Kondo’'s Fusion Theorem

Benjamin Sambale*

March 7, 2021

The aim of these notes is to present a strong version of Alperin’s fusion theorem due to Kondo [11].

Let G be a finite group. We call two Sylow p-subgroups S and T of G equivalent if there exist Sylow
p-subgroups S = Sy, ...,S, =T such that S; N S;_1 # 1 for i = 1,...,n. This defines an equivalence
relation ~ on Syl,(G). If G has more than one ~-class, then G is called p-isolated.

A proper subgroup H < G is called strongly p-embedded if p divides |H|, but H N HY is a p’-group for
every g € G\ H.

Lemma 1.

(a) If G has a strongly p-embedded subgroup H, then G is p-isolated and the Sylow p-subgroups of H
form a union of ~-classes of G.

(b) If G is p-isolated, then the stabilizer of a ~-class is strongly p-embedded in G.

Proof. Let H < G be strongly p-embedded and P € Syl,(H). Let S € Syl,(G) such that P < S. If
P < S, then there exists g € Ng(P) \ H such that P = PN P9 € HN HY. This contradiction shows
that P = S. Let T' € Syl,(G) such that SNT # 1. Let g € G with $9 =T. Then SNT < H N HY
and it follows that g € H. Thus, T' = 9 € Syl,(H). Hence, Syl,(H) is a union of ~-classes. Since
Ng(S) < H < G, there must be at least one ~-class outside H. In particular, G is p-isolated.

Suppose conversely that G is p-isolated and let H be the stabilizer of the ~-class of S € Syl (G). Then
1#S<H<G.Let ge G\ H and let P be a Sylow p-subgroup of H N HY. Let h,h' € H be such
that P < "N S"'9. Since ¢ ¢ H, S" and Sh'9 are not equivalent. In particular, P < S§" n §h'9 = 1.
This shows that H is strongly p-embedded. O
Lemma 2. Let H < G be strongly p-embedded.

(a) Let K < H such that p divides |K|. Then Ng(K) < H.

(b) Let N 4G such that p divides |[N|. Then G = HOP(N).

Proof.
(a) For g € Ng(K), p divides the order of K = KN K9 < HN HY. Hence, g € H.
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(b) Let S € Syl,(H). By S € Syl,(G) and 1 # NNS € Syl,(N). Since N = (NNS)OP(N),
OP(N) acts transitively on Syl,(N). The Frattini argument yields G = Ng(N N S)OP(N). By
[(a)l Na(NNS) < H. O

The following lemma is well-known.

Lemma 3. Let A be a non-cyclic abelian group acting coprimely on a group G. Then

G={(Cg(z):xe A\ {1}).

Proof. We may assume that A is a p-group. Let ¢ be a prime divisor of |G|. Since the number of
Sylow g¢-subgroups of G divides the p’-number |G|, there exists an A-invariant Sylow g¢-subgroup @
of G. We may assume that G = . Suppose that G has an A-invariant normal subgroup N such
that 1 < N < @G. By induction on |G|, we may assume that N = (Cy(x) : @ € A\ {1}) and
G/N = (Cq/n(z) : ® € A\ {1}). Since A acts coprimely, Cq/n(7) = Cg(z)N/N. Hence,

G = (Cgx)N :z e A\{1}) = (Co(z) € A\{1}).

Therefore, we may assume that G is elementary abelian and A acts irreducibly. By Schur’s Lemma,
the endomorphism ring E of the simple F,A-module G is a finite division algebra, so E is a field. In
particular, the multiplicative group of E is cyclic. Hence, A cannot act faithfully on G. Thus, there
exists € A\ {1} such that G = Cg(x). O

The next result is not needed in the sequel.

Proposition 4. Let G be p-solvable for some prime divisor p of |G|. Then G is p-isolated if and only
if Op(G) =1 and the Sylow p-subgroups are cyclic or quaternion groups.

Proof. Suppose first that O,(G) = 1 and the Sylow p-subgroups of G are cyclic or quaternion groups.
These p-groups have only one subgroup of order p. Hence, S ~ T if and only if SNT' # 1. Since O,(G)
is the intersection of all Sylow p-subgroups, there must exist S, T € Syl,(G) such that SNT = 1. In
particular, G is p-isolated (note that we do not need the p-solvability of G).

Now assume conversely that G is p-isolated. Then obviously O,(G) = 1. Let N be a minimal normal
subgroup of G. Since G is p-solvable, N is a p’-group. By induction on |G|, we may that G/N is not
p-isolated. Let H be the stabilizer of a ~-class of G. Then there exist S € Syl,(H) and T' € Syl,(G)
such that HNT = 1, but (SNNTN)/N = SN/NNTN/N # 1. Let Sp < S and Tp < T with
SNNTN = S5yN =1TyN. If N < H, then we obtain the contradiction

HNT>S5NNT=Ty,NNT >1T, > 1.

Hence, N ¢ H. Let g be a prime divisor of [N : N N H|. Since the number of Sylow g-subgroups of N
divides the p’-number |N|, there exists a S-invariant Sylow g-subgroup @ # 1 of N. Then S normalizes
Qo:= QN H and Q1 := Ng(Q)/Qo # 1. By Colw) = Ca(z) NQ < HNQ = Qq for every
z € S\ {1}. Since the action of S on Q1 is coprime, Cg, (z) = 1. By [Lemma 3] every abelian subgroup
of S is cyclic. This implies the claim as is well-known. O

If G is a non-abelian simple group with a cyclic Sylow p-subgroup P, then Ng(P) is strongly p-
embedded by a theorem of Blau [5]. In this situation the ~-classes are singletons, i.e. P is a trivial
intersection set. Note that by Brauer—Suzuki there are no simple groups with a cyclic or quaternion
Sylow 2-subgroup. Bender [4] has classified all 2-isolated groups. In general, the p-isolated groups are
determined in principle via the classification of finite simple groups (see [16, Theorem 6.4]).



Lemma 5. Let G be p-isolated with normal subgroups N, M < G such that p divides |N| and |M].
Then p divides [N N M]|.

Proof. Let H < G be strongly p-embedded and S € Syl,(H) C Syl,(G). Then SN N # 1 # SN M
by hypothesis. By way of contradiction, suppose that N N M is a p’-group. Then [SN N, SN M] <
SNNNM =1 and S contains a non-cyclic abelian subgroup. By [Lemma 3| and [Lemma 2] we conclude
that

NNM={(Cnnm(z):xze S\{1}) < (Ng((z)):xz e S\{1}) <H.

Since N normalizes (S N M)(N N M) < H, we obtain N < H again by [Lemma 2 But now G =
Ng(N) < H, a contradiction. O

implies that every p-isolated group G has a unique minimal normal subgroup M(G) <4 G
such that p divides |M(G)|.

Two Sylow p-subgroups S and T of G have a tame intersection if Ng(SNT) and Np(SNT) are Sylow
p-subgroups of Ng(SNT).

Lemma 6. Let P,Q € Syl,(G) be distinct such that PN Q # 1. Then there exist Sylow p-subgroups
P=PFy,P,...,P,=Q of G with the following properties:

(a) P;—1 and P; have a tame intersection H; := P,y N P; fori=1,...,n,

(b) Na(H;)/H; is p-isolated fori=1,...,n. Define X(H;)/H; := M(Ng(H;)/H;),
(c) there exists x; € OP(X(H;)) such that P = P,y fori=1,...,n,

(d) PNQ=HyN...NH,.

Proof. We argue by induction on [P : PN Q)|. Suppose first that [P : PN Q| = p. Since PN is normal
in P = Py and in @ = P, the intersection H := H; = Py N Py is tame. Moreover, Ng(H)/H has two
distinct Sylow subgroups P/H and @Q/H of order p. Hence, Ng(H)/H is p-isolated and

K/H := (Ng(H)NNg(Q))/H

is strongly p-embedded in Ng(H)/H by An application of [Lemma 2| with N := X(H)/H
yields

Ne(H)/H = K/H - O"(X(H)/H) = KO"(X (H))/H.

Since P,) < Ng(H), there exists x € Ng(H) such that P* = (. We may write x = yx; with
y € K < Ng(Q) and z; € OP(X(H)). It follows that P = Q¥ = @Q*'. Now all four conditions are
fulfilled.

For the induction step let H := P N Q. Choose R,S € Syl,(G) such that Np(H) < Ng(H) €
Syl,(Ng(H)) and Ng(H) < Ng(H) € Syl,(Ng(H)). Then H < Np(H) < PN R and H < Ng(H) <
SNQ. If H< RN S, then we apply induction to the pairs (P, R), (R,S) and (S,Q) to obtain a
series of Sylow subgroups satisfying the four conditions. Hence, we may assume that H = RN S in the
following. In particular, R and S have a tame intersection.

Suppose next that Nr(H)/H ~ Ng(H)/H in Ng(H)/H. Then there exist R = Ry, Ry,..., Ry =S5 €
Syl,(G) such that H < R;—1 N R; for i = 1,...,m. Again we apply induction to the pairs (R;—1, R;)
to obtain the desired sequence of Sylow p-subgroups. Therefore, we may assume that Nr(H)/H
Ns(H)/H. In particular, Ng(H)/H is p-isolated. Let K/H be the stabilizer of the ~-class containing
Ns(H)/H. By K/H is strongly p-embedded in Ng(H)/H. As above we obtain Ng(H) =



KOP(X(H)) via[Lemma 2| By Sylow’s theorem there exists © € Ng(H) such that Ng(H)* = Nz(H).
We write = yz; with y € K and z; € OP(X(H)). Since Ng(H)/H +# Ng(H)/H, also Ng(H)/H
Ngv(H)/H. In particular,
H<S8"NSY <Ngr(H)NNgv(H)=H

and S* and SY have a tame intersection. On the other hand, H < Ngr(H) < RNS*. Since Ng(H)/H ~
Ngu(H)/H, there exist S¥ = Sp, S1,...,S, = S € Syl,(G) such that Ng,(H) € Syl,(Ng(H)) and H <
Si—1NS; fori = 1, ..., n. Finally, we apply induction to the pairs (P, R), (R, S*), (S0,51),- -, (Sn—1,5n),
(S,Q). The gap between S* and Sy = SY is bridged with the element x; € OP(X(H)) constructed
above. O

Theorem 7 (KONDO). Let P be a Sylow p-subgroup of G. Let A;B C P and g € G such that
A9 = B ¢ {1}. Then there exist Hy,...,H, < P, z1,...,2, € G and y € Ng(P) with the following

properties fori=1,...,n:
(a) Np(H;) € Syl,(Na(H;)),
(b) Na(H;)/H; is p-isolated,
(c) z; € OP(X(H;)),
(d) Am-¥i=1 C H,
(e) g=x1...20Y.
Proof. For H < P we abbreviate Ky := OP(X(H)) whenever Ng(H)/H is p-isolated. By the unique-

ness of X (H) (Lemma 5)), it is easy to see that K%“"EI = Ky for x € G. By hypothesis, A C PApPI # 1.
By [Lemma 6|7 there exist P = Py,..., P, = P9 € Syl,(G) such that

e P,_1 and P; have a tame intersection L; := P,_1 NP, fori=1,...,n,
o Ng(L;)/L; is p-isolated for i = 1,...,n.
e there exists y; € Kz, such that P/ = P,y fori =1,...,n,
e PNPY =LiN...0L,.
Define

Y1y e TY%iY1 .
T =y ) H; =L} (i=1,...,n).

Then 1 ...7; = y;...y1 and Ng(H;)/H; is p-isolated for i = 1,...,n. Moreover, H; < P/""¥" = Py =
P and
Np(H;) = Np,(L;)* %" € Syl,(Ng(L;)" ") = Syl,,(Na(H;)),

since L; is a tame intersection. Next we note that A¥t--%i-1 C Li“.”*l"'yl = L?i"'yl = H; and

Y1yt Yi—1---Y1 __
Ty =Y € KLi = Ky,

fori=1,...,n. Now P = Py = PY"¥' = (P9 ")®1-2n implies g = x ... x,y for some y € Ng(P).
This completes the proof. O

Lemma 8. Let H < P € Syl,(G) such that Np(H) € Syl,(Ng(H)). Let
N/Cq(H) := Op(Ng(H)/Cq(H)).

Then the following assertions are equivalent:



(a) H € Syl,(N).

(b) Cp(H) < H and O,,(Ng(H)) = HCq(H).
Proof. Note that Np(H) € Syl,(Ng(H)) implies Cp(H) € Syl,(Cg(H)). Suppose first that H €
Syl,(N). By the Schur-Zassenhaus Theorem, N = HCg(H) = H x Q where Q@ = Oy (Cg(H)) <

Oy (Ng(H)). Hence, Cp(H) = Z(H) < H. Since Oy (Ng(H)) acts trivially on H, we also have
Oy (Ng(H)) = Q. Now let M := Op,(Ng(H)). Then HQ/Q < M/Q and

N/Co(H) = HQ/Ca(H) < M/Cg(H) < Op(Na(H)/Cg(H)) = N/Cg(H).

This shows that M = N = HCq(H).
Suppose conversely that holds. Then again Cq(H)H = H x Q with Q = O (Ng(H)). Since

IN/Q| = |N/Ca(H)||Ca(H)/Q| = [0p(Na(H)/Ca(H))||Z(H)|
is a p-power, we obtain N/Q < O,(Ng(H)/Q),i.e. N < Oy,(Ng(H)) = HQ. Hence, H € Syl (N). O
Theorem 9 (KONDO). Let P be a Sylow p-subgroup of G. Let A,B C P and g € G such that

A9 = B ¢ {1}. Then there exist Hy,...,H, < P, z1,...,2, € G, ¢ € Cq(A) and y € Ng(P) with the
following properties fori=1,...,n:

(a) NP(HZ') S Sylp(Ng(Hi)),

(b) Cp(H;) < Hi,

(¢) Opp(Ng(Hi)) = HiCq(Hi),

(d) Na(H;)/H; is p-isolated,

(e) xi € OP(X(Hi)),

(f) AT1Ti-1 g Hi;

(9) g=cx1...20Y.
Proof. We choose Hy,...,H, < P, z1,...,z, € G and y € Ng(P) as in Suppose that [(b)]
or[(c)| does not hold for some H := H;. Then by [Lemma & |N/H]| is divisible by p where N/Cq(H) :=
Op(Ng(H)/Cq(H)). The definition of X (H) yields X(H) < N. Since N/Cg(H) is a p-group, OP(N) <

Cg(H). Since
X(H)/OP(N)NX(H) = X(H)OP(N)/OP(N) < N/OP(N),

we conclude that
x; € OP(X(H)) < OP(N) < Cg(H).
Therefore, ¢ := xl@l""“‘l)_l c CG(Hi(zl'“wi‘l)_l) < Cg(A) and g :=cx1 ... 2i—1Xi41 - . . Try. We repeat

this process until every H; fulfills the stated conditions. O



Since OP(X (H;)) is generated by p’-elements, we may require that x1,...,z, are p’-elements. Alter-
natively, we may assume that z; € X (H;) are p-elements since by definition, X (H;) is generated by
p-elements.

generalizes Alperin’s original fusion theorem [I] as well as Goldschmidt’s extension [9]. A
similar result was obtained by Puig [14] (see also [15, Chapter 5]). A readable account of the fusion
theorem for fusion systems can be found in |7, Theorem 4.51]. Some more specific fusion theorems
were given in [10, (9.1)] and [I7, Theorem 3.3|. Alperin and Gorenstein [3] developed a fusion theorem
using an abstract conjugacy functor. A graph-theoretical proof of their result was provided by Stell-
macher [I8]. In the latter paper and in [I3] it was shown which subgroups need to appear in every fusion
theorem. Dolan [8] has proved that the number of elements x, ..., x, used in the fusion theorem can
be bounded in terms of the nilpotency class of a Sylow p-subgroup. Using his techniques, Collins [6]
gave another proof of the fusion theorem. Finally, Alperin [2] derived a fusion theorem where the or-
ders |Cp(H;)| are unimodal. A corresponding version for fusion systems was obtained by Lynd [12,
Proposition 3.1J.
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