Character theory of symmetric groups

Benjamin Sambale

December 16, 2022

1 Ordinary characters

A partition of $n \in \mathbb{N}_0$ is a sequence $\lambda = (\lambda_i)_{i \in \mathbb{N}}$ of non-negative integers such that $\lambda_1 \geq \lambda_2 \geq \ldots$ and $|\lambda| := \sum_{i \in \mathbb{N}} \lambda_i = n$. The non-zero λ_i are called *parts* of λ , while the $\lambda_i = 0$ are usually omitted. The number of parts is called the *length* of λ . Every partition λ can be visualized with a Young diagram with λ_i boxes in the *i*-th row. By "transposing" the Young diagram (i. e. reflecting on the diagonal) we obtain the Young diagram of the *conjugate* partition $\lambda' = (\lambda'_i)$ with $\lambda'_i := |\{j : \lambda_j \geq i\}|$ for $i \in \mathbb{N}$. Obviously, $\lambda'' = \lambda$. We call λ symmetric if $\lambda' = \lambda$. A Young tableau (of λ) is a Young diagram (of λ) where every box contains exactly one of the numbers $1, \ldots, n$ and the numbers in each row are increasingly ordered.

Example 1. Let $\lambda = (4, 2, 2, 1) = (4, 2^2, 1)$ be a partition of n = 9. Then the Young diagram of λ , a Young tableau and the conjugate Young diagram are given by:

Every conjugacy class of the symmetric group S_n consists of the elements with a common cycle type. Therefore, the conjugacy classes of S_n can be identified with the partitions of n and $\operatorname{sgn}(\lambda) = (-1)^{n-l}$ makes sense for partitions $\lambda = (\lambda_1, \ldots, \lambda_l)$ of n. The Young tableaux of λ are in one-to-one correspondence with the (ordered) partitions $Y = (Y_1, Y_2, \ldots)$ of the set $\{1, \ldots, n\}$ such that $|Y_i| = \lambda_i$ for $i \in \mathbb{N}$. Hence, S_n acts transitively on the set of Young tableaux of λ via ${}^{g}Y = ({}^{g}Y_i)$ for $g \in S_n$. The stabilizer of Y is the Young subgroup $S_Y := \prod \operatorname{Sym}(Y_i) \leq S_n$ and the permutation character is $\psi_{\lambda} := (1_{S_Y})^{S_n}$. The characters ψ_{λ} and $\operatorname{sgn} \psi_{\lambda'}$ (where sgn is the sign character) have exactly one irreducible constituent χ_{λ} . Then $\chi_{\lambda'} = \operatorname{sgn} \chi_{\lambda}$ and

$$\operatorname{Irr}(S_n) = \{\chi_{\lambda} : \lambda \text{ partition of } n\}.$$

Example 2. We have $\psi_{(n)} = 1_{S_n} = \chi_{(n)}$ and $\chi_{(1^n)} = \chi_{(n)'} = \text{sgn.}$ The Young tableaux of (n-1,1) can be identified with the numbers $1, \ldots, n$. Hence, $\psi_{(n-1,1)}$ is the natural (2-transitive) permutation character of S_n and $\chi_{(n-1,1)} = \psi_{(n-1,1)} - 1_{S_n}$ for $n \ge 2$.

Let λ and μ be partitions of n. If $g \in S_n$ has type μ , then $\psi_{\lambda}(g)$ is the number of ways to distribute the parts of μ onto the parts of λ .

Example 3. For $\lambda = (5, 4)$ and $\mu = (3, 2^2, 1^2)$, we obtain $\psi_{\lambda}(g) = 5$ as follows:

Starting with $\psi_{(n)} = \chi_{(n)} = 1_{S_n}$, one can compute $Irr(S_n)$ recursively via

$$\chi_{\lambda} = \psi_{\lambda} - \sum_{\mu > \lambda} [\psi_{\lambda}, \chi_{\mu}] \chi_{\mu} = \psi_{\lambda} - \mathbf{1}_{S_n} - \sum_{(n) > \mu > \lambda} [\psi_{\lambda}, \chi_{\mu}] \chi_{\mu}$$

where > denotes the lexicographical order. In fact, χ_{μ} can only occur in ψ_{λ} if $\mu \geq \lambda$, i.e.

$$\sum_{i=1}^{s} \mu_i \ge \sum_{i=1}^{s} \lambda_i \qquad (s = 1, 2, \ldots)$$

(dominance order).

The hook $h_{ij}(\lambda) = h_{ij}$ of a box (i, j) of the Young diagram Y of a partition λ is the union of the boxes $(i, j), (i, j + 1), \ldots$ and the boxes $(i + 1, j), (i + 2, j), \ldots$ Then $|h_{ij}| = \lambda_i + \lambda'_j - i - j + 1$ is the hook length and the hook length formula holds

$$\chi_{\lambda}(1) = \frac{n!}{\prod_{(i,j) \text{ box of } Y} |h_{ij}|}.$$

Let t_k be the number of k-cycles of some $g \in S_n$. Frobenius' character formula states that $\chi_{\lambda}(g)$ is the coefficient of $X_1^{h_{11}}X_2^{h_{21}}\dots$ in the polynomial

$$\prod_{i < j} (X_i - X_j) \prod_{k \ge 1} (X_1^k + X_2^k + \ldots)^{t_k}.$$

Let $l_{ij} := \lambda'_j - i$ (resp. $a_{ij} := \lambda_i - j$) be the *leg length* (resp. *arm length*). Removing h_{ij} from Y yields a Young diagram of a partition $\lambda \setminus h_{ij}$ of $n - |h_{ij}|$. Equivalently, one can remove the corresponding *rim hook*.

Example 4. A Young diagram filled with hook lengths, the hook h_{11} and its rim hook:

Next, let $g \in S_n$ of type μ and let $h \in S_{n-\mu_k}$ be of type $(\mu_1, \ldots, \mu_{k-1}, \mu_{k+1}, \ldots)$. Let Y be the Young tableau of λ . Then the Murnaghan-Nakayama formula states that

$$\chi_{\lambda}(g) = \sum_{\substack{(i,j) \text{ box of } Y \\ |h_{ij}| = \mu_k}} (-1)^{l_{ij}} \chi_{\lambda \setminus h_{ij}}(h).$$

The special case $\mu_k = 1$ is called *branching rule*

$$(\chi_{\lambda})_{S_{n-1}} = \sum_{\substack{(i,j) \text{ box of } Y \\ |h_{ij}|=1}} \chi_{\lambda \setminus h_{ij}}.$$

2 Specht modules

Let T_1, \ldots, T_k be the Young tableaux of a given partition λ of n. Note that $k = \frac{n!}{\prod \lambda_i!}$. The Q-vector space M with basis T_1, \ldots, T_k is the $\mathbb{Q}S_n$ -permutation module with character ψ_{λ} as defined above. Let Y'_i be the set partition of $\{1, \ldots, n\}$ corresponding to the conjugate tableau T'_i of λ' . The Specht module S^{λ} associated with λ is the submodule of M generated by the elements

$$t_i := \sum_{\pi \in S_{Y'_i}} \operatorname{sgn}(\pi)^{\pi} T_i \qquad (i = 1, \dots, k)$$

(it is easy to see that ${}^{\pi}T_i \neq {}^{\sigma}T_i$ for $\pi \neq \sigma$). It turns out that S^{λ} is simple with character χ_{λ} . In particular, all irreducible characters of S_n can be realized over \mathbb{Z} . Therefore, the Frobenius-Schur indicators are always 1. A basis of S^{λ} is given by those t_i such that T_i is *standard*, i. e. also the columns of T_i are increasingly ordered. Thus, the hook formula also counts the number of standard Young tableaux of λ .

3 Blocks

Let p be a prime. A p-hook is a hook of length p. Starting from a partition λ we can successively remove all p-hooks from the corresponding Young diagram to obtain the p-core which is a partition of n - wp where w is the weight of λ (this does not depend on the way the hooks are removed). Characters $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}(S_n)$ lie in the same p-block if and only if they have the same p-core (Nakayama's conjecture). In this way, the p-blocks of S_n can be labeled by p-cores. The weight of a block B is the weight of any λ with $\chi_{\lambda} \in \operatorname{Irr}(B)$. Note that conjugate characters (and blocks) have conjugate cores. The principal block containing $1_{S_n} = \chi_{(n)}$ corresponds to the core (r) where $r \in \{0, \ldots, p-1\}$ such that $n \equiv r \pmod{p}$. The blocks of weight 0 contain only one irreducible character χ_{λ} where λ is a core. By the hook formula, $|S_n|_p = \chi_{\lambda}(1)_p$. Hence, these are the blocks of p-defect 0. Ono proved that p-defect 0 characters exist for all n and $p \geq 5$. Note that the 2-cores are the staircase partitions $(k, k - 1, \ldots, 1)$. In particular, S_n has at most one 2-block of weight w and in that case $n - 2w = \binom{k+1}{2}$ is a triangular number.

In general, the *fusion system* of a *p*-block *B* of weight *w* is the fusion system of S_{pw} with respect to its Sylow *p*-subgroup *P* of order $p^{w+\lfloor w/p \rfloor+\dots}$ (Legendre's formula). In particular, *P* is a defect group of *B*. If $w = \sum a_i p^{i-1}$ is the *p*-adic expansion (i. e. $0 \le a_i \dots < p$), then $P \cong \prod P_i^{a_i}$ where $P_i := C_p \wr \dots \wr C_p$ (*i* copies).

4 Equivalences

Enguehard has shown that two p-blocks of (possibly different) symmetric groups with the same weight w are *perfectly isometric*. It was later shown that each such block B is *splendid derived equivalent* to the principal block of S_{wp} . In particular,

$$k(B) := |\operatorname{Irr}(B)| = \sum_{\substack{(w_1, \dots, w_p) \in \mathbb{N}_0^p \\ \sum w_i = w}} \pi(w_1) \dots \pi(w_p)$$

where $\pi(m)$ is the number of partitions of $m \in \mathbb{N}_0$. Obviously, P is abelian if and only if w < p and in this case *Broué's conjecture* holds.

The (p)-abacus $A_{\lambda} \subseteq \{0, \ldots, p-1\} \times \mathbb{N}_0$ of a partition λ is defined by $(r, s) \in A_{\lambda} \Leftrightarrow \exists i : r + sp = h_{i1}$. The elements of A_{λ} can be visualized as *beads* on a matrix with infinitely many columns. The rows of this matrix are called *runners*. Removing a box from the Young diagram of λ is the same as moving a bead of A_{λ} up to the previous runner (modulo p). Removing a p-hook slides a bead to the left by one (in particular this spot must be vacant beforehand). Hence, the abacus of a core has no "holes" and its first runner is empty.

Let B be a block of weight w with core μ . Let a_i be the number of beads on runner i of A_{μ} . Suppose that $a_{i+1} - a_i \ge w$ for some $i \in \{0, \ldots, p-2\}$. Then, interchanging runner i and i+1 yields a core of a block \hat{B} of $S_{n-a_{i+1}+a_i}$ which is Morita equivalent to B (Scopes' reduction). Thus, in order to determine the Morita equivalence class of B we may assume that $a_{i+1} - a_i < w$ for $i = 0, \ldots, p-2$. Since $a_0 = 0$, it follows that $a_i \le i(w-1)$ for all i. The number of blocks with these restrictions is $\frac{1}{p} {wp \choose p-1}$. If $\mu \ne \mu'$, then B is also Morita equivalent to the block B' of S_n with core μ' (note that $\operatorname{Irr}(B') = \operatorname{sgn} \operatorname{Irr}(B)$). Therefore the number of Morita equivalence classes of p-blocks of symmetric groups of weight w is at most

$$\frac{1}{2p} \binom{wp}{p-1} + \frac{1}{2} \binom{\lfloor wp/2 \rfloor}{\lfloor p/2 \rfloor}$$

If $a_i = i(w-1)$ for i = 0, ..., p-1, then B is called *RoCK block* and

$$n = \frac{p}{24} \Big((w-1)^2 p(p^2-1) + 2(w-1)p^2 + 22w + 2 \Big).$$

In the case w < p the RoCK is Morita equivalent to its Brauer correspondent in $N_{S_n}(D)$ where D is a defect group of B. Moreover, B is Morita equivalent to the principal block of $S_p \wr S_w$.

Example 5. The Morita equivalence classes of 3-blocks of S_n of weight (defect) 2 are represented by the principal blocks of S_6 , S_7 and a non-principal block of S_{11} . The cores and abaci are given as follows:

5 Decomposition numbers

In general, the number of irreducible Brauer characters of a finite group equals the number of conjugacy classes of *p*-regular elements. For S_n this is the number of partitions with no non-zero part divisible by *p*. A partition is called *p*-regular if it has no *p* parts of the same non-zero length (for p = 2 this means that all parts are distinct). By *Glaisher's Theorem*, also the number of these partitions is the number of irreducible Brauer characters (for p = 2 this is *Euler's Theorem*: the number of partitions with distinct parts is the number of partitions with odd parts). Starting from an arbitrary partition λ we construct a *p*-regular partition λ^0 by successively removing *p*-hooks with arm length 0. For a *p*-block *B* with weight *w* and core μ the number of irreducible Brauer characters in *B* equals the number of *p*-regular partitions with core μ . We write $\text{IBr}(B) := \{\varphi_{\lambda} : \chi_{\lambda} \in \text{Irr}(B), \ \lambda^0 = \lambda\}$ and

$$l(B) := |\mathrm{IBr}(B)| = \sum_{\substack{(w_1, \dots, w_{p-1}) \in \mathbb{N}_0^{p-1} \\ \sum w_i = w}} \pi(w_1) \dots \pi(w_{p-1}).$$

Unlike in the ordinary case there is no formula for the degrees of Brauer characters. In fact, for p = 2 and $n \ge 20$ (say) these degrees are unknown. We denote the decomposition numbers of B by $d_{\lambda\tau} := d_{\chi_{\lambda}\varphi_{\tau}}$.

If the irreducible characters of B are ordered in such a way that the *p*-regular partitions in decreasing lexicographical order come first, then the decomposition matrix $(d_{\lambda\tau})$ has unitriangular shape.

For partitions λ and μ of n let

$$t_{\lambda\mu} := -\sum_{\lambda \setminus h_{ij}(\lambda) = \mu \setminus h_{kl}(\mu)} (-1)^{l_{ij}(\lambda) + l_{kl}(\mu)} \nu_p(|h_{ij}(\lambda)|)$$

where ν_p is the *p*-adic valuation. Then the Jantzen-Schaper formula states that

$$d_{\lambda\tau} \le \sum_{\mu > \lambda} t_{\lambda\mu} d_{\mu\tau}$$

for $\lambda \neq \tau$. Moreover, $d_{\lambda\tau} = 0$ if and only if the right hand side is 0. For blocks of weight at most 3 it is known that $d_{\lambda\tau} \leq 1$ and therefore $(d_{\lambda\tau})$ can be computed recursively. More explicit results for w = 2 and w = 3 were given by Richards and Fayers respectively.

6 Cartan invariants

We have seen above that k(B) and l(B) only depend on the weight w of a block B of S_n . We therefore write k(w) := k(B) and l(w) := l(B). The elementary divisors of the Cartan matrix C(B) of B will also depend solely on w (but C(B) itself depends on more than that). We make use of the generating function $P(x) := \sum_{k \ge 0} \pi(k) x^k$. A formula of Euler states that

$$P(x) = \prod_{k=1}^{\infty} \frac{1}{1 - x^k}$$

Moreover, if $\pi_0(n)$ is the number of *p*-regular partitions of *n*, then

$$\sum_{n \ge 0} \pi_0(n) x^n = P(x) P(x^p)^{-1}$$

The results above can be rephrased as

$$\sum_{w \ge 0} k(w) x^w = P(x)^p,$$
(6.1)
$$\sum l(w) x^w = P(x)^{p-1}.$$
(6.2)

Let m(w) be the multiplicity of 1 as an elementary divisor of C(B). Then

 $w \ge 0$

$$\sum_{w \ge 0} m(w) x^w = P(x)^{p-2} P(x^p).$$

In particular, m(w) > 0 if p > 2 and

$$m(w) = \begin{cases} \pi(w/2) & \text{if } w \equiv 0 \pmod{2} \\ 0 & \text{otherwise} \end{cases}$$

if p = 2. For a partition $\lambda = (\lambda_1, \ldots)$ let

$$e(\lambda) = \sum_{k \ge 1} \frac{p^{\nu_p(\lambda_k)+1} - 1}{p - 1}.$$

Let $\pi_0^e(n)$ be the number of *p*-regular partitions λ of *n* such that $e(\lambda) = e$. A theorem of Olsson says that the multiplicity of p^e as an elementary divisor of C(B) is

$$\sum_{s=0}^{w} m(w-s)\pi_0^e(s)$$

It is also possible to express the multiplicities of lower defect groups of B.

Example 6. The principal 2-block B of S_{10} has weight w = 5. We only need the 2-regular partitions of 1, 3, 5:

Hence, 2^e can only occur as elementary divisor if $e \in \{1, 4, 8\}$. The multiplicity of $2^8 = |D|$ is always 1. The multiplicities of 2 and 16 are

$$m(4)\pi_0^1(1) + m(2)\pi_0^1(3) + m(0)\pi_0^1(5) = 2 + 1 + 1 = 4,$$

$$\pi_0^4(3) + \pi_0^4(5) = 1 + 1 = 2$$

respectively. In general, the multiplicity of 2 is $\pi(0) + \ldots + \pi(k)$ if w = 2k + 1 and 0 otherwise.

7 Heights

Let $n = \sum a_i p^i$ is the *p*-adic expansion where *p* is a prime. For any expansion $n = \sum b_i p^i$ with $b_0, b_1, \ldots \ge 0$ let

$$\delta(b_0, b_1, \ldots) := \frac{\sum_i b_i - a_i}{p - 1} \ge 0.$$

Let $E_d(n)$ be the set of those sequences (b_0, \ldots) such that $\delta(b_0, \ldots) = d$.

Next let c(n) be the number of *p*-core partitions of n (= number of blocks of defect 0 of S_n). Set $C(x) := \sum_{n \ge 0} c(n)x^n$. Generalizing (6.1) we define

$$P(x)^{s} = \sum_{t=0}^{\infty} k(s,t)x^{t},$$
$$C(x)^{s} = \sum_{t=0}^{\infty} c(s,t)x^{t}.$$

Note that if t < p, then $c(t) = \pi(t)$ and c(s,t) = k(s,t) for all $s \ge 0$. Let $m_d(n)$ be the number of $\chi \in \operatorname{Irr}(S_n)$ such that $\chi(1)_p = p^d$. Olsson has shown that

$$m_d(n) = \sum_{(b_0,\ldots)\in E_d(n)} c(1,b_0)c(p,b_1)c(p^2,b_2)\ldots$$

For d = 0 we have $E_0(n) = \{(a_0, \ldots)\}$ and this yields *MacDonald's Theorem*

$$m_0(n) = k(1, a_0)k(p, a_1)\dots$$

If additionally p = 2, then $a_i \leq 1$ and $m_0(n) = 2^{a_0+\dots}$. In particular, if $n = 2^k$, then $m_0(n) = n$ and the corresponding characters $\chi_{\lambda} \in \operatorname{Irr}(S_n)$ (of odd degree) are labeled by the hook partitions $\lambda = (s, 1^{n-s})$ for $s = 1, \dots, n$.

Now let B be a p-block of S_n with weight w and defect d. The height $h(\chi) \ge 0$ of $\chi \in Irr(B)$ is defined by $\chi(1)_p p^{d-h(\chi)} = |S_n|_p$. Let $k_h(w)$ be the number of $\chi \in Irr(B)$ of height h (depends only on w). Then

$$k_h(w) = \sum_{(b_0,\dots)\in E_h(w)} c(p,b_0)c(p^2,b_1)\dots$$

Since for n = pw there is only one block of maximal defect in S_n , we recover $k_0(w) = m_0(pw)$. The maximal possible height of some $\chi \in Irr(B)$ is

$$h = \frac{w - \sum a_i}{p - 1}$$

where $w = \sum a_i p^i$ is the *p*-adic expansion. Then $k_h(w) = c(p, w)$ since $E_h(w) = \{(w, 0, \ldots)\}$. For p = 2 it can happen that $k_h(w) = 0$ (e.g. $k_3(5) = c(2,5) = 0$). In general, Olsson's Conjecture $k_0(w) \leq |D:D'|$ holds where D is a defect group of B.

Example 7. For p = 2 and n = 7 = 1 + 2 + 4 we have $(a_0, a_1, a_2) = (1, 1, 1)$ and

$$E_1(7) = \{(3,0,1), (1,3)\}, \qquad E_2(7) = \{(3,2)\}, \qquad E_3(7) = \{(5,1)\}, \qquad E_4(7) = \{(7)\}.$$

Moreover,

$$C(x) = 1 + x + x^{3} + x^{6} + x^{10} + \dots, \quad C(x)^{2} = 1 + 2x + x^{2} + 2x^{3} + \dots, \quad C(x)^{4} = 1 + 4x + \dots$$

Consequently,

$$m_0(7) = 2^{1+1+1} = 8,$$

$$m_1(7) = c(1,3)c(4,1) + c(1,1)c(2,3) = 4 + 2 = 6,$$

$$m_2(7) = c(1,3)c(2,2) = 1,$$

$$m_3(7) = c(1,5)c(2,1) = 0,$$

$$m_4(7) = c(1,7) = 0$$

8 Alternating groups

A conjugacy class C of A_n lies in a conjugacy class of S_n and therefore belongs to a partition λ of n. More precisely, C is not a conjugacy class of S_n if and only if λ has distinct odd parts. In this case $C \cup C^{(12)}$ is a conjugacy class of S_n . By *Sylvester's Theorem* there is a bijection Γ between the symmetric partitions and the partitions with distinct odd parts:

If $\lambda \neq \lambda'$, then $(\chi_{\lambda})_{A_n} \in \operatorname{Irr}(A_n)$. Now suppose that $\lambda = \lambda'$ and $\mu := \Gamma(\lambda)$. Then by Clifford theory, $(\chi_{\lambda})_{A_n} = \xi_{\lambda} + \xi_{\lambda}^{(12)}$ for some $\xi_{\lambda} \in \operatorname{Irr}(A_n)$ with $\xi_{\lambda}^{S_n} = \chi_{\lambda}$. We fix $g \in A_n$ of type μ . Then for $h \in A_n$

and $\epsilon := (-1)^{\frac{n-l(\mu)}{2}}$ we have

$$\xi_{\lambda}(h) = \begin{cases} \frac{1}{2}\chi_{\lambda}(h) & \text{if } h \text{ is not of type } \mu, \\ \frac{1}{2}\left(\epsilon + \sqrt{\epsilon\mu_1 \dots \mu_{l(\mu)}}\right) & \text{if } h \text{ is conjugate to } g \text{ in } A_n, \\ \frac{1}{2}\left(\epsilon - \sqrt{\epsilon\mu_1 \dots \mu_{l(\mu)}}\right) & \text{if } h \text{ is conjugate to } g^{(12)} \text{ in } A_n. \end{cases}$$

This allows to compute the character table of A_n from $Irr(S_n)$.

Similarly, if B is a p-block of S_n with core $\mu \neq \mu'$, then B is isomorphic to a block B' of A_n via restriction. In this case, p > 2 and B and B' have the same fusion system. Now suppose that B has core $\mu = \mu'$, weight w and defect group D. Then B covers a block B' of A_n with defect group $D \cap A_n$ and fusion system A_{wp} . Let C' be p-block of A_m obtain in the same way by some core $\nu = \nu'$ such that μ and ν have the same weight. Brunat–Gramain have shown that B' and C' are perfectly isometric. If p = 2, every core has the form $\mu = (a, a - 1, \ldots, 1) = \mu'$. If in addition w is odd, then every $\chi \in Irr(B)$ restricts to Irr(B'). Hence, in this case, k(B) = 2k(B') and the decomposition matrix of B consists of two copies of the decomposition matrix of B'. Marcus has proved that every p-block of A_n with abelian defect group is splendid derived equivalent to its Brauer correspondent (Broué's conjecture). For an odd prime p let $p^* = (-1)^{\frac{p-1}{2}} p$. Robinson and Thompson have shown that if $n \ge 25$, then

$$\mathbb{Q}(A_n) = \mathbb{Q}(\sqrt{p^*}: 3 \le p \le n \text{ prime }, p \ne n-2).$$

9 Wreath products

Generalizing the abacus we call any strictly decreasing sequence $a = (a_i) \in \mathbb{N}_0^l$ a β -set of length l(a) = l. We often identify β -sets with finite subsets of \mathbb{N}_0 . For $s \in \mathbb{N}_0$ also

$$a^{+s} := (a_1 + s, \dots, a_l + s, s - 1, s - 2, \dots, 0)$$

is a β -set (of length l+s). Any β -set a determines a partition $\lambda := P(a) := (a_1 - (l-1), a_2 - (l-2), \ldots, a_l)$ (note that a is the set of first column hook lengths of λ). Since $P(a) = P(a^{+s})$, we may assume that $l(a) \equiv 0 \pmod{p}$ in the following. We define $a_i^{(p)} := \{b \in \mathbb{N}_0 : bp + i \in a\}$ for $i = 0, \ldots, p-1$ (that is, we look at each runner of the abacus individually). Then the sequence of partitions $\lambda^{(p)} := (P(a_0^{(p)}), \ldots, P(a_{p-1}^{(p)}))$ is called the *p*-quotient of λ . The number $\sum |P(a_i^{(p)})|$ equals the weight of λ . Conversely, λ is uniquely determined by its *p*-core and *p*-quotient. If μ is the *p*-core of λ , the *p*-sign of λ is defined by $\delta_p(\lambda) = (-1)^{\sum l_i}$ where the l_i are the leg lengths of the *p*-hooks removed from λ to obtain μ .

Example 8. For $\lambda = (5, 4, 1^2)$ and p = 2 we obtain

$$a = (8, 6, 2, 1), \qquad (a_i^{(p)}) = (\{4, 3, 1\}, \{0\}), \qquad \lambda^{(p)} = ((2, 2, 1), ())$$

Hence, λ has weight 5 and the *p*-core is (1).

Let B be a p-block of S_n with weight w. Let $\operatorname{Irr}(C_p) = \{\varphi_1, \ldots, \varphi_p\}$ and let $\tau = (\tau_1, \ldots, \tau_p)$ a tuple of partitions such that $\sum |\tau_i| = w$. The linear characters $\varphi^{\otimes |\tau_i|} := \varphi_i \otimes \ldots \otimes \varphi_i \in \operatorname{Irr}(C_p^{|\tau_i|})$ extend to $C_p \wr S_{|\tau_i|}$ and we can define $\varphi_{\tau_i} := \varphi^{\otimes |\tau_i|} \chi_{\tau_i} \in \operatorname{Irr}(C_p \wr S_{|\tau_i|})$ where $\chi_{\tau_i} \in \operatorname{Irr}(S_{|\tau_i|})$. Finally let $\varphi_\tau := \left(\bigotimes_{i=1}^p \varphi_{\tau_i}\right)^{C_p \wr S_w} \in \operatorname{Irr}(C_p \wr S_w)$. Then $\operatorname{Irr}(B) \to \operatorname{Irr}(C_p \wr S_w), \chi_\lambda \mapsto \varphi_{\lambda^{(p)}}$ is a height preserving bijection. Now we label the conjugacy classes of $C_p \wr S_w$ where we consider C_p as $\mathbb{Z}/p\mathbb{Z}$. For $(x_1 \ldots x_w, \sigma) \in C_p \wr S_w$ we define a tuple of partitions $\tau = (\tau_0, \ldots, \tau_{p-1})$ as follows: For every cycle (a_1, \ldots, a_s) in σ let $s \in \tau_{x_{a_1}+\ldots+x_{a_s}}$. Then $\sum |\tau_i| = w$. Let $g_1, \ldots, g_l \in C_p \wr S_w$ be representatives for the classes of $C_p \wr S_w$ corresponding to the partition tuples τ with $\tau_0 = ()$ (note that these elements are non-trivial). Osima has shown that there exists $S \in \operatorname{GL}(l(B), \mathbb{C})$ such that

$$(d_{\chi_{\lambda},i}) = (\delta_p(\lambda)\varphi_{\lambda^{(p)}}(g_i))S$$

where $(d_{\chi_{\lambda},i})_{\lambda,i}$ is the decomposition matrix of *B*. It follows that the so-called *contributions* of *B* can be computed inside the smaller group $C_p \wr S_w$. More precisely,

$$[\chi_{\lambda},\chi_{\mu}]^{0} = \frac{1}{n!} \sum_{g \in S_{n}^{0}} \chi_{\lambda}(g) \chi_{\mu}(g^{-1}) = \delta_{p}(\lambda) \delta_{p}(\mu) \sum_{i=1}^{l} \frac{1}{|\mathcal{C}_{C_{p} \wr S_{w}}(g_{i})|} \varphi_{\lambda^{(p)}}(g_{i}) \varphi_{\mu^{(p)}}(g_{i}^{-1})$$

for every $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}(B)$.

10 Double covers and spin blocks

The Schur multiplier $M(S_n) := H^2(S_n, \mathbb{C}^{\times})$ is trivial for $n \leq 3$ and of order 2 for $n \geq 4$. For $4 \leq n \neq 6$ there are two non-isomorphic double covers:

$$\widehat{S}_n := \langle x_1, \dots, x_{n-1}, z \mid z^2 = 1, x_i^2 = (x_i x_{i+1})^3 = [x_i, x_j] = z \text{ for } i < j-1 \rangle,$$

$$\widetilde{S}_n := \langle x_1, \dots, x_{n-1}, z \mid z^2 = 1, x_i^2 = (x_i x_{i+1})^3 = 1, [x_i, x_j] = z \text{ for } i < j-1 \rangle$$

(here z is central). The outer automorphism of S_6 induces an isomorphism $\widehat{S}_6 \cong \widetilde{S}_6$. We regard $\operatorname{Irr}(S_n)$ as a subset of $\operatorname{Irr}(\widehat{S}_n)$ by inflation. The characters in $\operatorname{Irr}(\widehat{S}_n) \setminus \operatorname{Irr}(S_n)$ are called *spin characters* (these are the faithful characters of \widehat{S}_n). They correspond to the projective characters of S_n . The partitions of n with pairwise distinct parts are called *bar partitions* (this is the same as 2-regular). For each bar partition $\lambda = (\lambda_1, \ldots, \lambda_l)$ of n we can choose a spin character $\widehat{\chi}_{\lambda}$ such that $\widehat{\chi}_{\lambda} \neq \widehat{\chi}_{\mu}$ for $\lambda \neq \mu$. Moreover, $\widehat{\chi}_{\lambda} = \operatorname{sgn} \widehat{\chi}_{\lambda}$ if and only if $\operatorname{sgn}(\lambda) = 1$ (i.e. $n \equiv l \pmod{2}$). The characters $\widehat{\chi}_{\lambda}$ and $\operatorname{sgn} \widehat{\chi}_{\lambda}$ (if $\operatorname{sgn}(\lambda) = -1$) constitute all spin characters.

The shifted Young diagram \widehat{Y}_{λ} associated to λ is obtained by shifting the *i*-th row of the Young diagram i-1 boxes to the right (so a staircase emerges on the left). The bar lengths of the *i*-row of \widehat{Y}_{λ} contains the numbers

$$\{1,\ldots,\lambda_i\} \cup \{\lambda_i + \lambda_j : j > i\} \setminus \{\lambda_i - \lambda_j : j > i\}$$

in decreasing order (so $\lambda_i - \lambda_j$ is replaced by $\lambda_i + \lambda_j$). The (i, j)-th bar length is denoted by $|\overline{h}_{ij}|$ (despite shifting, the *i*-th row still starts with (i, 1)). The actual bars \overline{h}_{ij} can be visualized as follows: If i + j > l, then \overline{h}_{ij} consists of the last \overline{h}_{ij} boxes in row *i* of \widehat{Y}_{λ} (this is called an *unmixed bar*). If $i + j \leq l$, then \overline{h}_{ij} consists of all boxes in rows *i* and i + j of \widehat{Y}_{λ} (a *mixed bar*).

Example 9. The shifted Young diagram and the bar lengths for $\lambda = (5, 4, 2, 1)$ are

The mixed bars correspond to the blue boxes.

The analog to the hook formula is

$$\hat{\chi}_{\lambda}(1) = 2^{\left\lfloor \frac{n-l}{2} \right\rfloor} \frac{n!}{\prod |\overline{h}_{ij}|}$$

We can remove a bar \overline{h}_{ij} and rearrange the rows to obtain a new shifted Young diagram corresponding to a bar partition $\lambda \setminus \overline{h}_{ij}$.

Inclusion gives a one-to-one correspondence between the 2-blocks of S_n and \widehat{S}_n . If $B \subseteq \widehat{B}$ are such 2-blocks, then $l(B) = l(\widehat{B})$ and

$$k(\widehat{B}) = k(B) + p(w) + |\{\lambda \text{ partition of } w : \operatorname{sgn}(\lambda) = -(-1)^w\}|$$

where w is the weight of B.

Now let p be an odd prime. Every p-block of \widehat{S}_n is a block of S_n or consists entirely of spin characters. In the latter case we call it a *spin block*. Bars of size p are called p-bars. Removing all p-bars from a bar partition λ successively yields the \overline{p} -core of λ . The number of removed p-bars is the \overline{p} -weight of λ (this equals the number of bar lengths divisible by p). Two spin characters lie in the same (spin) block \widehat{B} if and only if they have the same \overline{p} -core (Morris conjecture). Moreover, $\operatorname{sgn} \widehat{B} = \widehat{B}$. We attach the \overline{p} -weight and \overline{p} -core also to \widehat{B} . For weights w > 0, the defect group of \widehat{B} is a Sylow p-subgroup of S_{pw} (still assuming p > 2). However, for w = 0, the defect is 0 if $\operatorname{sgn}(\lambda) = 1$ and 1 otherwise (since $\operatorname{sgn} \lambda \in \widehat{B}$). In general, the sign of a spin block with \overline{p} -core μ is $\operatorname{sgn}(\mu)$. In contrast to S_n , the number $k(\widehat{B}) = k(w, \epsilon)$ of characters in \widehat{B} does not only depend on the \overline{p} -weight w, but also on the sign ϵ . Let q := (p-1)/2 and

$$\sum_{k=0}^{\infty} \alpha(n,\epsilon) x^n := \frac{1}{2} \Big(\frac{P(x)^{q+1}}{P(x^2)} + \epsilon \frac{P(x^2)^{3q-3}}{P(x)^{q-1} P(x^4)^{q-1}} \Big).$$

Then $k(w, \epsilon) = \alpha(w, \epsilon) + 2\alpha(w, -\epsilon)$. For p = 3 and w > 0, the sign is irrelevant, i. e. $k(w, \epsilon) = k(w, -\epsilon)$. For p = 5, we have $k(w, (-1)^w) + p(w) = k(w, -(-1)^w)$. Brunat–Gramain have constructed perfect isometries between blocks of $2.S_n$ with the same weight and the same sign.

The Schur multiplier of A_n is

$$M(A_n) = \begin{cases} 2 & \text{if } n = 4, 5, 8, 9, \dots \\ 6 & \text{if } n = 6, 7 \end{cases}$$

and in each case there exists a unique covering group \widehat{A}_n (since A_n is perfect). For $n \neq 6,7$ we have $\widehat{A}_n \cong \widehat{S}'_n$. For n = 6,7 the covering groups are conveniently defined by GAP as PerfectGroup(2160) and PerfectGroup(15120) respectively. We may assume $n \ge 8$ for the remainder. For an odd bar partition λ the restriction of $\widehat{\chi}_{\lambda}$ to \widehat{A}_n is irreducible. If $\operatorname{sgn}(\lambda) = 1$, then the restriction is a sum of two irreducible characters of \widehat{A}_n . Every spin block \widehat{B} of \widehat{S}_n of weight w > 0 covers a unique block \widehat{A} of \widehat{A}_n . Moreover, $k(\widehat{A}) = k(w, -\epsilon)$ where ϵ is the sign of \widehat{B} .

The perfect isometries constructed by Brunat–Gramain can be adapted to $2.A_n$. Moreover, Broué's conjecture for blocks of $2.S_n$ and $2.A_n$ was verified by Livesey.