbf{Z}(\mathcal{F}) &:= \left\{ x \in P : \varphi(x) = x \; \forall \varphi \in \operatorname{Hom}_{\mathcal{F}}(\langle x \rangle, P) \right\} & (center), \\ \mathfrak{foc}(\mathcal{F}) &:= \langle \varphi(x)x^{-1} : x \in P, \; \varphi \in \operatorname{Hom}_{\mathcal{F}}(\langle x \rangle, P) \rangle & (focal \; subgroup), \\ \mathfrak{hyp}(\mathcal{F}) &:= \langle \varphi(x)x^{-1} : x \in Q \leq P, \; \varphi \in \operatorname{O}^p(\operatorname{Aut}_{\mathcal{F}}(Q)) \rangle & (hyperfocal \; subgroup). \end{split}$$

Example 2.16.

- (i) The center $Z(\mathcal{F})$ is the largest subgroup $Q \leq P$ such that $C_{\mathcal{F}}(Q) = \mathcal{F}$.
- (ii) One can show that $\mathfrak{foc}(\mathcal{F}) = \mathfrak{hpp}(\mathcal{F})P'$ and $\mathfrak{foc}(\mathcal{F}) \cap Z(\mathcal{F}) = P' \cap Z(\mathcal{F})$. In particular, the *Fitting* decomposition $P = Z(\mathcal{F}) \times \mathfrak{foc}(\mathcal{F})$ holds whenever P is abelian.
- (iii) If $\mathcal{F} = \mathcal{F}_P(G)$, then $\mathfrak{foc}(\mathcal{F}) = \mathfrak{foc}_P(G)$, $\mathfrak{hyp}(\mathcal{F}) = \mathfrak{hyp}_P(G)$ and $Z(\mathcal{F}) = Z(G/O_{p'}(G))$ by the Z*-theorem.

Theorem 2.17 (DÍAZ–GLESSER–PARK–STANCU). Let \mathcal{F} be a saturated fusion system on P.

- (i) If $\mathcal{E} \subseteq \mathcal{F}$ is a saturated subsystem (subcategory) on P, then $\mathfrak{foc}(\mathcal{F}) = \mathfrak{foc}(\mathcal{E}) \iff \mathfrak{hyp}(\mathcal{F}) = \mathfrak{hyp}(\mathcal{E}).$
- (ii) If P has no quotient isomorphic to $C_p \wr C_p$, then $\mathfrak{foc}(\mathcal{F}) = \mathfrak{foc}(N_{\mathcal{F}}(P))$. In particular, \mathcal{F} is trivial if and only if $\operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Inn}(P)$.

Theorem 2.18 (DÍAZ–GLESSER–MAZZA–PARK). Let \mathcal{F} be a saturated fusion system on P with $p \geq 5$. Then $\mathfrak{foc}(\mathcal{F}) = \mathfrak{foc}(N_{\mathcal{F}}(K))$ where K is the characteristic subgroup from Theorem 1.18.

Kessar–Linckelmann and Onofrei–Stancu have translated Theorems 1.9 and 1.11 to fusion systems, but this requires the definition of Qd(p)-free fusion systems.

3 Classification of fusion systems

Let \mathcal{F} be a saturated fusion system on a finite *p*-group *P*. Let $\operatorname{Out}_{\mathcal{F}}(Q) := \operatorname{Aut}_{\mathcal{F}}(Q)/\operatorname{Inn}(Q)$ for $Q \leq P$.

Theorem 3.1 (GLAUBERMAN-THOMPSON). If $foc(\mathcal{F}) = P \neq 1$ and $p \geq 5$, then $Out_{\mathcal{F}}(P) \neq 1$.

Definition 3.2. A subgroup $Q \leq P$ is called *F*-essential if

- $C_P(Q) \leq Q$,
- Q is \mathcal{F} -normalized,
- there exists a strongly p-embedded subgroup $H < \operatorname{Out}_{\mathcal{F}}(Q)$, i. e. $p \mid |H|$ and $p \nmid |H \cap H^x|$ for every $x \in \operatorname{Out}_{\mathcal{F}}(Q) \setminus H$ (cf. Frobenius complement).

Example 3.3.

- (i) Every \mathcal{F} -essential subgroup $Q \leq P$ is \mathcal{F} -radical, i. e. $\mathcal{O}_p(\operatorname{Aut}_{\mathcal{F}}(Q)) = \operatorname{Inn}(Q)$. To prove this, let $H < U := \operatorname{Out}_{\mathcal{F}}(Q)$ be strongly *p*-embedded. Let $H_p \leq U_p$ be Sylow *p*-subgroups of *H* and *U* respectively. For $x \in \mathcal{N}_{U_p}(H_p)$, we have $1 \neq H_p \leq H \cap {}^xH$ and therefore $x \in H_p$. Hence, $\mathcal{N}_{U_p}(H_p) = H_p$ and $H_p = U_p$ by standard group theory. It follows that $\mathcal{O}_p(U) \leq H \cap {}^uH = 1$ for all $u \in U \setminus H$.
- (ii) Part (i) shows that every essential subgroup Q has non-trivial p'-automorphisms and $\operatorname{Out}_{\mathcal{F}}(Q)$ acts faithfully on $Q/\Phi(Q) \cong C_p^r$. Therefore, $\operatorname{Out}_{\mathcal{F}}(Q) \leq \operatorname{GL}(r,p)$.
- (iii) Since P is \mathcal{F} -automized, $\operatorname{Out}_{\mathcal{F}}(P)$ is a p'-group and P is not essential.

- (iv) If P is abelian, then there are no essential subgroups, since P is the only self-centralizing subgroup.
- (v) Let $G = S_4$, $P \in \text{Syl}_2(G)$ and $\mathcal{F} = \mathcal{F}_P(G)$. Then $V_4 := \langle (12)(34), (13)(24) \rangle \leq P$ is \mathcal{F} -essential since $\text{Out}_{\mathcal{F}}(V_4) = G/V_4 \cong S_3$ contains the strongly 2-embedded subgroup $P/V_4 \cong C_2$. On the other hand, $Q := \langle (12), (34) \rangle \cong V_4$ is not \mathcal{F} -essential (provided $Q \leq P$).

Theorem 3.4 (ALPERIN–GOLDSCHMIDT's fusion theorem). Let \mathcal{E} be a set of representatives for the \mathcal{F} -conjugacy classes of essential subgroups. Every isomorphism in \mathcal{F} is a composition of isomorphisms of the form $\varphi: S \to T$ with the following properties:

- (i) $S, T \leq Q \in \mathcal{E} \cup \{P\}.$
- (ii) $\exists \psi \in \operatorname{Aut}_{\mathcal{F}}(Q)$ such that $\psi_S = \varphi$,
- (iii) If $Q \in \mathcal{E}$, then ψ is a p-element.

The number $|\mathcal{E}|$ in Theorem 3.4 is called the *essential rank* of \mathcal{F} .

Theorem 3.5. A group G contains a strongly p-embedded subgroup if and only if one of the following holds:

- (1) $O_p(G) = 1$ and the Sylow p-subgroups of G are cyclic or quaternion groups.
- (2) $O^{p'}(G/O_{p'}(G))$ is one of the following:
 - $\operatorname{PSL}(2, p^n)$ for $n \ge 2$,
 - $PSU(3, p^n)$ for $n \ge 1$,
 - $Sz(2^{2n+1})$ for p = 2 and $n \ge 1$,
 - ${}^{2}G_{2}(3^{2n-1})$ for p=3 and $n \geq 1$,
 - A_{2p} for $p \geq 5$,
 - $PSL_3(4)$, M_{11} for p = 3,
 - Aut(Sz(32)), ${}^{2}F_{4}(2)'$, McL, Fi₂₂ for p = 5,
 - J_4 for p = 11.

Proof. The proof of p = 2 is due to Bender, while the case p > 2 was established during the CFSG. \Box

Example 3.6.

- (i) In the situation of Theorem 3.5(1), every $P \in \text{Syl}_p(G)$ has a unique subgroup $\Omega(P)$ of order p. It is easy to see that $N_G(\Omega(P))$ is strongly p-embedded in G.
- (ii) The groups in Theorem 3.5(2) apart from A_{2p} , ${}^{2}G_{2}(3) \cong \text{PSL}(2,8).3$ and $\text{Aut}(\text{Sz}(32)) \cong \text{Sz}(32).5$ are precisely the simple groups G with a non-cyclic trivial intersection (TI) Sylow p-subgroup P, i.e. $P \cap {}^{g}P = 1$ for all $g \in G \setminus N_{G}(P)$. Thus, $N_{G}(P)$ is strongly p-embedded in this case.
- (iii) Let $p \ge 5$ and $G = A_{2p}$. Then $H := G \cap (S_p \wr C_2)$ is strongly *p*-embedded in G.

Corollary 3.7. Let $Q \leq P$ be \mathcal{F} -essential with $p \geq 5$. Then one of the following holds for $N := N_P(Q)/Q$:

(1) N is cyclic or elementary abelian.

(2) $\exp(N) = p$ and $Z(N) = N' = \Phi(N) \cong C_p^n$ where $|N| = p^{3n}$ (i. e. N is special).

Alperin–Goldschmidt's fusion theorem and Theorem 3.5 make it feasible to determine all saturated fusion systems on a given *p*-group. Parker–Semeraro have developed a MAGMA algorithm for this purpose and discovered fusion systems overlooked in previous work.⁷ Since "most" *p*-groups do not have non-trivial p'-automorphisms, there are very few essential subgroups and "most" fusion systems are trivial.

Definition 3.8.

- We call \mathcal{F} controlled if there are no essential subgroups.
- We call P resistant⁸ if every fusion system on P is controlled.
- We call *P* fusion-trivial if every fusion system on *P* is trivial.

Example 3.9.

- (i) Let $P \in \text{Syl}_{p}(G)$. Then $\mathcal{F}_{P}(G)$ is controlled if and only if $N_{G}(P)$ controls fusion in P.
- (ii) By the Schur–Zassenhaus theorem, $\operatorname{Inn}(P)$ has a complement A in $\operatorname{Aut}_{\mathcal{F}}(P)$ since P is automized. If \mathcal{F} is controlled, then $\mathcal{F} = \mathcal{F}_P(P \rtimes A)$. In particular, \mathcal{F} is not exotic.
- (iii) Every abelian *p*-group is resistant by Example 3.3.
- (iv) Stancu proved that every metacyclic *p*-group for p > 2 is resistant. I proved that metacyclic 2-groups apart from D_{2^n} , Q_{2^n} , SD_{2^n} and $C_{2^n}^2$ are fusion-trivial.
- (v) Every 2-group of the form $C_{2^{a_1}} \times \ldots \times C_{2^{a_n}}$ with $a_1 < \ldots < a_n$ is fusion-trivial. The smallest non-trivial fusion-trivial *p*-group of odd order is SmallGroup(3⁶, 46).
- (vi) Let \mathcal{F} be a saturated fusion system on $P = \langle x, y : x^4 = y^2 = 1, \ ^yx = x^{-1} \rangle \cong D_8$. There are three cases:
 - (a) \mathcal{F} is controlled and therefore trivial since $\operatorname{Aut}(P) \cong D_8$ is a 2-group.
 - (b) There is exactly one essential subgroup, say $\langle x^2, y \rangle$. Then $\mathcal{F} = \mathcal{F}_P(S_4)$.
 - (c) There are two essential subgroups $\langle x^2, y \rangle$ and $\langle x^2, xy \rangle$. Then $\mathcal{F} = \mathcal{F}_P(\mathrm{GL}(3,2))$. In contrast to S_4 , all involutions in $\mathrm{GL}(3,2)$ are conjugate, namely to the rational canonical form

$$\begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{pmatrix}.$$

Definition 3.10. We call $Q \leq P$ normal in \mathcal{F} (and write $Q \leq \mathcal{F}$) if $N_{\mathcal{F}}(Q) = \mathcal{F}$.

Let $Q, R \leq \mathcal{F}$ and $\varphi \in \operatorname{Hom}_{\mathcal{F}}(S, T)$. Then there exist $\psi \in \operatorname{Hom}_{\mathcal{F}}(RS, RT)$ and $\tau \in \operatorname{Hom}_{\mathcal{F}}(QRS, QRT)$ such that $\psi(R) = R$, $\psi_S = \varphi$, $\tau(Q) = Q$ and $\tau_{RS} = \psi$. Hence, $\tau(QR) = \tau(Q)\psi(R) = QR$ and $\tau_S = \psi_S = \varphi$. This shows that $\varphi \in \mathcal{N}_{\mathcal{F}}(QR)$ and $QR \leq \mathcal{F}$. The following definition is therefore justified.

Definition 3.11.

• The (unique) largest normal subgroup of \mathcal{F} is denoted by $O_p(\mathcal{F})$.

⁷https://github.com/chris1961parker/fusion-systems

⁸sometimes called *Swan group*

• We call \mathcal{F} constrained if $C_P(O_p(\mathcal{F})) \leq O_p(\mathcal{F})$.

Example 3.12.

- (i) If $Q \leq P \in \text{Syl}_p(G)$ and $Q \leq G$, then $Q \leq \mathcal{F}_P(G)$. On the other hand, if P is abelian, then $P \leq \mathcal{F}_P(G)$, but not necessarily $P \leq G$.
- (ii) Every essential subgroup contains $O_p(\mathcal{F})$ and $Z(\mathcal{F}) \leq O_p(\mathcal{F})$.
- (iii) Every controlled fusion system \mathcal{F} on P is constrained with $O_p(\mathcal{F}) = P$. On the other hand, $\mathcal{F} := \mathcal{F}_{D_8}(S_4)$ is constrained with $O_2(\mathcal{F}) = V_4$, but not controlled.
- (iv) Let G = GL(3,2) and $P \in Syl_2(G)$. Then $\mathcal{F}_P(G)$ is not constrained since the two essential subgroups intersect in Z(P) (cf. Example 3.9(vi)). Moreover, $\mathfrak{foc}(\mathcal{F}) = P \not \leq \mathcal{F}$.
- (v) A group G is called *p*-constrained if $C_{\overline{G}}(O_p(\overline{G})) \leq O_p(\overline{G})$ where $\overline{G} := G/O_{p'}(G)$. In this case $\mathcal{F} := \mathcal{F}_P(G)$ is constrained with $\overline{O_p(\mathcal{F})} = \overline{O_p(G)}$. By Theorem 3.13 below every constrained fusion system arises in this way. The Hall–Higman lemma asserts that every (*p*-)solvable group is *p*-constrained.

Theorem 3.13 (Model theorem). For every constrained fusion system \mathcal{F} on P there exists a unique finite group G (called model) such that

- (i) $P \in \operatorname{Syl}_p(G)$ and $\mathcal{F} = \mathcal{F}_P(G)$.
- (ii) $O_{p'}(G) = 1$ and $C_G(O_p(G)) \leq O_p(G)$.

In particular, \mathcal{F} is not exotic.

Let G be a model for the constrained fusion system \mathcal{F} on P with $|P| = p^n$. A theorem of Hall shows that

 $|G| \le |G/\mathcal{O}_p(G)||P| \le |\operatorname{Aut}(\mathcal{O}_p(G))|p^n \le |\operatorname{GL}(n,p)|p^n = (p^n - 1)\dots(p^n - p^{n-1})p^n.$

In particular, there are only finitely many choices when P is given.

Example 3.14. If \mathcal{F} is controlled, then $P \rtimes A$ is the model for \mathcal{F} where $A \cong \operatorname{Out}_{\mathcal{F}}(P)$ as in Example 3.9.

Theorem 3.15 (GLESSER). Let p > 2 and \mathcal{F} a non-trivial fusion system on P. Then \mathcal{F} contains (as a subcategory) a non-trivial constrained fusion system on P.

One can use Theorem 3.15 and the model theorem to decide whether a given group P is fusiontrivial. The fusion system $\mathcal{F}_{D_{16}}(\text{PGL}(2,7))$ (found by Craven) shows that Glesser's theorem fails for p = 2. In order to classify non-constrained fusion systems (especially exotic fusion systems), Oliver has introduced *reduced* and *tame* fusion systems. In an ongoing effort to simplify the CFSG, Aschbacher has investigated *simple* fusion systems. Unfortunately, fusion systems of simple groups are not always simple, but well-studied nevertheless.

4 Representation theory

Let F be an algebraically closed field of characteristic p > 0. Let B be a (p-)block of FG, i.e. an indecomposable direct summand. We fix a defect group $D \leq G$ of B.

Definition 4.1 (ALPERIN-BROUÉ, OLSSON).

• We call (Q, b_Q) a *B*-subpair if $Q \leq D$ and b_Q is a Brauer correspondent of *B* in $QC_G(Q)$, i.e. $b_Q^G = B$. For subpairs we write $(S, b_S) \leq (T, b_T)$ if $S \leq T$ and $b_S^{TC_G(S)} = b_T^{TC_G(S)}$.⁹ Let \leq be the transitive closure of \leq , i.e.

$$(S, b_T) \leq (T, b_T) \iff (S, b_T) = (T_1, b_1) \leq \ldots \leq (T_n, b_n) = (T, b_T).$$

• We fix a *B*-subpair (D, b_D) (by Brauer's extended first main theorem, (D, b_D) is unique up to conjugation). It can be shown that for every $Q \leq D$ there exists a unique subpair of the form $(Q, b_Q) \leq (D, b_D)$. We fix those in the following. The fusion system $\mathcal{F} = \mathcal{F}_D(B)$ on D is defined by

$$\operatorname{Hom}_{\mathcal{F}}(S,T) := \left\{ \varphi \colon S \to T : \exists g \in G : {}^{g}(S,b_{S}) \le (T,b_{T}) \land \varphi(s) = {}^{g}s \,\forall s \in S \right\}.$$

Theorem 4.2 (PUIG). The fusion system $\mathcal{F}_D(B)$ is saturated.

We call *B* nilpotent (controlled, constrained) if $\mathcal{F}_D(B)$ is trivial (controlled, constrained). The irreducible ordinary and modular characters of *G* can be distributed into blocks. We set $k(B) := |\operatorname{Irr}(B)|$ and $l(B) := |\operatorname{IBr}(B)|$. Moreover, let $\mathfrak{foc}(B) := \mathfrak{foc}(\mathcal{F}_D(B))$.

Example 4.3.

- (i) The principal block $B = B_0(G)$ contains the trivial character of G. In this case $D \in \text{Syl}_p(G)$ and $\mathcal{F}_D(B) = \mathcal{F}_D(G)$. In particular, G is *p*-nilpotent if and only if B is nilpotent. In this case, all blocks of G are nilpotent.
- (ii) If $C_G(O_p(G)) \leq O_p(G)$, then $B_0(G)$ is the only block of G.
- (iii) In the context Definition 4.1, $\operatorname{Out}_{\mathcal{F}}(D) = \operatorname{N}_G(D, b_D)/D\operatorname{C}_G(D)$ is called the *inertial quotient* of B and its order is the *inertial index*, which is coprime to p by Theorem 4.2.
- (iv) The dihedral group $G = D_{24}$ has a nilpotent 3-block with defect group $D \cong C_3$, while the principal 3-block is not nilpotent. This shows that D alone does not determine the fusion system of a block.

Conjecture 4.4. For every block B of G with defect group D there exists a finite group H such that $D \in Syl_p(H)$ and $\mathcal{F}_D(B) = \mathcal{F}_D(H)$.

Theorem 4.5.

- (i) Let B be a block of S_n with defect group D. Then there exists an integer $w \ge 0$ (called the weight of B) such that $D \in \text{Syl}_p(S_{pw})$ and $\mathcal{F}_D(B) = \mathcal{F}_D(S_{pw})$.
- (ii) Let B be a block of A_n with defect group D. Then $\mathcal{F}_D(B) \in \{\mathcal{F}_D(S_{pw}), \mathcal{F}_D(A_{pw})\}$ for some $w \ge 0$.

⁹Alperin–Broué require additionally that b_S is T-invariant, but Olsson showed that this is unnecessary.

Theorem 4.6 (HUMPHREYS, AN–DIETRICH). Let B be a block of a group G of Lie type in characteristic p with defect group D. Then D = 1 or $D \in Syl_p(G)$ and $\mathcal{F}_D(B) = \mathcal{F}_D(G)$.

It has been shown that there is no block with the exotic fusion systems mentioned in Example 2.11.

Theorem 4.7 (PUIG). Let B be nilpotent. Then $B \cong (FD)^{n \times n}$ for some $n \ge 1$. In particular, B and FD are Morita equivalent, *i. e. they have equivalent module categories. Moreover*, k(B) = k(D) and l(B) = 1.

Theorem 4.8 (FONG-REYNOLDS). Let b be a block of $N \leq G$ with inertial group G_b . Then the Brauer correspondence $C \mapsto C^G$ gives a bijection between the blocks of G_b covering b and the blocks of G covering b. Moreover, C and C^G are Morita equivalent and have the same fusion system.

Theorem 4.9 (Second Fong Reduction). Let B be a block of G covering a G-invariant block of $N \leq G$ with defect 0. Then B is Morita equivalent to a block of a finite group H with the same fusion system. Moreover, there exists a cyclic p'-subgroup $Z \leq Z(H)$ such that $H/Z \cong G/N$.

The block of H in the situation of Theorem 4.9 is Morita equivalent to a twisted group algebra $F_{\alpha}[G/N]$ where $\alpha \in \mathrm{H}^2(G/N, F^{\times})$. Conversely, every such twisted group algebra is Morita equivalent to a block of a suitable central extension. If B is the principal block or if G/N has trivial Schur multiplier, then $\alpha = 1$ and B is Morita equivalent to F[G/N]. This applies also to the following two theorems.

Theorem 4.10 (KÜLSHAMMER). If $D \leq G$, then B is controlled and Morita equivalent to a twisted group algebra $F_{\alpha}[D \rtimes \operatorname{Out}_{\mathcal{F}}(D)]$ where $\alpha \in \operatorname{H}^{2}(\operatorname{Out}_{\mathcal{F}}(D), F^{\times})$.

Theorem 4.11 (KÜLSHAMMER). If G is p-solvable, then B is constrained and Morita equivalent to $F_{\alpha}H$ where H is the model for $\mathcal{F}_D(B)$ from Theorem 3.13 and $\alpha \in \mathrm{H}^2(H, F^{\times})$.

Theorem 4.12 (EATON-KESSAR-KÜLSHAMMER-SAMBALE). Every 2-block B with a metacyclic defect group D belongs to one of the following cases:

- (1) B is nilpotent.
- (2) D is dihedral, semidihedral or quaternion and B has tame representation type (Morita equivalence classes classified up to scalars).
- (3) $D \cong C_{2^n}^2$ and B is Morita equivalent to $F[D \rtimes C_3]$.
- (4) $D \cong C_2^2$ and B is Morita equivalent to $B_0(A_5)$.

Conjecture 4.13 (Blockwise Z*-conjecture). Let B be a block with fusion system \mathcal{F} and $Z := Z(\mathcal{F})$. Then B is Morita equivalent to its Brauer correspondent b_Z in $C_G(Z)$.

Since $N_G(D, b_D) \leq C_G(Z)$, b_Z is indeed the unique Brauer correspondent of B by the Brauer's first main theorem. Conjecture 4.13 holds for principal blocks by Example 2.16.

Theorem 4.14 (KÜLSHAMMER–OKUYAMA, WATANABE). In the situation of Conjecture 4.13 we have $k(B) \ge k(b_Z)$ and $l(B) \ge l(b_Z)$ with equality in both cases if D is abelian.

Conjecture 4.15 (ROUQUIER). If $Q := \mathfrak{hyp}(\mathcal{F}_D(B))$ is abelian, then B is derived equivalent to its Brauer correspondent B_Q in $N_G(Q)$.

Example 4.16. Suppose that *B* has abelian defect group *D*. Broué's conjecture predicts that *B* and B_Q are derived equivalent to their common Brauer correspondent in $N_G(D)$. This implies Rouquier's conjecture for *B*. Conversely, if Rouquier's conjecture and the blockwise Z*-conjecture hold for *B*, then *B* is derived equivalent to its Brauer correspondent in $N_G(Q, b_Q) \cap C_G(Z) = N_G(D, b_D)$ since $D = Q \times Z$ by the Fitting decomposition (Example 2.16). Thus, Broué's conjecture holds for *B*.

Theorem 4.17 (WATANABE). If Q is cyclic in the situation of Rouquier's conjecture, then \mathcal{F} is controlled with $\operatorname{Out}_{\mathcal{F}}(D) \leq C_{p-1}$ and

$$k(B) = k(B_Q) = k(D \rtimes \operatorname{Out}_{\mathcal{F}}(D)),$$

$$l(B) = l(B_Q) = |\operatorname{Out}_F(D)|.$$

If p > 2 and D is non-abelian metacyclic, then Theorem 4.17 applies.

Definition 4.18. Let \mathcal{F} be a saturated fusion system on P and $Q \leq \mathcal{F}$. Then the (saturated) fusion system \mathcal{F}/Q on P/Q consists of the morphism $\varphi \colon S/Q \to T/Q$ such that there exists a morphism $\psi \colon S \to T$ in \mathcal{F} with $\varphi(xQ) = \psi(x)Q$ for all $x \in S$.

Theorem 4.19. Let B be a block of G with defect group D and $\mathcal{F} = \mathcal{F}_D(B)$. Let (Q, b_Q) be a B-subpair such that Q is \mathcal{F} -normalized. Then

- (i) b_Q has defect group $QC_D(Q)$ and fusion system $QC_F(Q)$.
- (ii) $b_O^{N_G(Q)}$ has defect group $N_D(Q)$ and fusion system $N_F(Q)$.
- (iii) b_Q dominates a unique block $\overline{b_Q}$ of $C_G(Q)Q/Q$ with defect group $C_P(Q)Q/Q$ and fusion system $QC_F(Q)/Q$. Moreover, $l(b_Q) = l(\overline{b_Q})$.

In the situation of Theorem 4.19 the map $S \to S/Q$ is a bijection between the set of $C_{\mathcal{F}}(Q)Q$ -essential subgroups and the set of $C_{\mathcal{F}}(Q)Q/Q$ -essential subgroups. This allows inductive arguments.

Theorem 4.20 (BRAUER). Let B be a block of G with defect group D and $\mathcal{F} = \mathcal{F}_D(B)$. Let $\mathcal{X} \subseteq D$ be a set of representatives for the \mathcal{F} -conjugacy classes of D such that $\langle x \rangle$ is \mathcal{F} -normalized for $x \in \mathcal{X}$. Then

$$k(B) = \sum_{x \in \mathcal{X}} l(b_x) = \sum_{x \in \mathcal{X}} l(\overline{b_x}),$$

where $b_x := b_{\langle x \rangle}$. In particular, k(B) - l(B) is locally determined.

The fusion system of a block does not determine k(B) or l(B). For example, the group

$$G = \texttt{SmallGroup}(72,23) \cong C_3^2
times D_8$$

with |Z(G)| = 2 from the small groups library has two 3-blocks B_0 , B_1 with defect group $D = C_3^2$ and fusion system $\mathcal{F}_D(S_3^2)$, but $l(B_0) = 4$ and $l(B_1) = 1$. We need an additional ingredient: For an *F*-algebra *A* let z(A) be the number of simple projective *A*-modules up to isomorphism. **Conjecture 4.21** (ALPERIN's weight conjecture). Let B be a block G with defect group D and $\mathcal{F} = \mathcal{F}_D(B)$. Let \mathcal{R} be a set of representatives for the \mathcal{F} -conjugacy classes of self-centralizing, \mathcal{F} -centralized subgroups of D. Then

$$l(B) = \sum_{Q \in \mathcal{R}} z(F_{\gamma_Q} \operatorname{Out}_{\mathcal{F}}(Q))$$

where $\gamma_Q \in \mathrm{H}^2(\mathrm{Out}_{\mathcal{F}}(Q), F^{\times})$ is the so-called Külshammer–Puig class.

Example 4.22.

- (i) Suppose that B is controlled in the situation of Conjecture 4.21. Then $z(F_{\gamma_Q} \operatorname{Out}_{\mathcal{F}}(Q)) = 0$ for Q < D, since $\operatorname{N}_D(Q)/Q$ is a non-trivial normal p-subgroup of $\operatorname{Out}_{\mathcal{F}}(Q)$. Hence, Alperin's conjecture becomes $l(B) = z(F_{\gamma_D} \operatorname{Out}_{\mathcal{F}}(D))$. If in addition B is the principal block (or $\operatorname{Out}_{\mathcal{F}}(D)$ has trivial Schur multiplier), then $l(B) = z(F \operatorname{Out}_{\mathcal{F}}(D)) = k(\operatorname{Out}_{\mathcal{F}}(D))$.
- (ii) Let B be the principal 2-block of S_4 with $D = \langle x, y \rangle$ as in Example 3.9. The self-centralizing, \mathcal{F} -centralized subgroups are $Q_1 = \langle x^2, y \rangle$, $Q_2 = \langle x^2, xy \rangle$, $Q_3 = \langle x \rangle$ and $Q_4 = D$. Alperin's conjecture becomes

$$l(B) = \sum_{i=1}^{4} z \left(F_{\gamma_{Q_i}} \operatorname{Out}_{\mathcal{F}}(Q_i) \right) = z(FS_3) + 2z(FC_2) + z(F) = 1 + 0 + 1 = 2$$

Definition 4.23. The height $h \ge 0$ of $\chi \in Irr(B)$ is defined by $\chi(1)_p = p^h | G : D|_p$. Let $k_h(B)$ be the number of $\chi \in Irr(B)$ with height h.

Theorem 4.24 (BROUÉ–PUIG, ROBINSON). Let B be a block with defect group D. Then

- (i) $|D/\mathfrak{foc}(B)|$ divides $k_0(B)$ with equality if and only if B is nilpotent.
- (ii) $|\mathbf{Z}(D)\mathfrak{foc}(B)/\mathfrak{foc}(B)|$ divides $k_h(B)$ for all $h \ge 0$.

If D is abelian, then $|Z(\mathcal{F}_D(B))|$ divides k(B), because $D = \mathfrak{foc}(B) \times Z(\mathcal{F}_D(B))$.

Dade's conjecture, expressing $k_h(B)$ in terms of alternating sums, has been reformulated in terms of fusion systems by Robinson (*ordinary weight conjecture*). Kessar–Linckelmann–Lynd–Semeraro have generalized this and other conjectures in block theory to statements on abstract fusion systems.

References

- [1] J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222-241.
- [2] J. L. Alperin and M. Broué, Local methods in block theory, Ann. of Math. (2) 110 (1979), 143–157.
- [3] J. An and H. Dietrich, The AWC-goodness and essential rank of sporadic simple groups, J. Algebra 356 (2012), 325–354.
- [4] J. An and H. Dietrich, The essential rank of fusion systems of blocks of symmetric groups, Internat. J. Algebra Comput. 22 (2012), 1250002, 15.
- [5] J. An and H. Dietrich, The essential rank of Brauer categories for finite groups of Lie type, Bull. London Math. Soc. 45 (2013), 363–369.
- [6] K. K. S. Andersen, B. Oliver and J. Ventura, *Reduced, tame and exotic fusion systems*, Proc. Lond. Math. Soc. (3) 105 (2012), 87–152.

- [7] M. Aschbacher, Classifying finite simple groups and 2-fusion systems, ICCM Not. 3 (2015), 35-42.
- [8] M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, Vol. 391, Cambridge University Press, Cambridge, 2011.
- [9] M. Aschbacher and B. Oliver, *Fusion systems*, Bull. Amer. Math. Soc. (N.S.) **53** (2016), 555–615.
- [10] S. Bayard and J. Lynd, Realizing Finite Groups as Automizers, arXiv:2203.14413v1.
- [11] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527–554.
- [12] C. Broto, J. M. Møller and B. Oliver, Equivalences between fusion systems of finite groups of Lie type, J. Amer. Math. Soc. 25 (2012), 1–20.
- [13] M. Broué and L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117–128.
- [14] D. A. Craven, The theory of fusion systems, Cambridge Studies in Advanced Mathematics, Vol. 131, Cambridge University Press, Cambridge, 2011.
- [15] A. Díaz, A. Glesser, N. Mazza and S. Park, Control of transfer and weak closure in fusion systems, J. Algebra 323 (2010), 382–392.
- [16] A. Díaz, A. Glesser, S. Park and R. Stancu, Tate's and Yoshida's theorems on control of transfer for fusion systems, J. Lond. Math. Soc. (2) 84 (2011), 475–494.
- [17] C. W. Eaton, R. Kessar, B. Külshammer and B. Sambale, 2-blocks with abelian defect groups, Adv. Math. 254 (2014), 706–735.
- [18] R. J. Flores and R. M. Foote, Strongly closed subgroups of finite groups, Adv. Math. 222 (2009), 453–484.
- [19] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420.
- [20] G. Glauberman, Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967), 1–12.
- [21] G. Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math. 20 (1968), 1101–1135.
- [22] A. Glesser, Sparse fusion systems, Proc. Edinb. Math. Soc. (2) 56 (2013), 135–150.
- [23] D. M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138–142.
- [24] D. M. Goldschmidt, 2-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70–117.
- [25] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (1983), 1–731.
- [26] G. T. Helleloid and U. Martin, The automorphism group of a finite p-group is almost always a p-group, J. Algebra 312 (2007), 294–329.
- [27] E. Henke and J. Semeraro, Centralizers of normal subgroups and the Z*-theorem, J. Algebra 439 (2015), 511–514.
- [28] A. Jaber, Block fusion systems over maximal nilpotency class 3-groups, arXiv:2207.06454v1.
- [29] M. W. Jacobsen, Block fusion systems of the alternating groups, arXiv:1204.2702v1.
- [30] R. Kessar and M. Linckelmann, ZJ-theorems for fusion systems, Trans. Amer. Math. Soc. 360 (2008), 3093–3106.
- [31] R. Kessar, M. Linckelmann, J. Lynd and J. Semeraro, Weight conjectures for fusion systems, Adv. Math. 357 (2019), 106825, 40pp.
- [32] R. Kessar, M. Linckelmann and G. Navarro, A characterisation of nilpotent blocks, Proc. Amer. Math. Soc. 143 (2015), 5129–5138.
- [33] R. Kessar and R. Stancu, A reduction theorem for fusion systems of blocks, J. Algebra **319** (2008), 806–823.

- [34] B. Külshammer, On p-blocks of p-solvable groups, Comm. Algebra 9 (1981), 1763–1785.
- [35] B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147– 168.
- [36] B. Külshammer and T. Okuyama, On centrally controlled blocks of finite groups, unpublished.
- [37] I. J. Leary and R. Stancu, Realising fusion systems, Algebra Number Theory 1 (2007), 17–34.
- [38] M. Linckelmann, Introduction to fusion systems, in: Group representation theory, 79–113, EPFL Press, Lausanne, 2007. Revised version: http://web.mat.bham.ac.uk/C.W.Parker/Fusion/fusion-intro.pdf.
- [39] A. Nectoux, Fusion systems of finite alternating groups, PhD thesis, University of Auckland, 2015.
- [40] B. Oliver and A. Ruiz, Simplicity of fusion systems of finite simple groups, Trans. Amer. Math. Soc. 374 (2021), 7743–7777.
- [41] J. B. Olsson, On subpairs and modular representation theory, J. Algebra 76 (1982), 261–279.
- [42] S. Onofrei and R. Stancu, A characteristic subgroup for fusion systems, J. Algebra 322 (2009), 1705–1718.
- [43] S. Park, Realizing fusion systems inside finite groups, Proc. Amer. Math. Soc. 144 (2016), 3291–3294.
- [44] C. Parker and J. Semeraro, Algorithms for fusion systems with applications to p-groups of small order, Math. Comp. 90 (2021), 2415–2461.
- [45] L. Puig, Sur un théorème d'Alperin, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1013–1016.
- [46] L. Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Mém. (1976), 5–132.
- [47] L. Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.
- [48] L. Puig, Frobenius categories, J. Algebra 303 (2006), 309–357.
- [49] L. Puig, Frobenius categories versus Brauer blocks, Progress in Mathematics, Vol. 274, Birkhäuser Verlag, Basel, 2009.
- [50] L. Puig, The Frobenius P-categories via the Alperin condition, J. Algebra **324** (2010), 2923–2930.
- [51] K. Roberts and S. Shpectorov, On the definition of saturated fusion systems, J. Group Theory 12 (2009), 679–687.
- [52] G. R. Robinson, Weight conjectures for ordinary characters, J. Algebra 276 (2004), 761–775.
- [53] G. R. Robinson, Amalgams, blocks, weights, fusion systems and finite simple groups, J. Algebra 314 (2007), 912–923.
- [54] G. R. Robinson, On the focal defect group of a block, characters of height zero, and lower defect group multiplicities, J. Algebra 320 (2008), 2624–2628.
- [55] R. Rouquier, Block theory via stable and Rickard equivalences, in: Modular representation theory of finite groups (Charlottesville, VA, 1998), 101–146, de Gruyter, Berlin, 2001.
- [56] A. Ruiz and A. Viruel, The classification of p-local finite groups over the extraspecial group of order p^3 and exponent p, Math. Z. **248** (2004), 45–65.
- [57] B. Sambale, Fusion systems on metacyclic 2-groups, Osaka J. Math. 49 (2012), 325–329.
- [58] P. Serwene, Reduction theorems for generalised block fusion systems, J. Algebra 614 (2023), 458–480.
- [59] R. Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra 28 (1974), 182–198.
- [60] R. Stancu, Control of fusion in fusion systems, J. Algebra Appl. 5 (2006), 817–837.
- [61] B. Stellmacher, A characteristic subgroup of Σ_4 -free groups, Israel J. Math. 94 (1996), 367–379.
- [62] J. Thévenaz, Most finite groups are p-nilpotent, Exposition. Math. 11 (1993), 359–363.

- [63] R. W. van der Waall, On p-nilpotent forcing groups, Indag. Math. (N.S.) 2 (1991), 367–384.
- [64] A. Watanabe, Note on a p-block of a finite group with abelian defect group, Osaka J. Math. 26 (1989), 829–836.
- [65] A. Watanabe, The number of irreducible Brauer characters in a p-block of a finite group with cyclic hyperfocal subgroup, J. Algebra 416 (2014), 167–183.
- [66] W. Xiao, Glauberman's conjecture, Mazurov's problem and Peng's problem, Sci. China, Ser. A 34 (1991), 1025-1031.
- [67] T. Yoshida, Character-theoretic transfer, J. Algebra 52 (1978), 1–38.