Character theory of symmetric groups

Benjamin Sambale

December 16, 2022

1 Ordinary characters

A partition of $n \in \mathbb{N}_{0}$ is a sequence $\lambda=\left(\lambda_{i}\right)_{i \in \mathbb{N}}$ of non-negative integers such that $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and $|\lambda|:=\sum_{i \in \mathbb{N}} \lambda_{i}=n$. The non-zero λ_{i} are called parts of λ, while the $\lambda_{i}=0$ are usually omitted. The number of parts is called the length of λ. Every partition λ can be visualized with a Young diagram with λ_{i} boxes in the i-th row. By "transposing" the Young diagram (i.e. reflecting on the diagonal) we obtain the Young diagram of the conjugate partition $\lambda^{\prime}=\left(\lambda_{i}^{\prime}\right)$ with $\lambda_{i}^{\prime}:=\left|\left\{j: \lambda_{j} \geq i\right\}\right|$ for $i \in \mathbb{N}$. Obviously, $\lambda^{\prime \prime}=\lambda$. We call λ symmetric if $\lambda^{\prime}=\lambda$. A Young tableau (of λ) is a Young diagram (of λ) where every box contains exactly one of the numbers $1, \ldots, n$ and the numbers in each row are increasingly ordered.

Example 1. Let $\lambda=(4,2,2,1)=\left(4,2^{2}, 1\right)$ be a partition of $n=9$. Then the Young diagram of λ, a Young tableau and the conjugate Young diagram are given by:

Every conjugacy class of the symmetric group S_{n} consists of the elements with a common cycle type. Therefore, the conjugacy classes of S_{n} can be identified with the partitions of n and $\operatorname{sgn}(\lambda)=(-1)^{n-l}$ makes sense for partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of n. The Young tableaux of λ are in one-to-one correspondence with the (ordered) partitions $Y=\left(Y_{1}, Y_{2}, \ldots\right)$ of the set $\{1, \ldots, n\}$ such that $\left|Y_{i}\right|=\lambda_{i}$ for $i \in \mathbb{N}$. Hence, S_{n} acts transitively on the set of Young tableaux of λ via ${ }^{g} Y=\left({ }^{g} Y_{i}\right)$ for $g \in S_{n}$. The stabilizer of Y is the Young subgroup $S_{Y}:=\Pi \operatorname{Sym}\left(Y_{i}\right) \leq S_{n}$ and the permutation character is $\psi_{\lambda}:=\left(1_{S_{Y}}\right)^{S_{n}}$. The characters ψ_{λ} and $\operatorname{sgn} \psi_{\lambda^{\prime}}$ (where sgn is the sign character) have exactly one irreducible constituent χ_{λ}. Then $\chi_{\lambda^{\prime}}=\operatorname{sgn} \chi_{\lambda}$ and

$$
\operatorname{Irr}\left(S_{n}\right)=\left\{\chi_{\lambda}: \lambda \text { partition of } n\right\} .
$$

Example 2. We have $\psi_{(n)}=1_{S_{n}}=\chi_{(n)}$ and $\chi_{\left(1^{n}\right)}=\chi_{(n)^{\prime}}=\operatorname{sgn}$. The Young tableaux of $(n-1,1)$ can be identified with the numbers $1, \ldots, n$. Hence, $\psi_{(n-1,1)}$ is the natural (2-transitive) permutation character of S_{n} and $\chi_{(n-1,1)}=\psi_{(n-1,1)}-1_{S_{n}}$ for $n \geq 2$.

Let λ and μ be partitions of n. If $g \in S_{n}$ has type μ, then $\psi_{\lambda}(g)$ is the number of ways to distribute the parts of μ onto the parts of λ.

Example 3. For $\lambda=(5,4)$ and $\mu=\left(3,2^{2}, 1^{2}\right)$, we obtain $\psi_{\lambda}(g)=5$ as follows:

Starting with $\psi_{(n)}=\chi_{(n)}=1_{S_{n}}$, one can compute $\operatorname{Irr}\left(S_{n}\right)$ recursively via

$$
\chi_{\lambda}=\psi_{\lambda}-\sum_{\mu>\lambda}\left[\psi_{\lambda}, \chi_{\mu}\right] \chi_{\mu}=\psi_{\lambda}-1_{S_{n}}-\sum_{(n)>\mu>\lambda}\left[\psi_{\lambda}, \chi_{\mu}\right] \chi_{\mu}
$$

where $>$ denotes the lexicographical order. In fact, χ_{μ} can only occur in ψ_{λ} if $\mu \unrhd \lambda$, i. e.

$$
\sum_{i=1}^{s} \mu_{i} \geq \sum_{i=1}^{s} \lambda_{i} \quad(s=1,2, \ldots)
$$

(dominance order).
The hook $h_{i j}(\lambda)=h_{i j}$ of a box (i, j) of the Young diagram Y of a partition λ is the union of the boxes $(i, j),(i, j+1), \ldots$ and the boxes $(i+1, j),(i+2, j), \ldots$ Then $\left|h_{i j}\right|=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1$ is the hook length and the hook length formula holds

$$
\chi_{\lambda}(1)=\frac{n!}{\prod_{(i, j) \text { box of } Y}\left|h_{i j}\right|} .
$$

Let t_{k} be the number of k-cycles of some $g \in S_{n}$. Frobenius' character formula states that $\chi_{\lambda}(g)$ is the coefficient of $X_{1}^{h_{11}} X_{2}^{h_{21}} \ldots$ in the polynomial

$$
\prod_{i<j}\left(X_{i}-X_{j}\right) \prod_{k \geq 1}\left(X_{1}^{k}+X_{2}^{k}+\ldots\right)^{t_{k}}
$$

Let $l_{i j}:=\lambda_{j}^{\prime}-i\left(\right.$ resp. $\left.a_{i j}:=\lambda_{i}-j\right)$ be the leg length (resp. arm length). Removing $h_{i j}$ from Y yields a Young diagram of a partition $\lambda \backslash h_{i j}$ of $n-\left|h_{i j}\right|$. Equivalently, one can remove the corresponding rim hook.

Example 4. A Young diagram filled with hook lengths, the hook h_{11} and its rim hook:

Next, let $g \in S_{n}$ of type μ and let $h \in S_{n-\mu_{k}}$ be of type $\left(\mu_{1}, \ldots, \mu_{k-1}, \mu_{k+1}, \ldots\right)$. Let Y be the Young tableau of λ. Then the Murnaghan-Nakayama formula states that

$$
\chi_{\lambda}(g)=\sum_{\substack{(i, j) \text { bot of } Y \\\left|h_{i j}\right|=\mu_{k}}}(-1)^{l_{i j}} \chi_{\lambda \backslash h_{i j}}(h) .
$$

The special case $\mu_{k}=1$ is called branching rule

$$
\left(\chi_{\lambda}\right)_{S_{n-1}}=\sum_{\substack{(i, j) \text { box of } Y \\\left|h_{i j}\right|=1}} \chi_{\lambda \backslash h_{i j}}
$$

2 Specht modules

Let T_{1}, \ldots, T_{k} be the Young tableaux of a given partition λ of n. Note that $k=\frac{n!}{\Pi \lambda_{i}!}$. The \mathbb{Q}-vector space M with basis T_{1}, \ldots, T_{k} is the $\mathbb{Q} S_{n}$-permutation module with character ψ_{λ} as defined above. Let Y_{i}^{\prime} be the set partition of $\{1, \ldots, n\}$ corresponding to the conjugate tableau T_{i}^{\prime} of λ^{\prime}. The Specht module S^{λ} associated with λ is the submodule of M generated by the elements

$$
t_{i}:=\sum_{\pi \in S_{Y_{i}^{\prime}}} \operatorname{sgn}(\pi)^{\pi} T_{i} \quad(i=1, \ldots, k)
$$

(it is easy to see that ${ }^{\pi} T_{i} \neq{ }^{\sigma} T_{i}$ for $\pi \neq \sigma$). It turns out that S^{λ} is simple with character χ_{λ}. In particular, all irreducible characters of S_{n} can be realized over \mathbb{Z}. Therefore, the Frobenius-Schur indicators are always 1. A basis of S^{λ} is given by those t_{i} such that T_{i} is standard, i. e. also the columns of T_{i} are increasingly ordered. Thus, the hook formula also counts the number of standard Young tableaux of λ.

3 Blocks

Let p be a prime. A p-hook is a hook of length p. Starting from a partition λ we can successively remove all p-hooks from the corresponding Young diagram to obtain the p-core which is a partition of $n-w p$ where w is the weight of λ (this does not depend on the way the hooks are removed). Characters $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}\left(S_{n}\right)$ lie in the same p-block if and only if they have the same p-core (Nakayama's conjecture). In this way, the p-blocks of S_{n} can be labeled by p-cores. The weight of a block B is the weight of any λ with $\chi_{\lambda} \in \operatorname{Irr}(B)$. Note that conjugate characters (and blocks) have conjugate cores. The principal block containing $1_{S_{n}}=\chi_{(n)}$ corresponds to the core (r) where $r \in\{0, \ldots, p-1\}$ such that $n \equiv r(\bmod p)$. The blocks of weight 0 contain only one irreducible character χ_{λ} where λ is a core. By the hook formula, $\left|S_{n}\right|_{p}=\chi_{\lambda}(1)_{p}$. Hence, these are the blocks of p-defect 0 . Ono proved that p-defect 0 characters exist for all n and $p \geq 5$. Note that the 2 -cores are the staircase partitions $(k, k-1, \ldots, 1)$. In particular, S_{n} has at most one 2-block of weight w and in that case $n-2 w=\binom{k+1}{2}$ is a triangular number.

In general, the fusion system of a p-block B of weight w is the fusion system of $S_{p w}$ with respect to its Sylow p-subgroup P of order $p^{w+\lfloor w / p\rfloor+\ldots}$ (Legendre's formula). In particular, P is a defect group of B. If $w=\sum a_{i} p^{i-1}$ is the p-adic expansion (i.e. $0 \leq a_{i} \ldots<p$), then $P \cong \prod P_{i}^{a_{i}}$ where $P_{i}:=C_{p} \prec \ldots<C_{p}$ (i copies).

4 Equivalences

Enguehard has shown that two p-blocks of (possibly different) symmetric groups with the same weight w are perfectly isometric. It was later shown that each such block B is splendid derived equivalent to the principal block of $S_{w p}$. In particular,

$$
k(B):=|\operatorname{Irr}(B)|=\sum_{\substack{\left(w_{1}, \ldots, w_{p}\right) \in \mathbb{N}_{0}^{p} \\ \sum w_{i}=w}} \pi\left(w_{1}\right) \ldots \pi\left(w_{p}\right)
$$

where $\pi(m)$ is the number of partitions of $m \in \mathbb{N}_{0}$. Obviously, P is abelian if and only if $w<p$ and in this case Broué's conjecture holds.

The (p)-abacus $A_{\lambda} \subseteq\{0, \ldots, p-1\} \times \mathbb{N}_{0}$ of a partition λ is defined by $(r, s) \in A_{\lambda} \Leftrightarrow \exists i: r+s p=h_{i 1}$. The elements of A_{λ} can be visualized as beads on a matrix with infinitely many columns. The rows of this matrix are called runners. Removing a box from the Young diagram of λ is the same as moving a bead of A_{λ} up to the previous runner (modulo p). Removing a p-hook slides a bead to the left by one (in particular this spot must be vacant beforehand). Hence, the abacus of a core has no "holes" and its first runner is empty.
Let B be a block of weight w with core μ. Let a_{i} be the number of beads on runner i of A_{μ}. Suppose that $a_{i+1}-a_{i} \geq w$ for some $i \in\{0, \ldots, p-2\}$. Then, interchanging runner i and $i+1$ yields a core of a block \hat{B} of $S_{n-a_{i+1}+a_{i}}$ which is Morita equivalent to B (Scopes' reduction). Thus, in order to determine the Morita equivalence class of B we may assume that $a_{i+1}-a_{i}<w$ for $i=0, \ldots, p-2$. Since $a_{0}=0$, it follows that $a_{i} \leq i(w-1)$ for all i. The number of blocks with these restrictions is $\frac{1}{p}\binom{w p}{p-1}$. If $\mu \neq \mu^{\prime}$, then B is also Morita equivalent to the block B^{\prime} of S_{n} with core μ^{\prime} (note that $\operatorname{Irr}\left(B^{\prime}\right)=\operatorname{sgn} \operatorname{Irr}(B)$). Therefore the number of Morita equivalence classes of p-blocks of symmetric groups of weight w is at most

$$
\frac{1}{2 p}\binom{w p}{p-1}+\frac{1}{2}\binom{\lfloor w p / 2\rfloor}{\lfloor p / 2\rfloor}
$$

If $a_{i}=i(w-1)$ for $i=0, \ldots, p-1$, then B is called RoCK block and

$$
n=\frac{p}{24}\left((w-1)^{2} p\left(p^{2}-1\right)+2(w-1) p^{2}+22 w+2\right)
$$

In the case $w<p$ the RoCK is Morita equivalent to its Brauer correspondent in $\mathrm{N}_{S_{n}}(D)$ where D is a defect group of B. Moreover, B is Morita equivalent to the principal block of S_{p} 乙 S_{w}.

Example 5. The Morita equivalence classes of 3-blocks of S_{n} of weight (defect) 2 are represented by the principal blocks of S_{6}, S_{7} and a non-principal block of S_{11}. The cores and abaci are given as follows:

5 Decomposition numbers

In general, the number of irreducible Brauer characters of a finite group equals the number of conjugacy classes of p-regular elements. For S_{n} this is the number of partitions with no non-zero part divisible by p. A partition is called p-regular if it has no p parts of the same non-zero length (for $p=2$ this means that all parts are distinct). By Glaisher's Theorem, also the number of these partitions is the number of irreducible Brauer characters (for $p=2$ this is Euler's Theorem: the number of partitions with distinct parts is the number of partitions with odd parts). Starting from an arbitrary partition λ we construct a p-regular partition λ^{0} by successively removing p-hooks with arm length 0 . For a p-block B with weight w and core μ the number of irreducible Brauer characters in B equals the number of p-regular partitions with core μ. We write $\operatorname{IBr}(B):=\left\{\varphi_{\lambda}: \chi_{\lambda} \in \operatorname{Irr}(B), \lambda^{0}=\lambda\right\}$ and

$$
l(B):=|\operatorname{IBr}(B)|=\sum_{\substack{\left(w_{1}, \ldots, w_{p-1}\right) \in \mathbb{N}_{0}^{p-1} \\ \sum w_{i}=w}} \pi\left(w_{1}\right) \ldots \pi\left(w_{p-1}\right) .
$$

Unlike in the ordinary case there is no formula for the degrees of Brauer characters. In fact, for $p=2$ and $n \geq 20$ (say) these degrees are unknown. We denote the decomposition numbers of B by $d_{\lambda \tau}:=d_{\chi_{\lambda} \varphi_{\tau}}$.

If the irreducible characters of B are ordered in such a way that the p-regular partitions in decreasing lexicographical order come first, then the decomposition matrix $\left(d_{\lambda \tau}\right)$ has unitriangular shape.

For partitions λ and μ of n let

$$
t_{\lambda \mu}:=-\sum_{\lambda \backslash h_{i j}(\lambda)=\mu \backslash h_{k l}(\mu)}(-1)^{l_{i j}(\lambda)+l_{k l}(\mu)} \nu_{p}\left(\left|h_{i j}(\lambda)\right|\right)
$$

where ν_{p} is the p-adic valuation. Then the Jantzen-Schaper formula states that

$$
d_{\lambda \tau} \leq \sum_{\mu>\lambda} t_{\lambda \mu} d_{\mu \tau}
$$

for $\lambda \neq \tau$. Moreover, $d_{\lambda \tau}=0$ if and only if the right hand side is 0 . For blocks of weight at most 3 it is known that $d_{\lambda \tau} \leq 1$ and therefore $\left(d_{\lambda \tau}\right)$ can be computed recursively. More explicit results for $w=2$ and $w=3$ were given by Richards and Fayers respectively.

6 Cartan invariants

We have seen above that $k(B)$ and $l(B)$ only depend on the weight w of a block B of S_{n}. We therefore write $k(w):=k(B)$ and $l(w):=l(B)$. The elementary divisors of the Cartan matrix $C(B)$ of B will also depend solely on w (but $C(B)$ itself depends on more than that). We make use of the generating function $P(x):=\sum_{k \geq 0} \pi(k) x^{k}$. A formula of Euler states that

$$
P(x)=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}
$$

Moreover, if $\pi_{0}(n)$ is the number of p-regular partitions of n, then

$$
\sum_{n \geq 0} \pi_{0}(n) x^{n}=P(x) P\left(x^{p}\right)^{-1}
$$

The results above can be rephrased as

$$
\begin{align*}
& \sum_{w \geq 0} k(w) x^{w}=P(x)^{p} \tag{6.1}\\
& \sum_{w \geq 0} l(w) x^{w}=P(x)^{p-1} \tag{6.2}
\end{align*}
$$

Let $m(w)$ be the multiplicity of 1 as an elementary divisor of $C(B)$. Then

$$
\sum_{w \geq 0} m(w) x^{w}=P(x)^{p-2} P\left(x^{p}\right)
$$

In particular, $m(w)>0$ if $p>2$ and

$$
m(w)= \begin{cases}\pi(w / 2) & \text { if } w \equiv 0 \quad(\bmod 2) \\ 0 & \text { otherwise }\end{cases}
$$

if $p=2$. For a partition $\lambda=\left(\lambda_{1}, \ldots\right)$ let

$$
e(\lambda)=\sum_{k \geq 1} \frac{p^{\nu_{p}\left(\lambda_{k}\right)+1}-1}{p-1} .
$$

Let $\pi_{0}^{e}(n)$ be the number of p-regular partitions λ of n such that $e(\lambda)=e$. A theorem of Olsson says that the multiplicity of p^{e} as an elementary divisor of $C(B)$ is

$$
\sum_{s=0}^{w} m(w-s) \pi_{0}^{e}(s)
$$

It is also possible to express the multiplicities of lower defect groups of B.

Example 6. The principal 2-block B of S_{10} has weight $w=5$. We only need the 2 -regular partitions of $1,3,5$:

$$
\begin{array}{c|cccccc}
\lambda & (1) & (2,1) & (3) & (3,2) & (4,1) & (5) \\
\hline e(\lambda) & 1 & 4 & 1 & 4 & 8 & 1
\end{array}
$$

Hence, 2^{e} can only occur as elementary divisor if $e \in\{1,4,8\}$. The multiplicity of $2^{8}=|D|$ is always 1. The multiplicities of 2 and 16 are

$$
\begin{array}{r}
m(4) \pi_{0}^{1}(1)+m(2) \pi_{0}^{1}(3)+m(0) \pi_{0}^{1}(5)=2+1+1=4 \\
\pi_{0}^{4}(3)+\pi_{0}^{4}(5)=1+1=2
\end{array}
$$

respectively. In general, the multiplicity of 2 is $\pi(0)+\ldots+\pi(k)$ if $w=2 k+1$ and 0 otherwise.

7 Heights

Let $n=\sum a_{i} p^{i}$ is the p-adic expansion where p is a prime. For any expansion $n=\sum b_{i} p^{i}$ with $b_{0}, b_{1}, \ldots \geq 0$ let

$$
\delta\left(b_{0}, b_{1}, \ldots\right):=\frac{\sum_{i} b_{i}-a_{i}}{p-1} \geq 0
$$

Let $E_{d}(n)$ be the set of those sequences $\left(b_{0}, \ldots\right)$ such that $\delta\left(b_{0}, \ldots\right)=d$.
Next let $c(n)$ be the number of p-core partitions of $n\left(=\right.$ number of blocks of defect 0 of $\left.S_{n}\right)$. Set $C(x):=\sum_{n \geq 0} c(n) x^{n}$. Generalizing (6.1) we define

$$
\begin{aligned}
& P(x)^{s}=\sum_{t=0}^{\infty} k(s, t) x^{t} \\
& C(x)^{s}=\sum_{t=0}^{\infty} c(s, t) x^{t}
\end{aligned}
$$

Note that if $t<p$, then $c(t)=\pi(t)$ and $c(s, t)=k(s, t)$ for all $s \geq 0$. Let $m_{d}(n)$ be the number of $\chi \in \operatorname{Irr}\left(S_{n}\right)$ such that $\chi(1)_{p}=p^{d}$. Olsson has shown that

$$
m_{d}(n)=\sum_{\left(b_{0}, \ldots\right) \in E_{d}(n)} c\left(1, b_{0}\right) c\left(p, b_{1}\right) c\left(p^{2}, b_{2}\right) \ldots
$$

For $d=0$ we have $E_{0}(n)=\left\{\left(a_{0}, \ldots\right)\right\}$ and this yields MacDonald's Theorem

$$
m_{0}(n)=k\left(1, a_{0}\right) k\left(p, a_{1}\right) \ldots
$$

If additionally $p=2$, then $a_{i} \leq 1$ and $m_{0}(n)=2^{a_{0}+\ldots}$. In particular, if $n=2^{k}$, then $m_{0}(n)=n$ and the corresponding characters $\chi_{\lambda} \in \operatorname{Irr}\left(S_{n}\right)$ (of odd degree) are labeled by the hook partitions $\lambda=\left(s, 1^{n-s}\right)$ for $s=1, \ldots, n$.

Now let B be a p-block of S_{n} with weight w and defect d. The height $h(\chi) \geq 0$ of $\chi \in \operatorname{Irr}(B)$ is defined by $\chi(1)_{p} p^{d-h(\chi)}=\left|S_{n}\right|_{p}$. Let $k_{h}(w)$ be the number of $\chi \in \operatorname{Irr}(B)$ of height h (depends only on w). Then

$$
k_{h}(w)=\sum_{\left(b_{0}, \ldots\right) \in E_{h}(w)} c\left(p, b_{0}\right) c\left(p^{2}, b_{1}\right) \ldots
$$

Since for $n=p w$ there is only one block of maximal defect in S_{n}, we recover $k_{0}(w)=m_{0}(p w)$. The maximal possible height of some $\chi \in \operatorname{Irr}(B)$ is

$$
h=\frac{w-\sum a_{i}}{p-1}
$$

where $w=\sum a_{i} p^{i}$ is the p-adic expansion. Then $k_{h}(w)=c(p, w)$ since $E_{h}(w)=\{(w, 0, \ldots)\}$. For $p=2$ it can happen that $k_{h}(w)=0$ (e.g. $\left.k_{3}(5)=c(2,5)=0\right)$. In general, Olsson's Conjecture $k_{0}(w) \leq\left|D: D^{\prime}\right|$ holds where D is a defect group of B.

Example 7. For $p=2$ and $n=7=1+2+4$ we have $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,1)$ and

$$
E_{1}(7)=\{(3,0,1),(1,3)\}, \quad E_{2}(7)=\{(3,2)\}, \quad E_{3}(7)=\{(5,1)\}, \quad E_{4}(7)=\{(7)\}
$$

Moreover,

$$
C(x)=1+x+x^{3}+x^{6}+x^{10}+\ldots, \quad C(x)^{2}=1+2 x+x^{2}+2 x^{3}+\ldots, \quad C(x)^{4}=1+4 x+\ldots
$$

Consequently,

$$
\begin{aligned}
& m_{0}(7)=2^{1+1+1}=8 \\
& m_{1}(7)=c(1,3) c(4,1)+c(1,1) c(2,3)=4+2=6 \\
& m_{2}(7)=c(1,3) c(2,2)=1 \\
& m_{3}(7)=c(1,5) c(2,1)=0 \\
& m_{4}(7)=c(1,7)=0
\end{aligned}
$$

8 Alternating groups

A conjugacy class C of A_{n} lies in a conjugacy class of S_{n} and therefore belongs to a partition λ of n. More precisely, C is not a conjugacy class of S_{n} if and only if λ has distinct odd parts. In this case $C \dot{\cup} C^{(12)}$ is a conjugacy class of S_{n}. By Sylvester's Theorem there is a bijection Γ between the symmetric partitions and the partitions with distinct odd parts:

If $\lambda \neq \lambda^{\prime}$, then $\left(\chi_{\lambda}\right)_{A_{n}} \in \operatorname{Irr}\left(A_{n}\right)$. Now suppose that $\lambda=\lambda^{\prime}$ and $\mu:=\Gamma(\lambda)$. Then by Clifford theory, $\left(\chi_{\lambda}\right)_{A_{n}}=\xi_{\lambda}+\xi_{\lambda}^{(12)}$ for some $\xi_{\lambda} \in \operatorname{Irr}\left(A_{n}\right)$ with $\xi_{\lambda}^{S_{n}}=\chi_{\lambda}$. We fix $g \in A_{n}$ of type μ. Then for $h \in A_{n}$
and $\epsilon:=(-1)^{\frac{n-l(\mu)}{2}}$ we have

$$
\xi_{\lambda}(h)= \begin{cases}\frac{1}{2} \chi_{\lambda}(h) & \text { if } h \text { is not of type } \mu, \\ \frac{1}{2}\left(\epsilon+\sqrt{\epsilon \mu_{1} \ldots \mu_{l(\mu)}}\right) & \text { if } h \text { is conjugate to } g \text { in } A_{n}, \\ \frac{1}{2}\left(\epsilon-\sqrt{\epsilon \mu_{1} \ldots \mu_{l(\mu)}}\right) & \text { if } h \text { is conjugate to } g^{(12)} \text { in } A_{n} .\end{cases}
$$

This allows to compute the character table of A_{n} from $\operatorname{Irr}\left(S_{n}\right)$.
Similarly, if B is a p-block of S_{n} with core $\mu \neq \mu^{\prime}$, then B is isomorphic to a block B^{\prime} of A_{n} via restriction. In this case, $p>2$ and B and B^{\prime} have the same fusion system. Now suppose that B has core $\mu=\mu^{\prime}$, weight w and defect group D. Then B covers a block B^{\prime} of A_{n} with defect group $D \cap A_{n}$ and fusion system $A_{w p}$. Let C^{\prime} be p-block of A_{m} obtain in the same way by some core $\nu=\nu^{\prime}$ such that μ and ν have the same weight. Brunat-Gramain have shown that B^{\prime} and C^{\prime} are perfectly isometric. If $p=2$, every core has the form $\mu=(a, a-1, \ldots, 1)=\mu^{\prime}$. If in addition w is odd, then every $\chi \in \operatorname{Irr}(B)$ restricts to $\operatorname{Irr}\left(B^{\prime}\right)$. Hence, in this case, $k(B)=2 k\left(B^{\prime}\right)$ and the decomposition matrix of B consists of two copies of the decomposition matrix of B^{\prime}. Marcus has proved that every p-block of A_{n} with abelian defect group is splendid derived equivalent to its Brauer correspondent (Broué's conjecture). For an odd prime p let $p^{*}=(-1)^{\frac{p-1}{2}} p$. Robinson and Thompson have shown that if $n \geq 25$, then

$$
\mathbb{Q}\left(A_{n}\right)=\mathbb{Q}\left(\sqrt{p^{*}}: 3 \leq p \leq n \text { prime }, p \neq n-2\right) .
$$

9 Wreath products

Generalizing the abacus we call any strictly decreasing sequence $a=\left(a_{i}\right) \in \mathbb{N}_{0}^{l}$ a β-set of length $l(a)=l$. We often identify β-sets with finite subsets of \mathbb{N}_{0}. For $s \in \mathbb{N}_{0}$ also

$$
a^{+s}:=\left(a_{1}+s, \ldots, a_{l}+s, s-1, s-2, \ldots, 0\right)
$$

is a β-set (of length $l+s$). Any β-set a determines a partition $\lambda:=P(a):=\left(a_{1}-(l-1), a_{2}-(l-2), \ldots, a_{l}\right)$ (note that a is the set of first column hook lengths of λ). Since $P(a)=P\left(a^{+s}\right)$, we may assume that $l(a) \equiv 0(\bmod p)$ in the following. We define $a_{i}^{(p)}:=\left\{b \in \mathbb{N}_{0}: b p+i \in a\right\}$ for $i=0, \ldots, p-1$ (that is, we look at each runner of the abacus individually). Then the sequence of partitions $\lambda^{(p)}:=$ $\left(P\left(a_{0}^{(p)}\right), \ldots, P\left(a_{p-1}^{(p)}\right)\right)$ is called the p-quotient of λ. The number $\sum\left|P\left(a_{i}^{(p)}\right)\right|$ equals the weight of λ. Conversely, λ is uniquely determined by its p-core and p-quotient. If μ is the p-core of λ, the p-sign of λ is defined by $\delta_{p}(\lambda)=(-1)^{\sum l_{i}}$ where the l_{i} are the leg lengths of the p-hooks removed from λ to obtain μ.

Example 8. For $\lambda=\left(5,4,1^{2}\right)$ and $p=2$ we obtain

$$
a=(8,6,2,1), \quad\left(a_{i}^{(p)}\right)=(\{4,3,1\},\{0\}), \quad \lambda^{(p)}=((2,2,1),()) .
$$

Hence, λ has weight 5 and the p-core is (1).
Let B be a p-block of S_{n} with weight w. Let $\operatorname{Irr}\left(C_{p}\right)=\left\{\varphi_{1}, \ldots, \varphi_{p}\right\}$ and let $\tau=\left(\tau_{1}, \ldots, \tau_{p}\right)$ a tuple of partitions such that $\sum\left|\tau_{i}\right|=w$. The linear characters $\varphi^{\otimes\left|\tau_{i}\right|}:=\varphi_{i} \otimes \ldots \otimes \varphi_{i} \in \operatorname{Irr}\left(C_{p}^{\left|\tau_{i}\right|}\right)$ extend to $C_{p} \backslash S_{\left|\tau_{i}\right|}$ and we can define $\varphi_{\tau_{i}}:=\varphi^{\otimes\left|\tau_{i}\right|} \chi_{\tau_{i}} \in \operatorname{Irr}\left(C_{p} \backslash S_{\left|\tau_{i}\right|}\right)$ where $\chi_{\tau_{i}} \in \operatorname{Irr}\left(S_{\left|\tau_{i}\right|}\right)$. Finally let $\varphi_{\tau}:=\left(\otimes_{i=1}^{p} \varphi_{\tau_{i}}\right)^{C_{p} \backslash S_{w}} \in \operatorname{Irr}\left(C_{p} \backslash S_{w}\right)$. Then $\operatorname{Irr}(B) \rightarrow \operatorname{Irr}\left(C_{p} \backslash S_{w}\right), \chi_{\lambda} \mapsto \varphi_{\lambda^{(p)}}$ is a height preserving bijection.

Now we label the conjugacy classes of $C_{p} 2 S_{w}$ where we consider C_{p} as $\mathbb{Z} / p \mathbb{Z}$. For $\left(x_{1} \ldots x_{w}, \sigma\right) \in C_{p} 2 S_{w}$ we define a tuple of partitions $\tau=\left(\tau_{0}, \ldots, \tau_{p-1}\right)$ as follows: For every cycle $\left(a_{1}, \ldots, a_{s}\right)$ in σ let $s \in \tau_{x_{a_{1}}+\ldots+x_{a_{s}}}$. Then $\sum\left|\tau_{i}\right|=w$. Let $g_{1}, \ldots, g_{l} \in C_{p}$. S_{w} be representatives for the classes of C_{p} l S_{w} corresponding to the partition tuples τ with $\tau_{0}=()$ (note that these elements are non-trivial). Osima has shown that there exists $S \in \operatorname{GL}(l(B), \mathbb{C})$ such that

$$
\left(d_{\chi_{\lambda}, i}\right)=\left(\delta_{p}(\lambda) \varphi_{\lambda^{(p)}}\left(g_{i}\right)\right) S
$$

where $\left(d_{\chi_{\lambda}, i}\right)_{\lambda, i}$ is the decomposition matrix of B. It follows that the so-called contributions of B can be computed inside the smaller group $C_{p} \backslash S_{w}$. More precisely,

$$
\left[\chi_{\lambda}, \chi_{\mu}\right]^{0}=\frac{1}{n!} \sum_{g \in S_{n}^{0}} \chi_{\lambda}(g) \chi_{\mu}\left(g^{-1}\right)=\delta_{p}(\lambda) \delta_{p}(\mu) \sum_{i=1}^{l} \frac{1}{\left|\mathrm{C}_{C_{p} 2 S_{w}}\left(g_{i}\right)\right|} \varphi_{\lambda(p)}\left(g_{i}\right) \varphi_{\mu^{(p)}}\left(g_{i}^{-1}\right)
$$

for every $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}(B)$.

10 Double covers and spin blocks

The Schur multiplier $M\left(S_{n}\right):=H^{2}\left(S_{n}, \mathbb{C}^{\times}\right)$is trivial for $n \leq 3$ and of order 2 for $n \geq 4$. For $4 \leq n \neq 6$ there are two non-isomorphic double covers:

$$
\begin{aligned}
& \left.\widehat{S}_{n}:=\left\langle x_{1}, \ldots, x_{n-1}, z\right| z^{2}=1, x_{i}^{2}=\left(x_{i} x_{i+1}\right)^{3}=\left[x_{i}, x_{j}\right]=z \text { for } i<j-1\right\rangle, \\
& \left.\widetilde{S}_{n}:=\left\langle x_{1}, \ldots, x_{n-1}, z\right| z^{2}=1, x_{i}^{2}=\left(x_{i} x_{i+1}\right)^{3}=1,\left[x_{i}, x_{j}\right]=z \text { for } i<j-1\right\rangle
\end{aligned}
$$

(here z is central). The outer automorphism of S_{6} induces an isomorphism $\widehat{S}_{6} \cong \widetilde{S}_{6}$. We regard $\operatorname{Irr}\left(S_{n}\right)$ as a subset of $\operatorname{Irr}\left(\widehat{S}_{n}\right)$ by inflation. The characters in $\operatorname{Irr}\left(\widehat{S}_{n}\right) \backslash \operatorname{Irr}\left(S_{n}\right)$ are called spin characters (these are the faithful characters of \widehat{S}_{n}). They correspond to the projective characters of S_{n}. The partitions of n with pairwise distinct parts are called bar partitions (this is the same as 2-regular). For each bar partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of n we can choose a spin character $\hat{\chi}_{\lambda}$ such that $\hat{\chi}_{\lambda} \neq \hat{\chi}_{\mu}$ for $\lambda \neq \mu$. Moreover, $\hat{\chi}_{\lambda}=\operatorname{sgn} \hat{\chi}_{\lambda}$ if and only if $\operatorname{sgn}(\lambda)=1$ (i. e. $n \equiv l(\bmod 2)$). The characters $\hat{\chi}_{\lambda}$ and $\operatorname{sgn} \hat{\chi}_{\lambda}$ (if $\operatorname{sgn}(\lambda)=-1$) constitute all spin characters.
The shifted Young diagram \widehat{Y}_{λ} associated to λ is obtained by shifting the i-th row of the Young diagram $i-1$ boxes to the right (so a staircase emerges on the left). The bar lengths of the i-row of \widehat{Y}_{λ} contains the numbers

$$
\left\{1, \ldots, \lambda_{i}\right\} \cup\left\{\lambda_{i}+\lambda_{j}: j>i\right\} \backslash\left\{\lambda_{i}-\lambda_{j}: j>i\right\}
$$

in decreasing order (so $\lambda_{i}-\lambda_{j}$ is replaced by $\lambda_{i}+\lambda_{j}$). The (i, j)-th bar length is denoted by $\left|\bar{h}_{i j}\right|$ (despite shifting, the i-th row still starts with $(i, 1)$). The actual bars $\bar{h}_{i j}$ can be visualized as follows: If $i+j>l$, then $\bar{h}_{i j}$ consists of the last $\bar{h}_{i j}$ boxes in row i of \widehat{Y}_{λ} (this is called an unmixed bar). If $i+j \leq l$, then $\bar{h}_{i j}$ consists of all boxes in rows i and $i+j$ of \widehat{Y}_{λ} (a mixed bar).

Example 9. The shifted Young diagram and the bar lengths for $\lambda=(5,4,2,1)$ are

The mixed bars correspond to the blue boxes.

The analog to the hook formula is

$$
\hat{\chi}_{\lambda}(1)=2^{\left\lfloor\frac{n-l}{2}\right\rfloor} \frac{n!}{\prod\left|\bar{h}_{i j}\right|} .
$$

We can remove a bar $\bar{h}_{i j}$ and rearrange the rows to obtain a new shifted Young diagram corresponding to a bar partition $\lambda \backslash \bar{h}_{i j}$.
Inclusion gives a one-to-one correspondence between the 2-blocks of S_{n} and \widehat{S}_{n}. If $B \subseteq \widehat{B}$ are such 2 -blocks, then $l(B)=l(\widehat{B})$ and

$$
k(\widehat{B})=k(B)+p(w)+\mid\left\{\lambda \text { partition of } w: \operatorname{sgn}(\lambda)=-(-1)^{w}\right\} \mid
$$

where w is the weight of B.
Now let p be an odd prime. Every p-block of \widehat{S}_{n} is a block of S_{n} or consists entirely of spin characters. In the latter case we call it a spin block. Bars of size p are called p-bars. Removing all p-bars from a bar partition λ successively yields the \bar{p}-core of λ. The number of removed p-bars is the \bar{p}-weight of λ (this equals the number of bar lengths divisible by p). Two spin characters lie in the same (spin) block \widehat{B} if and only if they have the same \bar{p}-core (Morris conjecture). Moreover, $\operatorname{sgn} \widehat{B}=\widehat{B}$. We attach the \bar{p}-weight and \bar{p}-core also to \widehat{B}. For weights $w>0$, the defect group of \widehat{B} is a Sylow p-subgroup of $S_{p w}$ (still assuming $p>2$). However, for $w=0$, the defect is 0 if $\operatorname{sgn}(\lambda)=1$ and 1 otherwise (since $\operatorname{sgn} \lambda \in \widehat{B}$). In general, the sign of a spin block with \bar{p}-core μ is $\operatorname{sgn}(\mu)$. In contrast to S_{n}, the number $k(\widehat{B})=k(w, \epsilon)$ of characters in \widehat{B} does not only depend on the \bar{p}-weight w, but also on the sign ϵ. Let $q:=(p-1) / 2$ and

$$
\sum_{k=0}^{\infty} \alpha(n, \epsilon) x^{n}:=\frac{1}{2}\left(\frac{P(x)^{q+1}}{P\left(x^{2}\right)}+\epsilon \frac{P\left(x^{2}\right)^{3 q-3}}{P(x)^{q-1} P\left(x^{4}\right)^{q-1}}\right) .
$$

Then $k(w, \epsilon)=\alpha(w, \epsilon)+2 \alpha(w,-\epsilon)$. For $p=3$ and $w>0$, the sign is irrelevant, i. e. $k(w, \epsilon)=k(w,-\epsilon)$. For $p=5$, we have $k\left(w,(-1)^{w}\right)+p(w)=k\left(w,-(-1)^{w}\right)$. Brunat-Gramain have constructed perfect isometries between blocks of $2 . S_{n}$ with the same weight and the same sign.

The Schur multiplier of A_{n} is

$$
M\left(A_{n}\right)= \begin{cases}2 & \text { if } n=4,5,8,9, \ldots \\ 6 & \text { if } n=6,7\end{cases}
$$

and in each case there exists a unique covering group \widehat{A}_{n} (since A_{n} is perfect). For $n \neq 6,7$ we have $\widehat{A}_{n} \cong \widehat{S}_{n}^{\prime}$. For $n=6,7$ the covering groups are conveniently defined by GAP as PerfectGroup(2160) and PerfectGroup(15120) respectively. We may assume $n \geq 8$ for the remainder. For an odd bar partition λ the restriction of $\hat{\chi}_{\lambda}$ to \widehat{A}_{n} is irreducible. If $\operatorname{sgn}(\lambda)=1$, then the restriction is a sum of two irreducible characters of \widehat{A}_{n}. Every spin block \widehat{B} of \widehat{S}_{n} of weight $w>0$ covers a unique block \widehat{A} of \widehat{A}_{n}. Moreover, $k(\widehat{A})=k(w,-\epsilon)$ where ϵ is the sign of \widehat{B}.

The perfect isometries constructed by Brunat-Gramain can be adapted to $2 . A_{n}$. Moreover, Broué's conjecture for blocks of $2 . S_{n}$ and $2 . A_{n}$ was verified by Livesey.

