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Disclaimer: I won’t spoil how to solve Rubik’s cube!
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Mechanics

The (3× 3× 3) Rubik’s cube was invented by E. Rubik in 1974.

A move is a rotation of one of the six faces by 90◦, 180◦ or 270◦:

We don’t need rotations of “middle layers“ since this has the same
effect as turning the adjacent faces in the opposite direction.
The centers are fixed now (top → white, front → orange, . . . ).

How “big” is the cube?
How many states can we reach by applying an arbitrary number of moves?
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Facelets

Idea: Enumerate the 6 · 8 = 48 edge and corner facelets:

U

D

L RF B

1 2 3

4 5

6 7 8

9 10 11

12 13

14 15 16

17 18 19

20 21

22 23 24

25 26 27

28 29

30 31 32

33 34 35

36 37

38 39 40

41 42 43

44 45

46 47 48

Every move becomes a permutation in S48, e. g.
a clockwise 90◦ turn of the front face:

f :=(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)(17, 19, 24, 22)(18, 21, 23, 30).
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The cube group

Similarly, we define b (back), l (left), r (right), u (up), d (down).

Rubik’s group is
G := 〈f, b, l, r, u, d〉 ≤ S48.

Consequence: The cube has at most 48! ≈ 1061 states.
We can do much better.
Is G transitive on the 48 facelets?
No: The 8 · 3 = 24 corner facelets and the 12 · 2 = 24 edge facelets
form orbits ΩC and ΩE .

ΩC : ΩE :
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Action on ΩC

Hence,
G ≤ Sym(ΩC)× Sym(ΩE) ∼= S2

24

and |G| ≤ (24!)2 ≈ 1048.

Is the action of G on ΩC primitive?
No: the three facelets of a corner cubie form a block ∆ in ΩC .
We can permute the three facelets of ∆ only cyclically:

−→ −→
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Action on ΩE

From the lecture:

This gives a homomorphism G→ C3 o S8 ≤ S24.
Similarly, the two facelets of an edge cubie form a block of ΩE .
Therefore,

G ≤ C3 o S8 × C2 o S12
and |G| ≤ 388! · 21212! ≈ 5 · 1020.
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Action on corner cubies

Now we investigate the action of G on the set C of the eight corner
cubies.

Let ϕC : G→ Sym(C) the corresponding homomorphism.
Consider the move sequence x := u ◦ r ◦ f ∈ G.

f

r u

With suitable labeling: ϕC(x) = (1, 2)(3, 4, 5, 6, 7)
and ϕC(x5) = (1, 2).
By Exercise 31, S8 is generated by adjacent transpositions.
Hence, ϕC(G) = S8.
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Action on edge cubies

It remains to compute the order of GC := Ker(ϕC).

Let ϕE : G→ Sym(E) be the action on the set E of the 12 edge cubies.
Each of the six generators of G is a 4-cycle on C and on E .
It follows that sgn(ϕC(g)) = sgn(ϕE(g)) for all g ∈ G.
In particular, ϕE(GC) ⊆ A12.
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Action on edge cubies

Consider the commutator y := [f, r] = frf−1r−1 ∈ G.

With suitable labeling we compute

ϕC(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).

It follows that y2 ∈ GC .
Similarly,

ϕE(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4).

Therefore, (1, 4, 5) = ϕE(y2) ∈ ϕE(GC).
By Exercise 31, A12 = 〈(1, 2, 3), . . . , (10, 11, 12)〉 ⊆ ϕE(GC) ⊆ A12.
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Edge flips (computed)

It remains to investigate N := Ker(ϕC) ∩Ker(ϕE) EG.

This is the set of states where each cubie is in the right spot,
but might be flipped (edge) or twisted (corner).
We have N = N3 ⊕N2 ≤ C8

3 × C12
2 (in fact: F(G) = N).

A generator of G is a product of two disjoint 4-cycles on ΩE

and therefore an even permutation.
For this reason it is impossible to flip only one edge
and leave everything else fixed.
Hence, |N2| ≤ 211.
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Edge flips (realized)

On the other hand, we can flip just two (adjacent) edges:

r2f2r−1frfr2b−1u−1f−1ufb = (13 moves)

These “2-flips” generate all states with an even number of flips.
This shows |N2| = 211.
The group N2 o S12 ≤ G is the reflection group
with Dynkin diagram D12.
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Corner orientations (computed)

Let g ∈ G be a generator corresponding to

(t, π) ∈ 〈ζ〉C o Sym(C) ∼= C3 o S8.

Since g has order 4, we obtain

1 = (t, π)4 = (t · πt, π2) ∗ (t, π) ∗ (t, π) = (t · πt · π2
t, π3) ∗ (t, π)

= (t · πt · π2
t · π3

t, π4).

In particular,

1 =
∏
c∈C

(t πt π
2
t π

3
t)(c) =

∏
c∈C

t(c)
∏
c∈C

t(π
−1
c)
∏
c∈C

t(π
−2
c)
∏
c∈C

t(π
−3
c)

=
(∏
c∈C

t(c)
)4

=
∏
c∈C

t(c).
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Corner orientations (computed)

If (t, π), (t′, π′) ∈ 〈ζ〉C o Sym(C) such that
∏
t(c) =

∏
t′(c) = 1,

then also ∏
c∈C

(t · πt′)(c) =
∏
c∈C

t(c)
∏
c∈C

t′(π
−1
c) = 1.

Consequently, every g ∈ G corresponds to some (t, π) with
∏
t(c) = 1.

Interpretation: It is impossible to twist a single corner cubie without
changing the rest.
In particular, |N3| ≤ 37.
This can also be visualized as follows.
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Corner orientations (visualized)

Fix an orientation of the corner facelets:

U

D

L RF B

+ -

- +
- +

+ -

0 0

0 0

- +

+ -

0 0

0 0
+ -

- +

Every move causes one of the following effects:
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Corner orientations (visualized)

I No twists are introduced (move f).

I Two positive twists and two negative-twists are introduced (move r).
I Three positive twists or three negative twists are introduced (move b).

U

D

L RF B

+ -

- +
- +

+ -

0 0

0 0

- +

+ -

0 0

0 0
+ -

- +

=⇒ The sum of all twists is always 0 modulo 3.
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Corner orientations (realized)

On the other hand, we can twist just two (adjacent) corners:

u2bu2b−1lu2f−1u2fl2b−1lb = (13 moves)

This shows |N3| = 37.
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The order of G

We have proved:

Theorem
An element (t, π, t′, π′) ∈ (C3 o S8)× (C2 o S12) belongs to G if and only if

sgn(π) = sgn(π′),
∏
c∈C

t(c) =
∏
e∈E

t′(e) = 1.

Hence, the index of G in (C3 o S8)× (C2 o S12) is 12 and

|G| = 227 · 314 · 53 · 72 · 11 = 43.252.003.274.489.856.000.

Interpretation: After taking apart and reassembling the cubies randomly,
the cube is “solvable“ in only 1 out of 12 cases.
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Consequences

G ∼= (C7
3 × C11

2 ) o (A8 ×A12) o C2. Composition factors:
C2 (12 times), C3 (7 times), A8, A12.

Z(G) = Φ(G) = 〈s〉 ∼= C2 where s is the superflip:
(all edges are flipped)
|G : G′| = 2.
exp(G) = 55.440 (largest element order is 1260).
A chief series: 1 E Z(G) EN2 EN EGC EG′ EG.
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Burnside’s Lemma

Some states of the cube are symmetric to each other:

A solution (with n moves) of one state can be transformed
into a solution (with n moves) of any symmetric state.
Applying Burnside’s Lemma with the symmetry group S4 × C2

of the cube (in R3) yields:

Theorem
Up to symmetries the cube has 901.083.404.981.813.616 states.

Using the “symmetry” g ↔ g−1, we get down to 450.541.810.590.509.978.
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An upper bound

Optimal solutions
How many moves are required to solve any given cube state?

Theorem
Some states require at least 18 moves.

Proof.

Let sn be the number of states that can be reached with exactly n
moves.
Obviously, s0 = 1 and s1 = 3 · 6 = 18.
On the second move, it makes no sense to turn the same face again.
This leaves 15 moves.
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An upper bound

Proof (continued).
If the first two moves turn opposite faces, their order does not matter.
Hence, s2 = 15s1 − 9 · 3 = 35.

Now suppose that n− 1 moves have been carried out.
If the next two moves turn opposite faces, both should differ from face
n− 1. So we reach at most 18sn−1 new states in this case.
Otherwise, we reach at most 12sn new states. Altogether,

sn+1 ≤ 12sn + 18sn−1.

Solving the recurrence yields
∑17

n=0 sn < |G|.
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God’s number is 20

Theorem (Rokicki–Kociemba–Davidson–Dethridge, 2010)
Every state of the cube can be solved with at most 20 moves and the
superflip cannot be solved with less than 20 moves.

Proof.
Sponsored by Google. More info at https://www.cube20.org.

Most states require 18 moves and the average is slightly below 18.
If only quarter turn moves are allowed, God’s number increases to 26.
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Algorithms

Finding an optimal solution is NP-complete (2018).

Korf’s algorithm finds an optimal solution, but can take hours for a
single state.
Kociemba’s algorithm finds “short” solutions (less than 20 moves on av-
erage) within seconds. Implementation: http://kociemba.org/cube.
htm

There is a zero-knowledge AI algorithm in the spirit of AlphaZero which
finds solution with 30 quarter turn moves on average.
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Human achievements

There are frequent international speedcubing competitions.
Some official world records:

Fastest solve: 5.53s on average!
Fewest moves: 21 on average!
Blindfold: 59 cubes solved in 59:46 minutes including memorization
time!
Three cubes solved while juggling them!

Visit: https://www.worldcubeassociation.org,
www.speedsolving.com
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Variations

Is the following cube any different?

Yes, but not so much harder to solve (→ Christmas exercise!).
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Variations

The invention of n× n× n-cubes:

n Inventor Product name Year

2 Larry D. Nichols Pocket Cube 1970
3 Ernő Rubik Rubik’s Cube 1974
4 Péter Sebestény Rubik’s Revence 1981
5 Udo Krell Professor’s Cube 1981
6 Panagiotis Verdes V-Cube 6 2004
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Variations

For n ≥ 7 there is a fundamental design problem:
√

2

√
2

n
√

2n > n+ 2
√

2

The red square falls off!
Remedy:

V-Cube 9: ShengShou 9:
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Endless other variations

Square-1 Skewb Master Ghost cube Pyraminx

Skewb Diamond Skewb Ultimate Gigaminx Hypercube

Visit: www.thecubicle.com, ruwix.com, www.cubikon.de
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With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik’s group can
be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code
f:=(6,25,43,16)...;

G:=Group(f,b,l,r,u,d);
Order(G);
G=Group(u*l,f*r*b); #returns true

Interpretation: Every state can be solved using only the two sequences ul
and frb (never turning the down face)!
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With the computer. . .

GAP-Code
orb:=Orbits(G);

corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
s:=ZG.1; #first generator = superflip
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With the computer. . .

GAP-Code
FG:=FreeGroup("f","b","l","r","u","d");

hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); #how long did it take?
BrowseRubikCube(); #interactive mode
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My personal advise

The 2× 2× 2-cube or the Pyraminx are fair Christmas presents
(can even be solved by luck).

Buy a “stickerless speedcube” instead of the original Rubik’s brand.
Don’t buy n× n× n-cubes with n > 5 (uninteresting
and tedious to solve).
If you can solve the 3× 3× 3, consider the Ghost cube
as a mental challenge.
Don’t waste too much time with Rubik (as I did preparing these slides).

Merry Christmas!
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