Rubik's Group

Christmas Lecture on group theory

Disclaimer: I won't spoil how to solve Rubik's cube!

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .
- A move is a rotation of one of the six faces by $90^{\circ}, 180^{\circ}$ or 270° :

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .
- A move is a rotation of one of the six faces by $90^{\circ}, 180^{\circ}$ or 270° :

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .
- A move is a rotation of one of the six faces by $90^{\circ}, 180^{\circ}$ or 270° :

- We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .
- A move is a rotation of one of the six faces by $90^{\circ}, 180^{\circ}$ or 270° :

- We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.
- The centers are fixed now (top \rightarrow white, front \rightarrow orange, ...).

Mechanics

- The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974 .
- A move is a rotation of one of the six faces by $90^{\circ}, 180^{\circ}$ or 270° :

- We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.
- The centers are fixed now (top \rightarrow white, front \rightarrow orange, ...).

How "big" is the cube?

How many states can we reach by applying an arbitrary number of moves?

Facelets

- Idea: Enumerate the $6 \cdot 8=48$ edge and corner facelets:

Facelets

- Idea: Enumerate the $6 \cdot 8=48$ edge and corner facelets:

- Every move becomes a permutation in S_{48}, e.g. a clockwise 90° turn of the front face:

$$
f:=(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,30) .
$$

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$
G:=\langle f, b, l, r, u, d\rangle \leq S_{48} .
$$

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$
G:=\langle f, b, l, r, u, d\rangle \leq S_{48}
$$

- Consequence: The cube has at most 48 ! $\approx 10^{61}$ states. We can do much better.

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$
G:=\langle f, b, l, r, u, d\rangle \leq S_{48} .
$$

- Consequence: The cube has at most 48 ! $\approx 10^{61}$ states. We can do much better.
- Is G transitive on the 48 facelets?

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$
G:=\langle f, b, l, r, u, d\rangle \leq S_{48} .
$$

- Consequence: The cube has at most 48 ! $\approx 10^{61}$ states. We can do much better.
- Is G transitive on the 48 facelets?
- No: The $8 \cdot 3=24$ corner facelets and the $12 \cdot 2=24$ edge facelets form orbits Ω_{C} and Ω_{E}.

$\Omega_{E}:$

Action on Ω_{C}

- Hence,

$$
G \leq \operatorname{Sym}\left(\Omega_{C}\right) \times \operatorname{Sym}\left(\Omega_{E}\right) \cong S_{24}^{2}
$$

$$
\text { and }|G| \leq(24!)^{2} \approx 10^{48} .
$$

Action on Ω_{C}

- Hence,

$$
G \leq \operatorname{Sym}\left(\Omega_{C}\right) \times \operatorname{Sym}\left(\Omega_{E}\right) \cong S_{24}^{2}
$$

and $|G| \leq(24!)^{2} \approx 10^{48}$.

- Is the action of G on Ω_{C} primitive?

Action on Ω_{C}

- Hence,

$$
G \leq \operatorname{Sym}\left(\Omega_{C}\right) \times \operatorname{Sym}\left(\Omega_{E}\right) \cong S_{24}^{2}
$$

and $|G| \leq(24!)^{2} \approx 10^{48}$.

- Is the action of G on Ω_{C} primitive?
- No: the three facelets of a corner cubie form a block Δ in Ω_{C}.

Action on Ω_{C}

- Hence,

$$
G \leq \operatorname{Sym}\left(\Omega_{C}\right) \times \operatorname{Sym}\left(\Omega_{E}\right) \cong S_{24}^{2}
$$

and $|G| \leq(24!)^{2} \approx 10^{48}$.

- Is the action of G on Ω_{C} primitive?
- No: the three facelets of a corner cubie form a block Δ in Ω_{C}.
- We can permute the three facelets of Δ only cyclically:

Action on Ω_{E}

From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H:=\left\{g \in G:{ }^{g} \Delta=\Delta\right\}$ und sei $\varphi: H \rightarrow \operatorname{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma:=\left\{{ }^{g} \Delta: g \in G\right\}$ und sei $\psi: G \rightarrow \operatorname{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H) \imath \psi(G)$ isomorph.

Action on Ω_{E}

From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H:=\left\{g \in G:{ }^{g} \Delta=\Delta\right\}$ und sei $\varphi: H \rightarrow \operatorname{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma:=\left\{{ }^{g} \Delta: g \in G\right\}$ und sei $\psi: G \rightarrow \operatorname{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H)<\psi(G)$ isomorph.

- This gives a homomorphism $G \rightarrow C_{3} \imath S_{8} \leq S_{24}$.

Action on Ω_{E}

From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H:=\left\{g \in G:{ }^{g} \Delta=\Delta\right\}$ und sei $\varphi: H \rightarrow \operatorname{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma:=\left\{{ }^{g} \Delta: g \in G\right\}$ und sei $\psi: G \rightarrow \operatorname{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H)\} \psi(G)$ isomorph.

- This gives a homomorphism $G \rightarrow C_{3}$ 亿 $S_{8} \leq S_{24}$.
- Similarly, the two facelets of an edge cubie form a block of Ω_{E}.

Action on Ω_{E}

From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H:=\left\{g \in G:{ }^{g} \Delta=\Delta\right\}$ und sei $\varphi: H \rightarrow \operatorname{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma:=\left\{{ }^{g} \Delta: g \in G\right\}$ und sei $\psi: G \rightarrow \operatorname{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H) \imath \psi(G)$ isomorph.

- This gives a homomorphism $G \rightarrow C_{3}$ 亿 $S_{8} \leq S_{24}$.
- Similarly, the two facelets of an edge cubie form a block of Ω_{E}.
- Therefore,

$$
\left.G \leq C_{3} \imath S_{8} \times C_{2}\right\} S_{12}
$$

$$
\text { and }|G| \leq 3^{8} 8!\cdot 2^{12} 12!\approx 5 \cdot 10^{20}
$$

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

- With suitable labeling: $\varphi_{C}(x)=(1,2)(3,4,5,6,7)$ and $\varphi_{C}\left(x^{5}\right)=(1,2)$.

Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{C}: G \rightarrow \operatorname{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x:=u \circ r \circ f \in G$.

- With suitable labeling: $\varphi_{C}(x)=(1,2)(3,4,5,6,7)$ and $\varphi_{C}\left(x^{5}\right)=(1,2)$.
- By Exercise 31, S_{8} is generated by adjacent transpositions. Hence, $\varphi_{C}(G)=S_{8}$.

Action on edge cubies

- It remains to compute the order of $G_{C}:=\operatorname{Ker}\left(\varphi_{C}\right)$.

Action on edge cubies

- It remains to compute the order of $G_{C}:=\operatorname{Ker}\left(\varphi_{C}\right)$.
- Let $\varphi_{E}: G \rightarrow \operatorname{Sym}(\mathcal{E})$ be the action on the set \mathcal{E} of the 12 edge cubies.

Action on edge cubies

- It remains to compute the order of $G_{C}:=\operatorname{Ker}\left(\varphi_{C}\right)$.
- Let $\varphi_{E}: G \rightarrow \operatorname{Sym}(\mathcal{E})$ be the action on the set \mathcal{E} of the 12 edge cubies.
- Each of the six generators of G is a 4 -cycle on \mathcal{C} and on \mathcal{E}.

Action on edge cubies

- It remains to compute the order of $G_{C}:=\operatorname{Ker}\left(\varphi_{C}\right)$.
- Let $\varphi_{E}: G \rightarrow \operatorname{Sym}(\mathcal{E})$ be the action on the set \mathcal{E} of the 12 edge cubies.
- Each of the six generators of G is a 4 -cycle on \mathcal{C} and on \mathcal{E}.
- It follows that $\operatorname{sgn}\left(\varphi_{C}(g)\right)=\operatorname{sgn}\left(\varphi_{E}(g)\right)$ for all $g \in G$.

Action on edge cubies

- It remains to compute the order of $G_{C}:=\operatorname{Ker}\left(\varphi_{C}\right)$.
- Let $\varphi_{E}: G \rightarrow \operatorname{Sym}(\mathcal{E})$ be the action on the set \mathcal{E} of the 12 edge cubies.
- Each of the six generators of G is a 4 -cycle on \mathcal{C} and on \mathcal{E}.
- It follows that $\operatorname{sgn}\left(\varphi_{C}(g)\right)=\operatorname{sgn}\left(\varphi_{E}(g)\right)$ for all $g \in G$.
- In particular, $\varphi_{E}\left(G_{C}\right) \subseteq A_{12}$.

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$
\varphi_{C}(y)=(1,2,3,4)(4,3,5,6)(1,4,3,2)(4,6,5,3)=(1,4)(3,5) .
$$

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$
\varphi_{C}(y)=(1,2,3,4)(4,3,5,6)(1,4,3,2)(4,6,5,3)=(1,4)(3,5) .
$$

- It follows that $y^{2} \in G_{C}$.

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$
\varphi_{C}(y)=(1,2,3,4)(4,3,5,6)(1,4,3,2)(4,6,5,3)=(1,4)(3,5) .
$$

- It follows that $y^{2} \in G_{C}$.
- Similarly,

$$
\varphi_{E}(y)=(1,2,3,4)(4,5,6,7)(1,4,3,2)(4,7,6,5)=(1,5,4) .
$$

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$
\varphi_{C}(y)=(1,2,3,4)(4,3,5,6)(1,4,3,2)(4,6,5,3)=(1,4)(3,5) .
$$

- It follows that $y^{2} \in G_{C}$.
- Similarly,

$$
\varphi_{E}(y)=(1,2,3,4)(4,5,6,7)(1,4,3,2)(4,7,6,5)=(1,5,4) .
$$

- Therefore, $(1,4,5)=\varphi_{E}\left(y^{2}\right) \in \varphi_{E}\left(G_{C}\right)$.

Action on edge cubies

- Consider the commutator $y:=[f, r]=f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$
\varphi_{C}(y)=(1,2,3,4)(4,3,5,6)(1,4,3,2)(4,6,5,3)=(1,4)(3,5) .
$$

- It follows that $y^{2} \in G_{C}$.
- Similarly,

$$
\varphi_{E}(y)=(1,2,3,4)(4,5,6,7)(1,4,3,2)(4,7,6,5)=(1,5,4)
$$

- Therefore, $(1,4,5)=\varphi_{E}\left(y^{2}\right) \in \varphi_{E}\left(G_{C}\right)$.
- By Exercise 31, $A_{12}=\langle(1,2,3), \ldots,(10,11,12)\rangle \subseteq \varphi_{E}\left(G_{C}\right) \subseteq A_{12}$.

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N=N_{3} \oplus N_{2} \leq C_{3}^{8} \times C_{2}^{12}$ (in fact: $\mathrm{F}(G)=N$).

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N=N_{3} \oplus N_{2} \leq C_{3}^{8} \times C_{2}^{12}$ (in fact: $\mathrm{F}(G)=N$).
- A generator of G is a product of two disjoint 4-cycles on Ω_{E} and therefore an even permutation.

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N=N_{3} \oplus N_{2} \leq C_{3}^{8} \times C_{2}^{12}$ (in fact: $\mathrm{F}(G)=N$).
- A generator of G is a product of two disjoint 4 -cycles on Ω_{E} and therefore an even permutation.
- For this reason it is impossible to flip only one edge and leave everything else fixed.

Edge flips (computed)

- It remains to investigate $N:=\operatorname{Ker}\left(\varphi_{C}\right) \cap \operatorname{Ker}\left(\varphi_{E}\right) \unlhd G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N=N_{3} \oplus N_{2} \leq C_{3}^{8} \times C_{2}^{12}$ (in fact: $\mathrm{F}(G)=N$).
- A generator of G is a product of two disjoint 4 -cycles on Ω_{E} and therefore an even permutation.
- For this reason it is impossible to flip only one edge and leave everything else fixed.
- Hence, $\left|N_{2}\right| \leq 2^{11}$.

Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

$$
r^{2} f^{2} r^{-1} f r f r^{2} b^{-1} u^{-1} f^{-1} u f b=
$$

(13 moves)

Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

$$
r^{2} f^{2} r^{-1} f r f r^{2} b^{-1} u^{-1} f^{-1} u f b=
$$

(13 moves)

- These "2-flips" generate all states with an even number of flips.

Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

$$
r^{2} f^{2} r^{-1} f r f r^{2} b^{-1} u^{-1} f^{-1} u f b=
$$

(13 moves)

- These "2-flips" generate all states with an even number of flips.
- This shows $\left|N_{2}\right|=2^{11}$.

Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

$$
r^{2} f^{2} r^{-1} f r f r^{2} b^{-1} u^{-1} f^{-1} u f b=
$$

(13 moves)

- These "2-flips" generate all states with an even number of flips.
- This shows $\left|N_{2}\right|=2^{11}$.
- The group $N_{2} \rtimes S_{12} \leq G$ is the reflection group with Dynkin diagram D_{12}.

Corner orientations (computed)

- Let $g \in G$ be a generator corresponding to

$$
(t, \pi) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_{3} 乙 S_{8} .
$$

Corner orientations (computed)

- Let $g \in G$ be a generator corresponding to

$$
(t, \pi) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_{3}\left\langle S_{8} .\right.
$$

- Since g has order 4, we obtain

$$
\begin{aligned}
1 & =(t, \pi)^{4}=\left(t \cdot \pi^{2} t, \pi^{2}\right) *(t, \pi) *(t, \pi)=\left(t \cdot \pi^{\pi} t \cdot \pi^{2} t, \pi^{3}\right) *(t, \pi) \\
& =\left(t \cdot \pi^{\pi} t \cdot \pi^{2} t \cdot \pi^{3} t, \pi^{4}\right)
\end{aligned}
$$

Corner orientations (computed)

- Let $g \in G$ be a generator corresponding to

$$
(t, \pi) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_{3}\left\langle S_{8} .\right.
$$

- Since g has order 4, we obtain

$$
\begin{aligned}
& 1=(t, \pi)^{4}=(t \cdot \pi \\
&=\left(t \cdot \pi^{2}\right) *(t, \pi) *(t, \pi)=\left(t \cdot \pi^{\pi} t \cdot \pi^{2} t, \pi^{3}\right) *(t, \pi) \\
&\left.t, \pi^{4}\right)
\end{aligned}
$$

- In particular,

$$
\begin{aligned}
& 1=\prod_{c \in \mathcal{C}}\left(t^{\pi} t^{\pi^{2}} t^{\pi^{3}} t\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t\left({\left.\pi^{-1} c\right)}_{c)}^{c \in \mathcal{C}} \mid\right. \\
&\left.=\left(\prod_{c \in \mathcal{C}} t(c)\right)^{-2} c\right) \prod_{c \in \mathcal{C}} t\left({\pi^{-3}}^{\pi^{-3}}\right) \\
& c \in \mathcal{C}
\end{aligned}
$$

Corner orientations (computed)

- If $(t, \pi),\left(t^{\prime}, \pi^{\prime}\right) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$ such that $\prod t(c)=\prod t^{\prime}(c)=1$, then also

$$
\prod_{c \in \mathcal{C}}\left(t \cdot{ }^{\pi} t^{\prime}\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t^{\prime}\left(\pi^{-1} c\right)=1 .
$$

Corner orientations (computed)

- If $(t, \pi),\left(t^{\prime}, \pi^{\prime}\right) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$ such that $\prod t(c)=\prod t^{\prime}(c)=1$, then also

$$
\prod_{c \in \mathcal{C}}\left(t \cdot{ }^{\pi} t^{\prime}\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t^{\prime}\left(\pi^{-1} c\right)=1
$$

- Consequently, every $g \in G$ corresponds to some (t, π) with $\prod t(c)=1$.

Corner orientations (computed)

- If $(t, \pi),\left(t^{\prime}, \pi^{\prime}\right) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$ such that $\prod t(c)=\prod t^{\prime}(c)=1$, then also

$$
\prod_{c \in \mathcal{C}}\left(t \cdot{ }^{\pi} t^{\prime}\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t^{\prime}\left(\pi^{-1} c\right)=1 .
$$

- Consequently, every $g \in G$ corresponds to some (t, π) with $\prod t(c)=1$.
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.

Corner orientations (computed)

- If $(t, \pi),\left(t^{\prime}, \pi^{\prime}\right) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$ such that $\Pi t(c)=\prod t^{\prime}(c)=1$, then also

$$
\prod_{c \in \mathcal{C}}\left(t \cdot{ }^{\pi} t^{\prime}\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t^{\prime}\left(\pi^{-1} c\right)=1
$$

- Consequently, every $g \in G$ corresponds to some (t, π) with $\prod t(c)=1$.
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.
- In particular, $\left|N_{3}\right| \leq 3^{7}$.

Corner orientations (computed)

- If $(t, \pi),\left(t^{\prime}, \pi^{\prime}\right) \in\langle\zeta\rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$ such that $\prod t(c)=\prod t^{\prime}(c)=1$, then also

$$
\prod_{c \in \mathcal{C}}\left(t \cdot{ }^{\pi} t^{\prime}\right)(c)=\prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t^{\prime}\left(\pi^{-1} c\right)=1
$$

- Consequently, every $g \in G$ corresponds to some (t, π) with $\prod t(c)=1$.
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.
- In particular, $\left|N_{3}\right| \leq 3^{7}$.
- This can also be visualized as follows.

Corner orientations (visualized)

Fix an orientation of the corner facelets:

Corner orientations (visualized)

Fix an orientation of the corner facelets:

Every move causes one of the following effects:

Corner orientations (visualized)

- No twists are introduced (move f).

Corner orientations (visualized)

- No twists are introduced (move f).
- Two positive twists and two negative-twists are introduced (move r).

Corner orientations (visualized)

- No twists are introduced (move f).
- Two positive twists and two negative-twists are introduced (move r).
- Three positive twists or three negative twists are introduced (move b).

Corner orientations (visualized)

- No twists are introduced (move f).
- Two positive twists and two negative-twists are introduced (move r).
- Three positive twists or three negative twists are introduced (move b).

\Longrightarrow The sum of all twists is always 0 modulo 3 .

Corner orientations (realized)

- On the other hand, we can twist just two (adjacent) corners:

(13 moves)

Corner orientations (realized)

- On the other hand, we can twist just two (adjacent) corners:

$$
u^{2} b u^{2} b^{-1} l u^{2} f^{-1} u^{2} f l^{2} b^{-1} l b=
$$

(13 moves)

- This shows $\left|N_{3}\right|=3^{7}$.

The order of G

We have proved:

The order of G

We have proved:
Theorem
An element $\left(t, \pi, t^{\prime}, \pi^{\prime}\right) \in\left(C_{3} \imath S_{8}\right) \times\left(C_{2} \imath S_{12}\right)$ belongs to G if and only if

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{\prime}\right), \quad \prod_{c \in \mathcal{C}} t(c)=\prod_{e \in \mathcal{E}} t^{\prime}(e)=1 .
$$

Hence, the index of G in $\left(C_{3}\right.$ \ $\left.S_{8}\right) \times\left(C_{2}\right.$ 乙 $\left.S_{12}\right)$ is 12 and

$$
|G|=2^{27} \cdot 3^{14} \cdot 5^{3} \cdot 7^{2} \cdot 11=43.252 .003 .274 .489 .856 .000
$$

The order of G

We have proved：

Theorem

An element $\left(t, \pi, t^{\prime}, \pi^{\prime}\right) \in\left(C_{3}\right.$ 乙 $\left.S_{8}\right) \times\left(C_{2}\right.$ 乙 $\left.S_{12}\right)$ belongs to G if and only if

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{\prime}\right), \quad \prod_{c \in \mathcal{C}} t(c)=\prod_{e \in \mathcal{E}} t^{\prime}(e)=1
$$

Hence，the index of G in $\left(C_{3} \backslash S_{8}\right) \times\left(C_{2}\right.$ 乙 $\left.S_{12}\right)$ is 12 and

$$
|G|=2^{27} \cdot 3^{14} \cdot 5^{3} \cdot 7^{2} \cdot 11=43.252 .003 .274 .489 .856 .000
$$

Interpretation：After taking apart and reassembling the cubies randomly， the cube is＂solvable＂in only 1 out of 12 cases．

Consequences

- $G \cong\left(C_{3}^{7} \times C_{2}^{11}\right) \rtimes\left(A_{8} \times A_{12}\right) \rtimes C_{2}$. Composition factors: C_{2} (12 times), C_{3} (7 times), A_{8}, A_{12}.

Consequences

- $G \cong\left(C_{3}^{7} \times C_{2}^{11}\right) \rtimes\left(A_{8} \times A_{12}\right) \rtimes C_{2}$. Composition factors: C_{2} (12 times), $C_{3}(7$ times $), A_{8}, A_{12}$.
- $\mathrm{Z}(G)=\Phi(G)=\langle s\rangle \cong C_{2}$ where s is the superflip: (all edges are flipped)

Consequences

- $G \cong\left(C_{3}^{7} \times C_{2}^{11}\right) \rtimes\left(A_{8} \times A_{12}\right) \rtimes C_{2}$. Composition factors: C_{2} (12 times), $C_{3}(7$ times $), A_{8}, A_{12}$.
- $\mathrm{Z}(G)=\Phi(G)=\langle s\rangle \cong C_{2}$ where s is the superflip: (all edges are flipped)

- $\left|G: G^{\prime}\right|=2$.

Consequences

- $G \cong\left(C_{3}^{7} \times C_{2}^{11}\right) \rtimes\left(A_{8} \times A_{12}\right) \rtimes C_{2}$. Composition factors: C_{2} (12 times), $C_{3}(7$ times $), A_{8}, A_{12}$.
- $\mathrm{Z}(G)=\Phi(G)=\langle s\rangle \cong C_{2}$ where s is the superflip: (all edges are flipped)
- $\left|G: G^{\prime}\right|=2$.
- $\exp (G)=55.440$ (largest element order is 1260).

Consequences

- $G \cong\left(C_{3}^{7} \times C_{2}^{11}\right) \rtimes\left(A_{8} \times A_{12}\right) \rtimes C_{2}$. Composition factors: C_{2} (12 times), C_{3} (7 times), A_{8}, A_{12}.
- $\mathrm{Z}(G)=\Phi(G)=\langle s\rangle \cong C_{2}$ where s is the superflip: (all edges are flipped)
- $\left|G: G^{\prime}\right|=2$.
- $\exp (G)=55.440$ (largest element order is 1260).
- A chief series: $1 \unlhd \mathrm{Z}(G) \unlhd N_{2} \unlhd N \unlhd G_{C} \unlhd G^{\prime} \unlhd G$.

Burnside's Lemma

- Some states of the cube are symmetric to each other:

Burnside's Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.

Burnside's Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group $S_{4} \times C_{2}$ of the cube (in \mathbb{R}^{3}) yields:

Burnside's Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group $S_{4} \times C_{2}$ of the cube (in \mathbb{R}^{3}) yields:

Theorem

Up to symmetries the cube has 901.083.404.981.813.616 states.

Burnside's Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group $S_{4} \times C_{2}$ of the cube (in \mathbb{R}^{3}) yields:

Theorem

Up to symmetries the cube has 901.083.404.981.813.616 states.
Using the "symmetry" $g \leftrightarrow g^{-1}$, we get down to 450.541.810.590.509.978.

An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

Proof.

- Let s_{n} be the number of states that can be reached with exactly n moves.

An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

Proof.

- Let s_{n} be the number of states that can be reached with exactly n moves.
- Obviously, $s_{0}=1$ and $s_{1}=3 \cdot 6=18$.

An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

Proof.

- Let s_{n} be the number of states that can be reached with exactly n moves.
- Obviously, $s_{0}=1$ and $s_{1}=3 \cdot 6=18$.
- On the second move, it makes no sense to turn the same face again. This leaves 15 moves.

An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_{2}=15 s_{1}-9 \cdot 3=3^{5}$.

An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_{2}=15 s_{1}-9 \cdot 3=3^{5}$.
- Now suppose that $n-1$ moves have been carried out.

An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_{2}=15 s_{1}-9 \cdot 3=3^{5}$.
- Now suppose that $n-1$ moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face $n-1$. So we reach at most $18 s_{n-1}$ new states in this case.

An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_{2}=15 s_{1}-9 \cdot 3=3^{5}$.
- Now suppose that $n-1$ moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face $n-1$. So we reach at most $18 s_{n-1}$ new states in this case.
- Otherwise, we reach at most $12 s_{n}$ new states. Altogether,

$$
s_{n+1} \leq 12 s_{n}+18 s_{n-1}
$$

An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_{2}=15 s_{1}-9 \cdot 3=3^{5}$.
- Now suppose that $n-1$ moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face $n-1$. So we reach at most $18 s_{n-1}$ new states in this case.
- Otherwise, we reach at most $12 s_{n}$ new states. Altogether,

$$
s_{n+1} \leq 12 s_{n}+18 s_{n-1}
$$

- Solving the recurrence yields $\sum_{n=0}^{17} s_{n}<|G|$.

God's number is 20

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)
Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

God's number is 20

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)
Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

Sponsored by Google. More info at https://www.cube20.org.

God's number is 20

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)
Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

Sponsored by Google. More info at https://www.cube20.org.

- Most states require 18 moves and the average is slightly below 18 .

God's number is 20

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)
Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

Sponsored by Google. More info at https://www.cube20.org.

- Most states require 18 moves and the average is slightly below 18 .
- If only quarter turn moves are allowed, God's number increases to 26 .

Algorithms

- Finding an optimal solution is NP-complete (2018).

Algorithms

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.

Algorithms

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.
- Kociemba's algorithm finds "short" solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube. htm

Algorithms

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.
- Kociemba's algorithm finds "short" solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube. htm
- There is a zero-knowledge Al algorithm in the spirit of AlphaZero which finds solution with 30 quarter turn moves on average.

Human achievements

- There are frequent international speedcubing competitions. Some official world records:

Human achievements

- There are frequent international speedcubing competitions. Some official world records:
- Fastest solve: 5.53 s on average!

Human achievements

- There are frequent international speedcubing competitions. Some official world records:
- Fastest solve: 5.53 s on average!
- Fewest moves: 21 on average!

Human achievements

- There are frequent international speedcubing competitions. Some official world records:
- Fastest solve: 5.53 s on average!
- Fewest moves: 21 on average!
- Blindfold: 59 cubes solved in 59:46 minutes including memorization time!

Human achievements

- There are frequent international speedcubing competitions. Some official world records:
- Fastest solve: 5.53 s on average!
- Fewest moves: 21 on average!
- Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
- Three cubes solved while juggling them!

Human achievements

- There are frequent international speedcubing competitions. Some official world records:
- Fastest solve: 5.53 s on average!
- Fewest moves: 21 on average!
- Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
- Three cubes solved while juggling them!

Visit: https://www.worldcubeassociation.org, www. speedsolving.com

Variations

Is the following cube any different?

Variations

Is the following cube any different?

Yes, but not so much harder to solve (\rightarrow Christmas exercise!).

Variations

The invention of $n \times n \times n$-cubes:

n	Inventor	Product name	Year
2	Larry D. Nichols	Pocket Cube	1970
3	Ernő Rubik	Rubik's Cube	1974
4	Péter Sebestény	Rubik's Revence	1981
5	Udo Krell	Professor's Cube	1981
6	Panagiotis Verdes	V-Cube 6	2004

Variations

- For $n \geq 7$ there is a fundamental design problem:

Variations

- For $n \geq 7$ there is a fundamental design problem:

- The red square falls off!

Variations

- For $n \geq 7$ there is a fundamental design problem:

- The red square falls off!
- Remedy:

V-Cube 9:

ShengShou 9:

Endless other variations

Square-1

Skewb Diamond Skewb Ultimate

Ghost cube

Gigaminx

Pyraminx

Hypercube

Visit: www.thecubicle.com, ruwix.com, www.cubikon.de

With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
```


With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
```


With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
Order(G);
```


With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
Order(G);
G=Group(u*l,f*r*b); #returns true
```


With the computer. . .

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
Order(G);
G=Group(u*l,f*r*b); #returns true
```

Interpretation: Every state can be solved using only the two sequences $u l$ and $f r b$ (never turning the down face)!

With the computer. . .

```
GAP-Code
orb:=Orbits(G);
```


With the computer. . .

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
```

With the computer...

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
```

With the computer...

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
```

With the computer...

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
```


With the computer. . .

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
```


With the computer. . .

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
```


With the computer. . .

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
```


With the computer. . .

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
s:=ZG.1; #first generator = superflip
```


With the computer. . .

```
GAP-Code
FG:=FreeGroup("f","b", "l", "r", "u", "d");
```

With the computer...

```
GAP-Code
FG:=FreeGroup("f", "b", "l", "r", "u", "d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
```


With the computer. . .

```
GAP-Code
FG:=FreeGroup("f","b","l","r","u","d") ;
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
```


With the computer. . .

```
GAP-Code
FG:=FreeGroup("f","b", "l", "r", "u", "d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
```


With the computer. . .

```
GAP-Code
FG:=FreeGroup("f","b","l","r","u","d") ;
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
```


With the computer. . .

```
GAP-Code
FG:=FreeGroup("f","b","l","r","u","d") ;
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); #how long did it take?
```


With the computer. . .

GAP-CodeFG:=FreeGroup("f", "b", "l", "r", "u", "d") ;
hom:=GroupHomomorphismByImages (FG, G, GeneratorsOfGroup(FG) ,
GeneratorsOfGroup(G)); \#Satz 8.7
PreImagesRepresentative(hom,s); \#solution of the superflip
Length(last); \#number of quarter turn moves
PreImagesRepresentative(hom, Random(G));
StringTime(time) ; \#how long did it take?
BrowseRubikCube() ; \#interactive mode

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy $n \times n \times n$-cubes with $n>5$ (uninteresting and tedious to solve).

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy $n \times n \times n$-cubes with $n>5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy $n \times n \times n$-cubes with $n>5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.
- Don't waste too much time with Rubik (as I did preparing these slides).

My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy $n \times n \times n$-cubes with $n>5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.
- Don't waste too much time with Rubik (as I did preparing these slides).

Merry Christmas!

