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The aim of these notes is to present a strong version of Alperin’s fusion theorem due to Kondo [11].

Let G be a finite group. We call two Sylow p-subgroups S and T of G equivalent if there exist Sylow
p-subgroups S = S0, . . . , Sn = T such that Si ∩ Si−1 6= 1 for i = 1, . . . , n. This defines an equivalence
relation ∼ on Sylp(G). If G has more than one ∼-class, then G is called p-isolated.

A proper subgroup H < G is called strongly p-embedded if p divides |H|, but H ∩Hg is a p′-group for
every g ∈ G \H.

Lemma 1.

(a) If G has a strongly p-embedded subgroup H, then G is p-isolated and the Sylow p-subgroups of H
form a union of ∼-classes of G.

(b) If G is p-isolated, then the stabilizer of a ∼-class is strongly p-embedded in G.

Proof. Let H < G be strongly p-embedded and P ∈ Sylp(H). Let S ∈ Sylp(G) such that P ≤ S. If
P < S, then there exists g ∈ NS(P ) \H such that P = P ∩ P g ∈ H ∩Hg. This contradiction shows
that P = S. Let T ∈ Sylp(G) such that S ∩ T 6= 1. Let g ∈ G with Sg = T . Then S ∩ T ≤ H ∩Hg

and it follows that g ∈ H. Thus, T = Sg ∈ Sylp(H). Hence, Sylp(H) is a union of ∼-classes. Since
NG(S) ≤ H < G, there must be at least one ∼-class outside H. In particular, G is p-isolated.

Suppose conversely that G is p-isolated and let H be the stabilizer of the ∼-class of S ∈ Sylp(G). Then
1 6= S ≤ H < G. Let g ∈ G \H and let P be a Sylow p-subgroup of H ∩Hg. Let h, h′ ∈ H be such
that P ≤ Sh ∩ Sh′g. Since g /∈ H, Sh and Sh′g are not equivalent. In particular, P ≤ Sh ∩ Sh′g = 1.
This shows that H is strongly p-embedded.

Lemma 2. Let H < G be strongly p-embedded.

(a) Let K ≤ H such that p divides |K|. Then NG(K) ≤ H.

(b) Let N EG such that p divides |N |. Then G = HOp(N).

Proof.

(a) For g ∈ NG(K), p divides the order of K = K ∩Kg ≤ H ∩Hg. Hence, g ∈ H.
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(b) Let S ∈ Sylp(H). By Lemma 1, S ∈ Sylp(G) and 1 6= N∩S ∈ Sylp(N). Since N = (N∩S)Op(N),
Op(N) acts transitively on Sylp(N). The Frattini argument yields G = NG(N ∩ S)Op(N). By
(a), NG(N ∩ S) ≤ H.

The following lemma is well-known.

Lemma 3. Let A be a non-cyclic abelian group acting coprimely on a group G. Then

G = 〈CG(x) : x ∈ A \ {1}〉.

Proof. We may assume that A is a p-group. Let q be a prime divisor of |G|. Since the number of
Sylow q-subgroups of G divides the p′-number |G|, there exists an A-invariant Sylow q-subgroup Q
of G. We may assume that G = Q. Suppose that G has an A-invariant normal subgroup N such
that 1 < N < G. By induction on |G|, we may assume that N = 〈CN (x) : x ∈ A \ {1}〉 and
G/N = 〈CG/N (x) : x ∈ A \ {1}〉. Since A acts coprimely, CG/N (x) = CG(x)N/N . Hence,

G = 〈CG(x)N : x ∈ A \ {1}〉 = 〈CG(x) : x ∈ A \ {1}〉.

Therefore, we may assume that G is elementary abelian and A acts irreducibly. By Schur’s Lemma,
the endomorphism ring E of the simple FqA-module G is a finite division algebra, so E is a field. In
particular, the multiplicative group of E is cyclic. Hence, A cannot act faithfully on G. Thus, there
exists x ∈ A \ {1} such that G = CG(x).

The next result is not needed in the sequel.

Proposition 4. Let G be p-solvable for some prime divisor p of |G|. Then G is p-isolated if and only
if Op(G) = 1 and the Sylow p-subgroups are cyclic or quaternion groups.

Proof. Suppose first that Op(G) = 1 and the Sylow p-subgroups of G are cyclic or quaternion groups.
These p-groups have only one subgroup of order p. Hence, S ∼ T if and only if S ∩T 6= 1. Since Op(G)
is the intersection of all Sylow p-subgroups, there must exist S, T ∈ Sylp(G) such that S ∩ T = 1. In
particular, G is p-isolated (note that we do not need the p-solvability of G).

Now assume conversely that G is p-isolated. Then obviously Op(G) = 1. Let N be a minimal normal
subgroup of G. Since G is p-solvable, N is a p′-group. By induction on |G|, we may that G/N is not
p-isolated. Let H be the stabilizer of a ∼-class of G. Then there exist S ∈ Sylp(H) and T ∈ Sylp(G)
such that H ∩ T = 1, but (SN ∩ TN)/N = SN/N ∩ TN/N 6= 1. Let S0 ≤ S and T0 ≤ T with
SN ∩ TN = S0N = T0N . If N ≤ H, then we obtain the contradiction

H ∩ T ≥ S0N ∩ T = T0N ∩ T ≥ T0 > 1.

Hence, N * H. Let q be a prime divisor of |N : N ∩H|. Since the number of Sylow q-subgroups of N
divides the p′-number |N |, there exists a S-invariant Sylow q-subgroup Q 6= 1 of N . Then S normalizes
Q0 := Q ∩H and Q1 := NQ(Q0)/Q0 6= 1. By Lemma 2, CQ(x) = CG(x) ∩Q ≤ H ∩Q = Q0 for every
x ∈ S \ {1}. Since the action of S on Q1 is coprime, CQ1(x) = 1. By Lemma 3, every abelian subgroup
of S is cyclic. This implies the claim as is well-known.

If G is a non-abelian simple group with a cyclic Sylow p-subgroup P , then NG(P ) is strongly p-
embedded by a theorem of Blau [5]. In this situation the ∼-classes are singletons, i. e. P is a trivial
intersection set. Note that by Brauer–Suzuki there are no simple groups with a cyclic or quaternion
Sylow 2-subgroup. Bender [4] has classified all 2-isolated groups. In general, the p-isolated groups are
determined in principle via the classification of finite simple groups (see [16, Theorem 6.4]).
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Lemma 5. Let G be p-isolated with normal subgroups N,M E G such that p divides |N | and |M |.
Then p divides |N ∩M |.

Proof. Let H < G be strongly p-embedded and S ∈ Sylp(H) ⊆ Sylp(G). Then S ∩ N 6= 1 6= S ∩M
by hypothesis. By way of contradiction, suppose that N ∩M is a p′-group. Then [S ∩ N,S ∩M ] ≤
S ∩N ∩M = 1 and S contains a non-cyclic abelian subgroup. By Lemma 3 and Lemma 2 we conclude
that

N ∩M = 〈CN∩M (x) : x ∈ S \ {1}〉 ≤ 〈NG(〈x〉) : x ∈ S \ {1}〉 ≤ H.

Since N normalizes (S ∩M)(N ∩M) ≤ H, we obtain N ≤ H again by Lemma 2. But now G =
NG(N) ≤ H, a contradiction.

Lemma 5 implies that every p-isolated group G has a unique minimal normal subgroup M(G) E G
such that p divides |M(G)|.

Two Sylow p-subgroups S and T of G have a tame intersection if NS(S ∩T ) and NT (S ∩T ) are Sylow
p-subgroups of NG(S ∩ T ).

Lemma 6. Let P,Q ∈ Sylp(G) be distinct such that P ∩ Q 6= 1. Then there exist Sylow p-subgroups
P = P0, P1, . . . , Pn = Q of G with the following properties:

(a) Pi−1 and Pi have a tame intersection Hi := Pi−1 ∩ Pi for i = 1, . . . , n,

(b) NG(Hi)/Hi is p-isolated for i = 1, . . . , n. Define X(Hi)/Hi := M(NG(Hi)/Hi),

(c) there exists xi ∈ Op(X(Hi)) such that P xi
i = Pi−1 for i = 1, . . . , n,

(d) P ∩Q = H1 ∩ . . . ∩Hn.

Proof. We argue by induction on |P : P ∩Q|. Suppose first that |P : P ∩Q| = p. Since P ∩Q is normal
in P = P0 and in Q = P1, the intersection H := H1 = P0 ∩ P1 is tame. Moreover, NG(H)/H has two
distinct Sylow subgroups P/H and Q/H of order p. Hence, NG(H)/H is p-isolated and

K/H := (NG(H) ∩NG(Q))/H

is strongly p-embedded in NG(H)/H by Lemma 1. An application of Lemma 2 with N := X(H)/H
yields

NG(H)/H = K/H ·Op(X(H)/H) = KOp(X(H))/H.

Since P,Q ≤ NG(H), there exists x ∈ NG(H) such that P x = Q. We may write x = yx1 with
y ∈ K ≤ NG(Q) and x1 ∈ Op(X(H)). It follows that P = Qx = Qx1 . Now all four conditions are
fulfilled.

For the induction step let H := P ∩ Q. Choose R,S ∈ Sylp(G) such that NP (H) ≤ NR(H) ∈
Sylp(NG(H)) and NQ(H) ≤ NS(H) ∈ Sylp(NG(H)). Then H < NP (H) ≤ P ∩ R and H < NQ(H) ≤
S ∩ Q. If H < R ∩ S, then we apply induction to the pairs (P,R), (R,S) and (S,Q) to obtain a
series of Sylow subgroups satisfying the four conditions. Hence, we may assume that H = R∩S in the
following. In particular, R and S have a tame intersection.

Suppose next that NR(H)/H ∼ NS(H)/H in NG(H)/H. Then there exist R = R0, R1, . . . , Rm = S ∈
Sylp(G) such that H < Ri−1 ∩ Ri for i = 1, . . . ,m. Again we apply induction to the pairs (Ri−1, Ri)
to obtain the desired sequence of Sylow p-subgroups. Therefore, we may assume that NR(H)/H 6∼
NS(H)/H. In particular, NG(H)/H is p-isolated. Let K/H be the stabilizer of the ∼-class containing
NS(H)/H. By Lemma 1, K/H is strongly p-embedded in NG(H)/H. As above we obtain NG(H) =
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KOp(X(H)) via Lemma 2. By Sylow’s theorem there exists x ∈ NG(H) such that NS(H)x = NR(H).
We write x = yx1 with y ∈ K and x1 ∈ Op(X(H)). Since NR(H)/H 6∼ NS(H)/H, also NR(H)/H 6∼
NSy(H)/H. In particular,

H ≤ Sx ∩ Sy ≤ NR(H) ∩NSy(H) = H

and Sx and Sy have a tame intersection. On the other hand, H < NR(H) ≤ R∩Sx. Since NS(H)/H ∼
NSy(H)/H, there exist Sy = S0, S1, . . . , Sn = S ∈ Sylp(G) such that NSi(H) ∈ Sylp(NG(H)) and H <
Si−1∩Si for i = 1, . . . , n. Finally, we apply induction to the pairs (P,R), (R,Sx), (S0, S1), . . . , (Sn−1, Sn),
(S,Q). The gap between Sx and S0 = Sy is bridged with the element x1 ∈ Op(X(H)) constructed
above.

Theorem 7 (Kondo). Let P be a Sylow p-subgroup of G. Let A,B ⊆ P and g ∈ G such that
Ag = B * {1}. Then there exist H1, . . . ,Hn ≤ P , x1, . . . , xn ∈ G and y ∈ NG(P ) with the following
properties for i = 1, . . . , n:

(a) NP (Hi) ∈ Sylp(NG(Hi)),

(b) NG(Hi)/Hi is p-isolated,

(c) xi ∈ Op(X(Hi)),

(d) Ax1...xi−1 ⊆ Hi,

(e) g = x1 . . . xny.

Proof. For H ≤ P we abbreviate KH := Op(X(H)) whenever NG(H)/H is p-isolated. By the unique-
ness of X(H) (Lemma 5), it is easy to see that Kx

H = KHx for x ∈ G. By hypothesis, A ⊆ P ∩P g−1 6= 1.
By Lemma 6, there exist P = P0, . . . , Pn = P g−1 ∈ Sylp(G) such that

• Pi−1 and Pi have a tame intersection Li := Pi−1 ∩ Pi for i = 1, . . . , n,

• NG(Li)/Li is p-isolated for i = 1, . . . , n.

• there exists yi ∈ KLi such that P yi
i = Pi−1 for i = 1, . . . , n,

• P ∩ P g−1
= L1 ∩ . . . ∩ Ln.

Define

xi := y
yi−1...y1
i , Hi := Lyi...y1

i (i = 1, . . . , n).

Then x1 . . . xi = yi . . . y1 and NG(Hi)/Hi is p-isolated for i = 1, . . . , n. Moreover, Hi ≤ P yi...y1
i = P0 =

P and
NP (Hi) = NPi(Li)

yi...y1 ∈ Sylp(NG(Li)
yi...y1) = Sylp(NG(Hi)),

since Li is a tame intersection. Next we note that Ax1...xi−1 ⊆ L
yi−1...y1
i = Lyi...y1

i = Hi and

xi = y
yi−1...y1
i ∈ K

yi−1...y1
Li

= KHi

for i = 1, . . . , n. Now P = P0 = P yn...y1
n = (P g−1

)x1...xn implies g = x1 . . . xny for some y ∈ NG(P ).
This completes the proof.

Lemma 8. Let H ≤ P ∈ Sylp(G) such that NP (H) ∈ Sylp(NG(H)). Let

N/CG(H) := Op(NG(H)/CG(H)).

Then the following assertions are equivalent:
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(a) H ∈ Sylp(N).

(b) CP (H) ≤ H and Op′p(NG(H)) = HCG(H).

Proof. Note that NP (H) ∈ Sylp(NG(H)) implies CP (H) ∈ Sylp(CG(H)). Suppose first that H ∈
Sylp(N). By the Schur–Zassenhaus Theorem, N = HCG(H) = H × Q where Q = Op′(CG(H)) ≤
Op′(NG(H)). Hence, CP (H) = Z(H) ≤ H. Since Op′(NG(H)) acts trivially on H, we also have
Op′(NG(H)) = Q. Now let M := Op′p(NG(H)). Then HQ/Q ≤M/Q and

N/CG(H) = HQ/CG(H) ≤M/CG(H) ≤ Op(NG(H)/CG(H)) = N/CG(H).

This shows that M = N = HCG(H).

Suppose conversely that (b) holds. Then again CG(H)H = H ×Q with Q = Op′(NG(H)). Since

|N/Q| = |N/CG(H)||CG(H)/Q| = |Op(NG(H)/CG(H))||Z(H)|

is a p-power, we obtainN/Q ≤ Op(NG(H)/Q), i. e.N ≤ Op′p(NG(H)) = HQ. Hence,H ∈ Sylp(N).

Theorem 9 (Kondo). Let P be a Sylow p-subgroup of G. Let A,B ⊆ P and g ∈ G such that
Ag = B * {1}. Then there exist H1, . . . ,Hn ≤ P , x1, . . . , xn ∈ G, c ∈ CG(A) and y ∈ NG(P ) with the
following properties for i = 1, . . . , n:

(a) NP (Hi) ∈ Sylp(NG(Hi)),

(b) CP (Hi) ≤ Hi,

(c) Op′p(NG(Hi)) = HiCG(Hi),

(d) NG(Hi)/Hi is p-isolated,

(e) xi ∈ Op(X(Hi)),

(f) Ax1...xi−1 ⊆ Hi,

(g) g = cx1 . . . xny.

Proof. We choose H1, . . . ,Hn ≤ P , x1, . . . , xn ∈ G and y ∈ NG(P ) as in Theorem 7. Suppose that (b)
or (c) does not hold for some H := Hi. Then by Lemma 8, |N/H| is divisible by p where N/CG(H) :=
Op(NG(H)/CG(H)). The definition of X(H) yields X(H) ≤ N . Since N/CG(H) is a p-group, Op(N) ≤
CG(H). Since

X(H)/Op(N) ∩X(H) ∼= X(H)Op(N)/Op(N) ≤ N/Op(N),

we conclude that
xi ∈ Op(X(H)) ≤ Op(N) ≤ CG(H).

Therefore, c := x
(x1...xi−1)

−1

i ∈ CG(H
(x1...xi−1)

−1

i ) ≤ CG(A) and g := cx1 . . . xi−1xi+1 . . . xny. We repeat
this process until every Hi fulfills the stated conditions.
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Since Op(X(Hi)) is generated by p′-elements, we may require that x1, . . . , xn are p′-elements. Alter-
natively, we may assume that xi ∈ X(Hi) are p-elements since by definition, X(Hi) is generated by
p-elements.

Theorem 9 generalizes Alperin’s original fusion theorem [1] as well as Goldschmidt’s extension [9]. A
similar result was obtained by Puig [14] (see also [15, Chapter 5]). A readable account of the fusion
theorem for fusion systems can be found in [7, Theorem 4.51]. Some more specific fusion theorems
were given in [10, (9.1)] and [17, Theorem 3.3]. Alperin and Gorenstein [3] developed a fusion theorem
using an abstract conjugacy functor. A graph-theoretical proof of their result was provided by Stell-
macher [18]. In the latter paper and in [13] it was shown which subgroups need to appear in every fusion
theorem. Dolan [8] has proved that the number of elements x1, . . . , xn used in the fusion theorem can
be bounded in terms of the nilpotency class of a Sylow p-subgroup. Using his techniques, Collins [6]
gave another proof of the fusion theorem. Finally, Alperin [2] derived a fusion theorem where the or-
ders |CP (Hi)| are unimodal. A corresponding version for fusion systems was obtained by Lynd [12,
Proposition 3.1].
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